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Abstract

The bioinformatics field makes several types of analyses possible, such as verifying sus-
ceptibility to certain diseases and identifying samples in forensic science. Despite the
growing use, the problems solved with bioinformatics techniques are still limited by the
processing time and memory storage capacity, since the algorithms used are complex,
often of quadratic or cubic orders, and may rely on large volumes of data. Therefore, it
is necessary to have a correct understanding of the basic functioning of those techniques
and the limitations and main challenges related to biological problems. As a contribution,
in this chapter, we aim to provide an introductory view of embracing the collection and
analysis of biological data. To accomplish that goal, we will discuss the main algorithms
and databases and how to improve the algorithms applied to bioinformatics problems.

5.1. Introduction
Computers are powerful tools to help in solving today’s biological problems. Most of
these problems involve a huge amount of data. Commonly, this data comes in the form
of images [2] or, as we will discuss in this Chapter, biological problems also make use of
data from biological sequences [1].

When the problem involves working with images, those may be pictures or an-
other data format used to construct images (e.g., magnetic resonance imaging (MRI) scan
or recreation of the 3D protein structure[5]). For example, Klaczko and Blanche [3]
calculate the size and shape of D. mediopunctata’s wing using a photography of the mi-
croscope slide. To do so, they adjust an ellipse to fit the wing contour, and by using the
ellipse parameters, they can calculate the size and shape of the wing. This paper can be
applied to studies aiming to analyze the impacts of the selection process, evolution, and
environmental genetic factors, and how these aspects influence Drosophila’s wings [3].

Another widely studied field is predicting 3D protein structure. The multiple struc-
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ture alignment (MSA) can be used to understand the conserved and divergent areas during
evolution and to predict the function of the protein analyzed [5].

When we analyze the problems that use a biological sequence as data, the main
focus of this chapter, we face many problems—from plague control to genetic disease
prevention. We provide some specific examples below.

The Moniliophthora perniciosa causes the witches’ broom disease (WBD) in co-
coa and is an example of the use of bioinformatics applied to a real problem. In Brazil,
there have been severe cases of WBD, in which phyto-sanitation practices and resistance
breeding programs were applied to control the disease. However, these methods alone
were not enough to solve the problem. In addition, the largest producers of cacao in
the world are Africa and Asia, and if WBD reaches these areas, the worldwide produc-
tion of chocolate could be affected [40]. Thus, sequencing the Moniliophthora perniciosa
genome helped develop better control strategies for WBD.

Genome studies are also applied to humans. The Human Genome Project is the
most significant collaborative work, which started in 1989 and ended in 2003. It encom-
passes scientists worldwide with a shared mission: to sequence all the human genome.
Therefore, it is essential to notice the complexity associated with this task, as the human
genome contains more than 3 billion base pairs (bp). Nevertheless, these complex steps
are essential to advance genetic researches since knowing our genome code could help
us understand how we function at the chemical level. Also, it could explain the role of
genetic factors in many diseases, such as cancer, Alzheimer’s disease, and schizophrenia,
all of which decrease the lifespan of millions of people [41].

The human genome made it possible to perform another analysis. Another exam-
ple is considering sequence variation, in which we can use this information for understat-
ing genetic diseases or investigate the predisposition for some disease or condition, not
intending to act as treatment but prevention before any symptoms appear [2].

Furthermore, the information from sequence variation can be used to recognize the
different effects/side effects of drugs in individuals, since they can vary from person to
person. Therefore, this information can be used to develop more effective pharmaceuticals
for everyone or a personalized drug for each patient according to the observed genomic
sequence [2].

Nowadays, we cannot talk about bioinformatics research without considering the
computation behind it. However, more than that, we also observe a quick adoption of
computational analyses in the medical area [1].

Extracting scientific information from biological sequences is known as bioinfor-
matics, by biological sequences we consider deoxyribonucleic acid (DNA), ribonucleic
acid (RNA), or protein sequences. These sequences represent a vast amount of data, mak-
ing it almost impossible to analyze them without a computer [2]. Furthermore, the more
complex data lead to a necessity to improve the performance of the tools used.

For that reason, this chapter aims to explore the main areas in bioinformatics and
describe the most famous algorithms and how we can improve their performance.

This chapter is organized as follows. First, section 5.2 describes the biological
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information flow, from the DNA molecule to the sequence that can be processed and
stored in a computer. Next, section 5.3 describes the main steps in bioinformatics, error
correction, sequence assembly, and analyses. Next, Section 5.4 describes in detail the
sequence alignment process, and finally, Section 5.5 describe the remains challenges in
the area.

5.2. Biological information flow
DNA is the basis of all the genetic information used to produce everything necessary for
an organism [21]. It’s formed by a composition of nucleotides that is composed by a
pentose (5-carbon) sugar, a phosphate group and a nitrogen base, which can be of four
different types: Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). However,
the DNA molecule is not an alone strand. Each molecule is formed by two strands forming
a 3D spiral structure like a double helix, as seen in Figure 5.1. The strands connect to each
other in a specific order: A’s bases only pairs up with T’s, and C’s with G’s.

Figure 5.1. DNA molecule. Source: U.S. National Library of Medicine

Before starting the work with the DNA, we need to extract this molecule from
the organism that will be studied. For this, many methods can be used and knowing
the suitable one can be time and money-saving in the future steps of the experiment [11].
Different studies can have different purposes, so different tissues may need specific prepa-
ration methods. However, they share standard steps, like Efficient DNA extraction from
the organism, creating necessary samples for the experiment to be performed, cleaning
contaminants, and separating the DNA strands with higher quality [12].

