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Abstract

Intrusion detection is one of the key points in computer security, and it aims to identify
attempted attacks by unauthorized users. Several researches are being developed to solve
security problems in environments involving the Internet of Things, Fog Computing, and
Cloud Computing. This mini-course has a theoretical and practical profile, aims to de-
scribe aspects of the context of intrusion detection in IoT and Fog Computing, presents
Machine Learning techniques commonly used in intrusion detection, expose state-of-the-
art approaches, and present some results obtained in developed research.

1.1. Introduction
With the development of technological resources and the popularization of the Internet,
there has been significant growth in the number of computational applications. Faced
with this new technological context, difficulties have arisen in maintaining the security
of applications and data, given that the techniques for exploiting vulnerabilities in these
computational infrastructures are constantly being improved to acquire access to systems
and obtain and use improperly sensitive information.

Malicious users can exploit vulnerabilities in computer systems to carry out illicit
activities. The attackers’ main motivation is to obtain privileged digital content that can
bring some benefit to the attacker and/or cause significant damage to the target of the
attacks.

Currently, the Internet of Things (IoT) is spreading in all areas that apply com-
putational resources. IoT devices allow everyday objects to be connected to the Internet,
computers, and smartphones [Atzori et al. 2010]. The idea is to increasingly unite the
physical and digital worlds by communicating objects with other devices, data centers,
and clouds.
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IoT devices have limited resources [Atzori et al. 2010]. There is a need to transfer,
via the Internet, the data generated by these devices to process and store them in a com-
putational center with greater capacity [Miorandi et al. 2012]. Many IoT applications use
Cloud Computing to process and store data [Al-Fuqaha et al. 2015]. However, with the
growth of IoT, applications began to deal with generating large amounts of data. Con-
sequently, requiring heavy computational resources like bandwidth [Bonomi et al. 2012].
This large amount of data results in network congestion in the communication of IoT de-
vices with data centers of cloud computing [Roman et al. 2018]. Fog computing provides
services closer to the end devices [Bonomi et al. 2012, Roman et al. 2018]. Performing
temporary data processing and storage close to IoT devices decreases the traffic sent to
the cloud [Roman et al. 2018]. In addition, it allows applications that need real-time pro-
cessing to obtain a faster response [Al-Fuqaha et al. 2015]. In this way, they do not send
data from devices to the cloud.

IoT allows various physical objects to see, hear, feel, think, and communicate in
the environment in which they are inserted. In this way, each object can share informa-
tion with other objects and make decisions to perform certain tasks [Atzori et al. 2010].
As a consequence of this scenario, large amounts of information of the most varied na-
tures are processed. Much of this data is confidential and private. Sensitive user data
is collected, processed, transmitted, and stored via fog computing and IoT components
[Roman et al. 2018]. In this context, attackers may be able to compromise a smart home
system, for example, and discover confidential information about the family’s habits, such
as the time that residents sleep or that the house is empty, among others. This information
can later be used to cause serious harm to victims [Ni et al. 2018].

The resource constraints of IoT devices make them susceptible to flaws and ma-
licious data integrity attacks [Neshenko et al. 2019]. This can lead to unreliability and
sometimes system collapse. One of the main objectives of an attack on an IoT network is
to disrupt the availability of data sent from IoT devices to applications. This interruption
can be achieved in several ways, such as overloading devices with information requests
or compromising the network structure by dropping packets [Roman et al. 2018].

Smart environments are becoming real and possible through IoT. However, as
mentioned above, they are also not free from security threats and vulnerabilities. In this
context, in parallel with technological growth, there are also difficulties in maintaining
the security of applications and computational infrastructures, considering that vulnera-
bilities also increase with the growth in the number of available services. A major incident
involving IoT devices occurred in October 2016. An attack involving IoT devices via bot-
net Mirai against service provider Dyn took offline for several hours, hundreds from sites,
including Twitter, Netflix, Reddit, and GitHub [Tanaka and Yamaguchi 2017].

This makes special security techniques indispensable in modern computer sys-
tems. According to [Roman et al. 2018], security is one of the biggest challenges to en-
sure an ideal IoT and fog computing environment, where devices can take advantage of
the services provided by the paradigm. Intrusion detection is one of the key security points
to identify attempted attacks.

There are several state-of-the-art approaches to detecting intrusions in an IoT envi-
ronment. Some works focus on signature detection. These approaches fail to detect new
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attacks or variations of known attacks [Arshad et al. 2019]. In addition, specification-
based methods have also been proposed. However, these approaches require a human ex-
pert to specify the expected behavior of the network. Finally, other approaches have pro-
posed anomaly-based methods to detect intrusions [Labiod et al. 2022, Rey et al. 2022,
Souza et al. 2022a]. Anomaly detection considers that all abnormal behavior is an intru-
sion and thus can detect new attacks or variations of known attacks. Machine Learning
(ML) methods are commonly applied in this context [Boukerche et al. 2007]. However,
anomaly-based approaches often require features that IoT nodes lack. [Ahmad et al. 2021]
highlight the resources consumed by complex models and the need for lightweight IDS
for IoT. Thus, most of the studies work with fog computing.