When the DNA is ready and processed, the goal is to determine the ordered nitro-
gen bases from that sequence. For that reason, many technologies have emerged to carry
out these processes and allow the realization of the most diverse experiments.
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DNA was not the first molecule to be sequenced. In the early 50’s, Frederick
Sanger found out the constituent elements of insulin protein [22]. After that, many im-
provements and new methods were created and improved. Finally, in the mid of 70’s,
Sanger was able to sequence a whole DNA genome, the first one in history. The method
used is considered the initial step to the first generation of sequencers [21].

In short, the double strand needs to be separated when a DNA molecule is inside
the cell and needs to be duplicated (replication step). The Figure 5.2 show the steps:

Figure 5.2. DNA replication. Credit: The Biotech Notes

a) An enzyme called DNA helicase breaks the bonds between bases.

b) When a portion is separated, a small sequence called primer binds to the start of the
main strand.

c) The enzyme DNA polymerase creates the new strand by binding to the primer and
extending the sequence with the corresponding base (if the base in the main strand
is A, the incorporated base will be T).
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d) In the end, the generated strand will be identical to the separated initial strand (the
other strand goes through the same process but with a few more steps because it is
read in reverse).

This is the basic principle used in most sequencers.

In 1977 Sanger improved his technique and developed the known Sanger Sequenc-
ing, as shown in Figure 5.3:

Figure 5.3. Sanger Sequencing [25]

1. Separate the double strand using heat.

2. For each strand (or segment of it) that will be sequenced make multiple copies.

3. Bind a primer to each segment.

4. Prepare four solutions containing enzymes DNA polymerases and all four nucleotides.
The only difference is that one type of modified nucleotide is added in each solu-
tion. In this example, some A modified nucleotides were added in purple solution,
and in yellow was added some T. This nucleotide is called dideoxynucleotide and
its function is to block the DNA polymerase to continue extension.

5. The DNA polymerases binds to the primer and starts the replication. Normal nu-
cleotides are added to the segment, and when a modified one is added, the process
stops, leaving sequences of different sizes. In Figure 5.4, we have a demonstration
of what happens in each solution (the colors do not represent the bases in Fig-
ure 5.3). Getting the G dideoxynucleotide, every time it’s added to the sequence
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Figure 5.4. Sanger step 5 example - DNA polymerases prevention extension.
Adapted from [21]

end, the DNA polymerases stops. So we have in this example four different se-
quences with different lengths finished with Guanine.

6. All sequences are separated again, and we use the constructed strand from the pre-
vious step, which we call fragments.

7. The fragments pass through a polyacrylamide gel via electrophoresis technique.
The solutions are placed in an equipment, and an electric current is applied to each
one making the fragments travel by the gel pores. The smaller the sequences, the
faster they go, traveling long distances in the gel. From bottom to top, the last gray
box represents the smallest sequence that has Thymine as a terminal base, and then
comes a sequence ending with Cytosine. Because Thymine terminal sequence
went further, it is assumed that its length is smaller than Cytosine one. Therefore
in the original sequence, the base T comes before C. So here, the sequence can
be inferred as TCGAATGTCAGG, being the complementary sequence of the DNA
sample of step 2.

As said, Sanger Sequencing was the starting point of the First Generation of se-
quencers. The result from all these steps produces a sequence called a read, with at most
1000 bases (one kilobase - kb) [21]. This technique was widely used, but the need to
sequence larger genomes began to emerge. An example was the Human Genome Project,
which had the objective sequence of approximately 3 billion base pairs from the human
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genome with the collaboration of a worldwide team, having an estimated cost of one dol-
lar per base [29]. The project was proposed in 1984 but only started in 1990, finishing
on April 14, 2003 [29]. Finished but not completed. Only 92% of the human genome
was sequenced because of the technologies until that moment. They could not sequence
perfectly repetitive regions like the last 8% were. [30].

To circumvent some limitations of the past generation, in 2005, the Second Gen-
eration of sequencers started to appear, like the time needed to prepare the solutions,
duplicate the sequences and the high cost of these steps [33]. The principle of this new
era was to generate more leads in less time and lower costs. In addition, the reads here
are smaller than the reads from Sanger (up to 400 bases long), so many more sequences
are generated to compensate for possible gaps during genome assembly at the end of
sequencing.

One of the technologies used is Illumina. This sequencer flow is shown in Fig-
ure 5.5:

Figure 5.5. Illumina Sequencing. Adapted from [34]

1. Extract DNA strand to study.

2. Make DNA fragmentation from the last DNA strand.

3. Add adaptors to the ends of the fragments. Each adaptor is complementary to the
sequence bases.
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4. The adaptors will bind to the flow cell that contains others adaptors that are com-
plementary to one of the fragments adaptors.

5. The fragment-free adaptor ends up binding to another adaptor of the cell, making
a bridge between the two cell adaptors. Now, the DNA polymerases binds to one
of the cell adaptors and starts building the complementary fragment. When the
enzyme stops, the bridge is undone, and one of the adaptors is released, resulting
in two sequences (the original and the copy). Creating a copy of the DNA strand
is repeated thousands of times. The process is called Polymerase Chain Reaction
(PCR).

6. When all fragments have already been copied, all reverse strands created are cleaved
and eliminated from the flow cell. We will have a result cluster containing thou-
sands of samples for each fragment from step 2.

7. Primers are attached to the free fragment end, and DNA polymerases starts building
the complementary fragment. Each nucleotide has a different fluorescent element
attached, so a light signal is emitted when the enzyme binds to the correct base.
Belonging to a cluster, several signals will be released at the same time and captured
by a sensor, which will identify which nucleotide was inserted. Like in Sanger, we
will have the complementary sequence of the DNA fragments of step 2.

Unlike the Sanger method, which can sequence only one fragment at a time, Illu-
mina can make the process in parallel, using the many clones of the fragments, drastically
decreasing the execution time and increasing the number of reads generated [33]. As a re-
sult, nowadays is possible to use Second Generation technologies to sequence the human
genome in up to 10 days and at a cost below 10.000 dollars.

Some limitations persisted, and for this reason, new improvements have been
made. For instance, the reads generated until now were very small. For some genome
assembly, this method can be a problem as thousands of reads need to be generated to
deal with repetitive regions (best seen in Section 5.3), making the process expensive and
slow. Therefore, the Third Generation came to sequence molecules giving results bigger
reads. Another advantage that lower the costs is that it is not necessary to make DNA
amplification and we can use the fragment alone, without clones [21].

One of the approaches and currently the most used method is the Single-Molecule
real-time (SMRT), used by Pacific Biosciences of California, Inc. (PacBio) [21]. The
idea of reading luminous signals is the same as the past generation. Before sequencing,
the DNA sample needs to be prepared; this step takes some time. First, the double strand
DNA is connected to adaptors creating a circular sample called SMRTbell Library. A
primer and the DNA polymerases are added to the library as seen in Figure 5.6.

In Figure 5.7, we can see the PacBio flow described below.

a) Inside the PacBio machine are cells called SMRT Cell with millions of pores called
Zero-mode Waveguides (ZMW). Each library created is mobilized in each ZMW.
As in the Illumina method, we have labeled nucleotides with different fluorescent
elements attached to them. Light is emitted as DNA polymerases attach these bases.
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Figure 5.6. SMRTbell Library example. Adapted from [43]

Figure 5.7. PacBio Sequencing [42].

b) With a sensor, nucleotide insertion is captured in real-time and depending on the
intensity, we know the sequence of nucleotides.

The DNA polymerases works very quickly, and sometimes the signal is misread
from the sensor or ends up not being read between one incorporation of bases and another.
It is one reason for the generations of reads containing high error rates. Another problem
that can occur is error/duplication in library ZMW binding. Each SMRT Cell has about
150.000 ZMW; from that, only 35.000 and 70.000 produce successful reads, with at most
60kb [44]. Without clones to make a consensus fragment, the error rate can reach 20%
[17].

PacBio itself has a complementing of its method that reduces this error, using the
maximum life of the DNA polymerases creating a clone of the sequence being sequenced,
called HiFi sequencing. In Figure 5.8, The DNA polymerases is creating a Circular Con-
sensus Sequence (CCS). An overlap of the CCS on itself to create a consensus sequence
is done, decreasing the error rate. However, depending on the DNA polymerases lifetime,
the CCS can be much smaller than the read without this technique, and the consensus
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sequence can also decrease. With that, the experiment can become more expensive due to
the increase in operations necessary to cover a region in the genome and the time spent in
the CCS generation as well [44].

Figure 5.8. HIFI reads. Adapted from [43]

In Table 5.1, we can see a comparison between the technologies explained and all
these details should be in mind before starting a study.

Table 5.1. Performance comparison of sequencing platforms of various genera-
tions. Adapted from [44].

Sanger
ABI 3730×l

Illumina
HiSeq 2500
(High Output)

Illumina
HiSeq 2500
(Rapid Run)

PacBio
RS II: P6-C4

Read length (bp) 600–1000 2×125 2×250 1.0–1.5×104

onaverage
Error rate (%) 0.001 0.1 0.1 13
Reads per run 96 8×109

(paired)
1.2×109

(paired)
3.5–7.5×104

Time per run 0.5–3 h 7–60 h 1–6 days 0.5–4 h
Cost per million
bases (USD)

500 0.03 0.04 0.40–0.80

Using long reads with a low error rate (from more modern sequencers or tech-
niques that correct reads), it is possible to perform studies that were not possible in the
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past, as some related to those of the human genome. For instance, in 2022, almost 20
years after the human genome sequencing, the unremitting regions that were not known
were completely sequenced [30].

5.3. Error correction, Sequence assembly and Analysis
In this section, we discuss hybrid and self-error correction methods, providing examples,
the basic algorithm for reading correction, and examples of sequence assembling and
analysis for information discovery.

5.3.1. Error correction method

Depending on the type of experiment being performed and/or the organism being studied,
some methods of sequencing from past generations may be better alternatives than current
methods, having a reasonable cost benefit. The error rate and the resulting reads are
low, and when used in smaller genomes, assembling the sequences is easier than when
performed in larger genomes [13]. Getting the human genome, for example, when we
try to assemble its regions by overlapping the short reads, we cannot make a consensus
sequence due to many regions that are repetitive and complex [14].

As we can see in Figure 5.9, when using a small number of reads in a region much
more extensive than them, may occur gaps in the consensus sequence. To work around
this, we can generate a massive amount of short reads to increase the overlapping area,
until we can assemble a complete consensus sequence. However, with that, we have an
expensive experiment.

Figure 5.9. Example of a low and a high coverage consensus sequence

Thinking of another alternative, we can use the Third Generation Sequencing, like
PacBio, that produces long reads than the previous generations [14]. With this, instead of
using 100 small reads to make a consensus for a region, we can sequence this region as a
long read with a lower cost but with the disadvantage of having a higher error rate. This
is a problem because if we need to use these long reads with others to assemble another
more extensive region, the present errors can make the process more complicated and
increase the computational cost, in addition, to be imprecise in some repetitive areas [17].

To facilitate studies using larger genomes and allow research centers with low
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investment to perform some experiments, we have methods to perform error corrections
for long reads, decreasing the error rate. This is the first thing to think about when using
long-read sequencing. New versions of PacBio have in it sequencing finalization steps
to prevent high error rates (HiFi). However, this method ends up making the experiment
more expensive, for example, making it impracticable. For this reason, other software
works get the reads with a high error rate and process it, trying to correct the so-called
wrong bases, using two main approaches [15].

5.3.1.1. Hybrid correction

This type of correction uses short reads from a known genome to work as a reference.
Many techniques can be performed, like comparing the k-mers from a reference genome
against the long reads. If we have the genome of the nematode Caenorhabditis elegans
(C. elegans) organism and want to study it, for example, we can sequence it with PacBio.
However, as we know, the resulting long reads may have an error rate up to 30%. The
C. elegans was the first multicellular organism to have its approximately 100 Mega bases
completely sequenced. Using the studied and labeled nematode genome as a reference
to the experiment is a good approach because we can consider it without errors [16].
Nevertheless, suppose we do not have an organism completely sequenced. In that case,
we can use short reads (like the ones from Illumina) as our reference genome because the
error rate is minimal, so it is very close to the real genome [17].

For this, we have to create the k-mers from the reference genome. K-mers are
substrings with length K inside a string, being this string a nucleotide sequence. For
example, in Figure 5.10, we show k-mers of size 16 in a sequence. If the sequence has
size L, we will have L - K + 1 k-mers in total.

Figure 5.10. Example of 16-mer in a sequence

If we want to know which organism a studied sequence belongs to, we just break
it down in k-mers and compare their frequencies with the reference genome. The higher
the frequency, the closer these organisms are.

K-mers with errors do not often appear, so their frequency will be minimal. Most
of the time, they will not be present in the reference genome (in some cases, if we use
other K values, some k-mers with errors can appear in different frequencies and match
with any k-mer of the reference).

First, we have to determine the size of the k-mer (in this example, we will use 24)
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and create a list with all k-mers of the reference genome. Now, let us suppose we have
the following read with some error in it.

AAAAACCGAAAAAAGTGTGGACTTCCCGCGTGAAAAC(...)

In this example, K is 24 and we want to correct this read.

AAAAACCGAAAAAAGTGTGGACTT CCCGCGTGAAAAC

Running the Algorithm 1, a new k-mer is formed by sliding one base from the
previous state. The result will be:

A AAAACCGAAAAAAGTGTGGACTTC CCGCGTGAAAAC

Now, we check if this new k-mer is present in the genome reference k-mer list.
The algorithm continues sliding the k-mer window until it finds a k-mer that is not in the
reference list.

AA AAACCGAAAAAAGTGTGGACTTCC CGCGTGAAAAC

AAA AACCGAAAAAAGTGTGGACTTCCC GCGTGAAAAC

AAAA ACCGAAAAAAGTGTGGACTTCCCG CGTGAAAAC Not in k-mer list!

When the problematic k-mer is found, test all possible errors that may have oc-
curred. For each check, verify if the new k-mer is valid.

• Insertion: Remove G

• Deletion: Substitution of G by AG, CG, GG, TG

• Mismatch: Substitution of G by A, C, T

If only one valid k-mer is found, this is the corrected sequence. We go to more
complex correction steps if 0 or more than one is found.

If the previous step fails, we can align the sequence with the reference genome.
For this, the last valid k-mer found (the one before the problematic k-mer) has a comple-
mentary of it in the real genome. For example, if the reference genome is AAACCCGGGTTT
and K is from size 6, the complementary of the 6-mer green is the 6-mer in cyan, as shown
below.
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Algorithm 1 Simple read correction
0: sum 0
0: C NULL

for i k+1 to L do
kmer read[i :i+k]
if not (kmer in reference genome) then

newKmer checkInsertion(kmer, i)
if newKmer in reference genome then

sum sum+1
if sum == 1 then

C newKmer
end if

end if
for base in [‘A’, ‘T’, ‘C’, ‘G’] do

newKmer checkDeletion(kmer, i, base)
if newKmer in reference genome then

sum sum+1
if sum == 1 then

C newKmer
end if

end if
end for
for base in [‘A’, ‘T’, ‘C’, ‘G’] do

newKmer checkMismatch(kmer, i, base)
if newKmer in reference genome then

sum sum+1
if sum == 1 then

C newKmer
end if

end if
end for
if sum != 1 then

C NULL
end if
return C

end if
end for
return C =0
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AAACCC GGGTTT

This works like a prefix and a suffix. For example, the green k-mer is the prefix of
cyan k-mer. The reference suffix is aligned with the k-mer being analyzed plus its suffix.
If the referenced prefix has more than one suffix, the operation occurs with all of it, and
the corrected sequenced is the one with optimal alignment.

5.3.1.2. Self correction method

This method is more computationally expensive. A reference genome is not required and
therefore is necessary to perform an alignment between all the reads with each other [47].

In Figure 5.11, we can see the workflow of CONSENT, a combination of self-
correction methods from the state-of-the-art [47]. First, an overlap of some read’s region
is computed by an external tool. Then, CONSENT select a template read to correct. Every
read region is not part of the template window. CONSENT is removed from the next steps
because this region will not be used for correction. Next, windows are defined, and each
of them is aligned. When the consensus of the windows is generated, this sequence is
polished (corrected) by a local de Bruijn graph. In the end, the consensus sequence is
aligned with the original template read to perform the correction of it.

Figure 5.11. Overview of CONSENT workflow. [47]

5.3.2. Sequence assembly

When we have all the reads from the sequencing method, it is time to start reconstructing
the original sequence. The sequencers only produce reads from random sizes (within a
specific range depending on the technology used). For this reason, we need to use other
strategies to overlap these reads and assemble them, as shown in Figure 5.12, in another
continuous sequence called contig. This contigs are ordered, oriented and grouped to-
gether to form scaffolds [18].

Depending on the type of sequencer used, the number of reads generated per run
can be considerable, as seen in Table 5.1. If the study focuses on a more complex organ-
ism and needs more extensive genome coverage, this implies a larger data storage. One
example is a genome size of approximately 100MB with 40x of coverage, which gives us
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Figure 5.12. Example of assembly

a raw output of 4.5GB [45]. The larger the genome and/or the coverage, the greater the
output. Genomes from approximately 3GB and 100x of coverage can reach terabytes of
data [18].

All reads from a region need a good overlap with those of the same region to have
the best assembly. If this doesn’t happen, some contigs may not accurately build scaffolds
and the result will be very fragmented [18]. Some software can help to find low-quality
reads and regions, for example, from a database with reference genomes that have already
been studied and sequenced by another sequencer [18].

So when we want to reconstruct the genome from an organism, short reads can
lead to gaps in assembled sequences (using more short reads can work around this prob-
lem). While long reads with a low error rate can map certain regions by themselves,
depending on the number of reads generated, making assembly with fewer gaps.

If the genome to be generated is new and/or does not have another sequence as a
reference as a template, the approach used is the De-novo assembly. One of the algorithms
uses the method of overlap. In short, each read is compared to the others to find the closest
match and is merged to form a contig. The process is repeated until necessary, creating
new contig and generating scaffolds at the end. This process is computationally expensive,
since each assembly tool has a specific depending on the study to be carried out. Making
it difficult to predict which one is the best to use [18]. If we have a template sequence,
we can align the reads against it, and we will have a faster process with less memory
consumption. The two types can be seen in Figure 5.13.

5.3.3. Analysis

A new sequence does not necessarily represent a discovery. It is necessary to analyze this
sequence. Analyze the new sequence that leads to inferences and discoveries about it.

Sequence analysis started in the 1980s to compare two DNA sequences and find
if they are homologous to each other (i.e., if the sequences share common areas) [48].

In the beginning, only a superficial analysis could be performed. After the 1990s,
more complex analyses were performed with increased processor speed and storage ca-
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Figure 5.13. Types of sequencing assembly. [46]

pacity. For instance, analyze the family’s histories [48]. Also, the software becomes more
available for many researchers, enabling studies from different disciplines with a vast
number of individual sequences being compared. Quantifying a specific characteristic
became possible due to the advancement of technology.

There are vast applications for sequence analyses, such as finding similar se-
quences in a database, finding variations in the DNA such as point mutations and single
nucleotide polymorphism (SNP), map evolution, and genetic diversity [48]. Nowadays,
even with servers and supercomputing centers making it possible to do some analyses that
seemed impossible in the past, the analysis’s complexity and urgency seem to grow more
each year. For example, the ancestry exams and the ones that can predict the risk for cer-
tain types of diseases are more frequent, increasing the demand for computing resources.

The demand to increase the efficiency of this analysis is evident. The most com-
monly used algorithm is sequence alignment, in all its variations.

The following subsection describes the sequence alignment, which can be used
in many bioinformatics procedures. Also, we detail the different types and discuss the
possible improvements in Smith-Waterman and CLUSTAL W algorithms.

5.4. Sequence alignment
After a new gene is found by scientists investigating a disease, the next step consists of
finding the gene function. The typical approach used to infer a function is comparing the
new one find with all already known gene sequences [8].

This approach has many successful cases. We will describe the first two reported
in the literature. In 1984, scientists discovered a new cancer-causing v-sis oncogene1. Af-

1Oncogenes are genes capable of causing cancer, they can be mutated genes or an over-expressed gene.
[8].
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ter the discovery, they performed a computation technique to compare the new discovery
with all the know genes until that moment.

At the first moment, we imagine that the result matches this new gene and another
cancer-related gene. However, this is not what the scientists found.

Surprisingly, the gene show similarities with Platelet-Derived Growth Factor (PDGF),
a gene involved in growth and development. This discovery was essential for scientists to
understand cancer as an over-expressed gene [8].

Another example date back to 1989. The result of an alignment made it possible to
associate the cystic fibrosis genes with an Adenosine Triphosphate (ATP) binding protein
gene.

Known as the salty kiss disease, this association seen in the genes could explain
the salty skin presented by people with cystic fibrosis. In contrast, the ATP binding pro-
tein gene is responsible for expanding the membrane cell multiple times to transport the
sodium ions [8].

A current example of sequence alignment use is the ancestry exams. Most com-
panies that provide this type of exam create a database with the DNAs sequences of their
clients. Then, when a new client submits the collected DNA they compare, using sequence
alignment, the new sequence against all the sequences in the built database. Therefore,
proving information about the ancestry of the DNA sequence. Using this approach is also
possible to find relatives by comparing the DNA sequences [50].

It is possible to notice that sequence alignment was essential for scientific dis-
coveries, including understanding many diseases, helping to create a treatment, or even
getting close to the cure. Therefore, sequence alignment is an indispensable procedure in
the bioinformatics area.

Sequence alignment compares two or more sequences, which can be either an
amino-acid (i.e., protein) or a nitrogenous base (i.e., DNA or RNA) sequence. When we
compare only two sequences, we procedure a pair-wise alignment. In contrast, when there
are more than two sequences is called a multiple sequence alignment [7].

Sequence alignments can also be separated into two categories, global and local
alignment. On the one hand, the global alignment tries to align the entire sequence, con-
sidering all the amino-acids or nitrogenous bases until the end of the sequence analyzed.
On the other hand, a local alignment aims to find the best subalignments or islands of
matches from an aligned sequence. In this case, only a fraction of the sequence is aligned.
The result, in this case, is the fraction that represents the highest number of matches. The
following subsection discusses in detail each, including examples and applications [7].

In a simplified way, two sequences are aligned by writing one below another in
two separate rows. The alignment is procedure character by character. We have a match
if the two characters in the same column are identical. We have identical sequences if all
the characters from both sequences are equal.

Otherwise, if the character is nonidentical, they can be characterized as a miss
match, or a gap can be inserted. Gaps are used to optimize alignments, performing a
sequence shift. An optimal alignment can include the addition of gaps to reach as many
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matches as possible [7].

5.4.1. Global alignment

A global alignment can be executed in a protein, DNA, or RNA sequence. The primary
process is the same for both types of sequences. In a protein, amino acids are aligned and
in DNA and RNA sequences, nitrogenous bases are aligned [7].

The global alignment is stretched over the length of the entire sequence. The aim
is to reach the highest number of matches in the sequences, namely the alignment score.
Gaps can be added in any of the sequences, when a gap is added, the score suffers a
penalty. The global alignment is performed up to and including the end of the sequences
[7].

We analyze an alignment from column to column, comparing the characters pre-
sented in each sequence. If they are identical, we have a match. On the other hand, if the
characters presented in a column are nonidentical, we have a miss match. Also, in this
case, a gap can be added to improve the number of matches, is essential to notice that
gaps added need to respect the length of the sequences, not exceeding it[7].

Figure 5.14 illustrates an example of global alignment in a hypothetical protein se-
quence. We can see two sequences and the matches and miss matches from each column.
A match is observed in the first column, amino-acid L, which stands for Alanine. The
second column is a miss match. Next, a gap is added in the third column of the second
sequence, and we also see a gap in the 13th column of the first sequence.

Analyzing the entire sequence we observe seven matches ( Alanine(L) in 1th col-
umn, Lysine(K) in 6th and 10th column, Glycine(G) in 9th and 11th column, Arginine(R)
in 15th column and Aspartic acid(D) in 18th column) and eleven miss matches. Further-
more, two gaps were added.

Figure 5.14. Example of global alignment. Adapted from [7].

In summary, when sequences are similar and have the same length a global align-
ment is suitable to be performed in these sequences [7]. In most cases, global alignment
is performed when sequences are related along their entire length. A local alignment can
be used when only a region of similarity is sought.

5.4.2. Local alignment

Similar to a global alignment, sequences from proteins, DNAs, and RNAs can also be used
in a local one. Although different from the global approach, in a local alignment, only a
fraction of the sequence is aligned, searching in the sequence for the fraction representing
the highest number of matches.

Figure 5.15 shows the same sequence illustrated in Figure 5.14, although, as we
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can see, the optimum local alignment considers only the fraction of G-K-G (Glycine-
Lysine-Glycine) (i.e., the three consecutive matches).

Figure 5.15. Example of local alignment. Adapted from [7].

This type of alignment is used to align sequences with conserved regions or do-
mains, the ones with similarity in only a part of the sequence. Additionally, since only a
fraction of the sequences are aligned, they can differ in length.

5.4.3. Pair-wise and Multiple sequence alignment

Pair-wise consists of aligning only two sequences. The sequences can be proteins, DNA
or RNA. An extension of the pair-wise alignment is the multiple sequence alignment when
the alignment is performed in three or more sequences.

For instance, a new sequence can be aligned against a sequence database to rec-
ognize the family or species, for example, [7]. Another example is finding conserved
residues and identifying structural and functional domains when aligning more than two
protein sequences.

5.4.4. Alignment scoring functions

For all sequence alignment types (i.e., local or global), we need to define the values asso-
ciated with each scenario in the alignment, to calculate the alignment score.

When two sequences are being aligned, four scenarios are possible: (1) a gap in
the first sequence, (2) a gap in the second sequence, (3) a match in both sequences, and
(4) a miss-match between sequences.

Keeping these four scenarios in mind, a scoring function must attribute a value to
each possible situation.

We will consider a simple scoring function in this chapter. -1 is assigned if a gap
is added or a miss-matches is observed. For a match, +1 is attributed. This simple scoring
function is describe in Equation 1 [1].

s(�,a) = s(a,�) = s(a,b) =�1 8(a 6= b)
s(a,b) = 1 8(a = b)

(1)

In a global alignment, this function is used to score the sequence alignment since
this alignment considers the entire sequence. Considering the example illustrated in Fig-
ure 5.16 and Equation 1, we have seven matches, three gaps, and two miss-matches. In
this case, the result of the scoring function is equal to two [1].

Minicursos do XXIII Simpósio em Sistemas Computacionais de Alto Desempenho

125



Figure 5.16. Example of the score of a global alignment. Adapted from [1].

The scoring function for the example in Figure 5.16, is describe in Equation 2.

M(a) = 7�2�3 = 2. (2)

The alignment score is directly associated with the function score. Therefore, the
choice of the scoring function should try to reflect the biological behavior[1].

5.4.5. Substitution matrices

Substitution matrices can be used to consider multiple scoring functions and attribute
different scoring for the substitution of one letter for another.

These matrices can be used for proteins or DNA and RNA sequences. The matrix
shows the substitution cost between amino acids in a protein scenario. While in a DNA
or RNA scenario, the cost reflects the cost of nucleotide substitution. Also, the match and
gap values are shown in the matrices.

Using a substitution matrix is possible to expect ambiguous characters or even
mutations and changes arising from the evolution process and assign a higher value for
these changes [7].

Figure 5.17 illustrates a 5x5 matrix that can be used as a nucleotide substitution
matrix. All pairs of s(a,b) nucleotide or gaps are shown. Note that s(�,�) has a not
determined (N/D) value since an alignment between two gaps is not needed.

Figure 5.17. Example of a substitution matrix. Source: [1].

5.4.6. Smith–Waterman

The Smith-Waterman [19] is an algorithm that uses dynamic programming to find, in any
sequences of any lengths, where an optimum alignment can be found. The sequences can
be either RNA, DNA or protein sequences.
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5.4.6.1. The algorithm

The main steps of Smith-Waterman consist of:

• Initialization of a scoring matrix

• Filling the matrix with the calculated scores

• Trace back the sequences to find the best alignment

Considering two sequences, the first sequence’s characters are placed at the top
of the matrix, and the character from the second sequence are placed vertically on the
left side. Next, the alignment score for each character pair (i.e., s(a,b)) is placed in the
corresponding matrix position. The code is described in Algorithm 2.

Algorithm 2 Smith–Waterman algorithm
0: S[0,0] 0

for i 1 to M do
S[i,0] 0

end for
for j 1 to N do

S[0, j] 0
for i 1 to M do

S[i, j] MAX

8
>><

>>:

0
S[i�1, j�1]+s(xi,y j)
S[i, j�1]+s(�,y j)
S[i�1, j]+s(xi,)

end for
end for
return S[M,N] =0

To illustrate the functionality, we will describe the alignment of the sequences
PARALLELDNAALIGNMENT and DNASEQUENCE. Analyzing both sequences, we can
see that the subsequence DNA is present in both. Thus, the solution for this alignment is
DNA as described in Figure 5.18.

Figure 5.18. DNA subsequence alignment.

Since the solution is already known, we will describe step by step the Smith-
Waterman execution for the two sequences as inputs. The first step is configuring the
score matrix. To create it, sequences are placed on top of the matrix and vertically on the
left side, as illustrated in Figure 5.19.

Minicursos do XXIII Simpósio em Sistemas Computacionais de Alto Desempenho

127



Figure 5.19. Create matrix based in the sequences.

Figure 5.20. Initialize matrix with zeros.

After is the initialization, which consists of adding zeros to the first column and
first line of the matrix, the result of this step is illustrated in Figure 5.20.

Next, we will use the scoring function described in Equation 1 to score all the
pairs in the sequences. The result of this step is shown in Figure 5.21.

Figure 5.21. Score function calculation.

The last step consists of a trace-back procedure, starting with the highest element
observed in the table of Figure 5.21 until a zero element in the trace-back path [1]. The
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highest element in this example is three. Performing a trace-back, we find element two
(i.e., a match between character N and character N). The next step is element one, the
result of the match between D and D, and the next element is a zero, which stops the
process. The result of the trace-back is shown in Figure 5.22.

Figure 5.22. Trace-back procedure.

After all the steps, the alignment described in Figure 5.18 is reached. This way,
finding the optimum alignment for the sequences.

5.4.6.2. Parallel solutions

It is possible to notice that Smith-Waterman is a time-consuming algorithm associated
with all the complex procedures and comparisons. When we consider two sequences
of lengths m and n. The computational and space complexity equals O(mn) and O(m),
respectively. When we consider multiple alignments, the execution time gets even more
significant, where O(mn) is multiplied by the number of sequences being compared.

Many parallel solutions were developed to accelerate the algorithm, using tech-
nologies such as vector-level parallelism, thread-level parallelism, process-level paral-
lelism, and heterogeneous approaches [20].

The first step when paralleling an algorithm is identifying and solving the depen-
dencies. The Smith-Waterman algorithm has a dependency on the previously calculated
scores. As described in Equation 3.

MAX

8
>><

>>:

0
S[i�1, j�1]+d (xi,y j)
S[i, j�1]+d (�,y j)
S[i�1, j]+d (xi,)

(3)

The current position depend on the S[i-1, j-1], S[i-1, j] and S[i, j-1] positions, this
dependency is illustrated in Figure 5.23. The first step in implementing a parallel solution
is to solve this dependency so that the position calculation for the score matrix can be
separated into groups.
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Figure 5.23. Existing dependencies while calculating the score matrix [20].

One possible technology for active parallelism is vector-level parallelism, also
known as Single Instruction Multiple Data(SIMD), this type of parallelization performs
the same operation in a group of data, namely spatial parallelism. For example, using a
controller to control multiple processors, executing one instruction in multiple data [20].
Figure 5.24 shows the difference between vector and scalar operations.

Figure 5.24. Vector and scalar operations [20].

When we consider solutions in vector-level parallelization, some possible strate-
gies are reported in the literature to solve the dependencies.

In inter-sequence, the parallelization is performed in a pair of sequences. The
available solutions are organized in anti-diagonal, sequential, or striped, described in Fig-
ure 5.25.

Anti-diagonal layout [26] works in the observation that calculation cell S[i,j] and
S[i-1, j+1] is an independent task, thus possible to be calculated in parallel. Despite that,
this approach does not change computation and space costs.

Another layout is the sequential [27]. Algorithm 3 describes the pseudo-code for
the Lazy-F evaluation, a solution using the sequential layout to solve the data dependen-
cies using auxiliary vectors.
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Algorithm 3 Sequential-layout for Smith-Waterman algorithm
0: VECTOR4 vGo = [D,D,D,D]

0: VECTOR4 vGe = [d ,d ,d ,d ]
for j 0 to n/4 do

Hb [0,0,0,0]
Eb [0,0,0,0]

end for
for i 0 to m do

vHx [0,0,0,0]
vF  [0,0,0,0]
for j 0 to n/4 do

vH Hb
vE Eb
vTem1 vH >> 3
vH (vH << 1)|vH
vH vTem1
vH vH +M[i][ j]
vH max(vH,vE)
vF  (vH << 1)|(vF >> 3)
vF  vF� vGo� vGe
if any values in vF > 0 then

vTem2 vF
while any values in vTem2 >0 do

vTem2 (vTem2 << 2)� vGe
vF  max(vF,vTem2

end whilevH max(vH,vF)
vF  max(vH,vF + vGo)

else
vF  vH

end ifHb vH
Eb max(vH� vGo,vE)� vGe
vMAX = max(vMAX ,vH)

end for
end for=0
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Figure 5.25. Inter-sequence parallel layouts [20].

In the sequential-layout, one character of the target sequence is aligned to the
entire query sequence, as illustrated in Figure 5.25. The parallel solution came from
dividing this process into equal parts and executing each part in parallel. For instance, the
process is separated into four parts in the Algorithm 3. This number could be adapted for
the SIMD technology used[26].

This solution still uses a computation of O(mn) and space of order O(m), never-
theless is faster than the previous solutions.

Finally, the striped layout [31] is a refined version of the sequential layout. The
query elements are reorganized in this approach and, similar to sequential layout compu-
tation, remain O(mn).

Another way to achieve parallelism is using shared memory architectures to per-
form thread-level parallelism. In Figure 5.26 (A), we illustrate a shared memory archi-
tecture, in which the cores share access to the memory through an interconnection, differ-
ently from a distributed architecture, illustrated in Figure 5.26 (B), where each core has
its own memory.

Some tools that provide parallelization using threads are POSIX Threads (Pthreads) [23]
and OpenMP [24].

When we have the Figure 5.26 (b) architecture, we can reach parallelization using
a process level. In this case, each process has an independent code segment and mem-
ory, which means the need to exchange information from one process to another. This
exchange is done by communication. It is essential to notice that passing messages from
one process to another represents an extra overhead to this technique. A commonly used
protocol is Message-Passing Interface (MPI), a programming interface available for many
programming languages.

Therefore, solutions that use shared memory in thread-level parallelism are avail-
able in the literature. For instance, KSW and KSW2 [51, 52], libssa[53], SeqAn[54],
SWIPE[55], etc. One solution applied in thread parallel versions of Smith-Waterman is
similar to the abovementioned solutions. Dividing the sequence to be aligned in sub-
sets, normally equal to the number of threads available, each thread is responsible for its
sequence [20].
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Figure 5.26. (A) Shared memory architecture; (B) Distributed memory architecture [20].

Nowadays, graphic processing units (GPUs) are becoming more common in per-
sonal computers. For that reason, heterogeneous parallel solutions, including the Central
Processing Unit (CPU) and different accelerators such as GPUs are used [20].

Furthermore, in Python, a package named Biopython, have the alignment algo-
rithm already implemented. Therefore, the algorithm automatically chooses the appro-
priate alignment algorithm between Needleman-Wunsch, Smith-Waterman, Gotoh, and
Waterman-Smith-Beyer global. The decision is made based on the values of the gap
scores observed in a pair-wise alignment.

Another widely used alignment algorithm is the one in which Smith-Waterman
is based: Needleman-Wunsch. While Smith-Waterman procedure a local alignment,
Needleman-Wunsch performs a global alignment.

5.4.7. CLUSTAL W

CLUSTAL W [32] is the most cited algorithm in bioinformatics. It is a global multiple
alignment algorithm applied for three or more sequences, with a computational complex-
ity of O(n2). For this reason, there is a need to improve CLUSTAL W performance since
it is high complexity and vastly used algorithm. The algorithm uses dynamic program-
ming to align the sequences, both amino acid and nucleotide sequences are accepted. The
algorithm is divided into three main steps:

a) Calculate the distance matrix for each pair of sequences.

b) Determinate the topology of the progressive alignment.

c) Obtain the multiple alignments progressively.

In the literature, we have solutions in both shared and distributed memories. For
instance, in shared memories, a solution used in most of the CLUSTAL W servers is
proposed by Mikhailov et. al. [35], which uses OpenMP.
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When analyzing distributed memory, a solution proposed by Liu [36] uses MPI to
improve the average performance. All three algorithm steps were parallelized using the
fixed-size chunking strategies, combining fine and coarse-grained division of work. They
are reaching a speedup of 4.3% when 16 cores are used.

Another widely used algorithm is T-Coffee. This algorithm is also a multiple
sequence aligner; although different from CLUSTAL W, it can be used for global or local
alignment.

5.5. Open challenges
The importance of bioinformatics in our life is undeniable, and improvement and devel-
opment still need to be done in many problems in this area. This section describes the
complexity associated with the most used algorithms and the remaining challenges in
bioinformatics studies.

One topic of study is redundancy removals in raw reads resulting from the DNA
sequencing process. The first example is the MapReduce Duplicate Removal tool (MarDRe)
[38], a tool to remove duplicate and near-duplicate DNA reads through the clustering of
single-end and paired-end sequences from the FASTQ/FASTA dataset. Madre shows a
computational complexity of O(logn). Similar to FastUniq [39], a tool with a functional-
ity similar to MarDRe and an O(log N) complexity. Since the data volume is increasing,
faster solutions are needed to process increasingly complex data. Improving these algo-
rithms’ performance is an open area.

Another new approach used in bioinformatics is machine learning. This tech-
nique could be used in many solutions, from predicting a gene function to analyzing MRI
images. For instance, machine learning could be a tool to facilitate research or doctor
analyses and anticipate some conditions or even a disease that still does not show symp-
toms.

In addition, considering all the areas listed above, the high-performance comput-
ing (HPC) area is essential in all of them. If a solution or algorithm cannot be executed in
a feasible time, independently of how useful or innovative it may be, it can not be used.

In conclusion, all the bioinformatics problems and algorithms could be seen as a
target for HPC since time is one of the most critical points in this area. Also, considering
the increase in the data volume and complexity, even the faster algorithms for our current
data could be insufficient in the future.
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