Several state-of-the-art approaches focus on anomaly methods for binary detection
(attack or non-attack) [Albdour et al. 2020, Kumar et al. 2021a, Rey et al. 2022]. They
can detect an intrusion, but not the type or category of attack. In this context of intrusion
detection, the approach must identify the attack category so that more specific counter-
measures can be implemented for the given type of threat. Identifying the type or category
of the attack is also important for the decision-making process of the person responsible
for the network [Souza et al. 2022b]. Several multiclass approaches have been proposed
in state of the art. However, multiclass detection approaches are generally more complex,
have a higher computational cost, and have lower accuracy rates than binary methods
[Nguyen et al. 2019]. This is justified by the difficulties in identifying specific types of
attacks [Diro and Chilamkurti 2018, Kumar et al. 2020a].

The prohibitive cost is another important point, as the resource constraints present
in IoT and Fog computing environments limit the design of robust approaches. Robust
and slow multi-class analysis performed on IoT/Fog can overload the device and cause
network flow delay [Nguyen et al. 2019]. Furthermore, the use of attribute selection and
class balancing techniques, useful to improve detection performance, tend to increase the
training cost of the approaches. Therefore, intrusion detection in these environments has
challenges and research opportunities.

This mini-course presents the main concepts in this context, and several machine-
learning techniques used to detect intrusions are addressed. From this, practical activity
is proposed for the execution of experiments with the studied techniques. Subsequently,
it is presented in the state of the art how these techniques have been applied to detect
intrusions in the IoT environment. Finally, the main problems, challenges, and research
opportunities in state of the art are discussed.

1.1.1. Organization of the minicourse

The remainder of the short course is organized as described below. Section 1.2 presents
the fundamental concepts involved in the theme of this work. The Internet of Things (IoT),
Cloud Computing, and Fog Computing concepts are presented. In addition, the main
threats present in IoT environments are also discussed, and concepts related to Intrusion
Detection Systems (IDS) are introduced. Next, Section 1.3 discusses applying machine
learning in the context of intrusion detection. Some classification techniques that can
be used for intrusion analysis and detection are discussed. In addition, some practical
aspects of each technique are presented. This section also proposes to conduct simulation
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experiments with the IoTID20 dataset to evaluate the techniques presented in an intrusion
detection scenario with IoT traffic. In Section 1.4, state of the art is exposed, and the
approaches proposed by the main related works are presented. Section 1.5 discusses
some important aspects observed in state-of-the-art related to intrusion detection in an
IoT/Fog/Cloud context. The objective is to instigate an initial reflection on this research
topic’s problems, challenges, and open questions. Finally, Section 1.6 concludes the mini-
course and presents final considerations and direction for future work.
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1.2. Concepts and Technologies
In this section, concepts related to the theme of this work are addressed. Initially, the
concepts of the Internet of Things (IoT), Cloud Computing, and Fog Computing, present
in the environment chosen for this scenario, are contextualized. Section 1.2.4 discusses
the main threats in IoT environments. Then, important aspects of the Intrusion Detection
System (IDS) are introduced.

1.2.1. Internet of Things

The Internet of Things (IoT) has as its basic characteristic the pervasive presence of a
wide variety of intelligent objects in people’s daily lives, such as sensors, tags of Radio-
Frequency IDentification (RFID ), mobile phones, among others [Atzori et al. 2010]. The
IoT connects physical devices to the Internet, enabling them to communicate and act
intelligently.

From a conceptual point of view, IoT is based on three basic principles related
to the characteristics of smart objects: being identifiable, communicable, and capable
of interacting with the environment in which they are inserted [Miorandi et al. 2012].
IoT allows various physical objects to see, hear, feel, think, and communicate to share
information and make decisions to perform certain tasks.

IoT applications can improve people’s lives and how they live, work, learn, and
have fun. For example, smart homes can provide residents with certain practicalities, such
as automatic garage openings, automatic coffee preparation, climate control systems, etc.

IoT devices are small physical objects with limited processing and storage capa-
bilities. Due to the large amount of data generated by these devices, there is a need for
greater computational capacity. Furthermore, the number of devices connected to the In-
ternet continues to grow. Cisco predicts that the number of interconnected devices on the
planet could reach the 500 billion mark by 2025 [Camhi 2015]. Cloud computing can be
a solution to solve these needs for greater processing capacity.

1.2.2. Cloud Computing

The National Institute of Standards and Technology (NIST) defines Cloud Computing as
a model for enabling ubiquitous and convenient network access to a shared pool of con-
figurable computing resources that can be quickly provisioned and released with minimal
management effort or interaction between service providers [Mell et al. 2011].

According to the authors [Takabi et al. 2010], Cloud Computing is an important
paradigm with the potential to significantly reduce costs through optimization and in-
creased operational and economic efficiencies. They point out that this paradigm can
significantly improve collaboration, agility, and scalability, enabling a truly global com-
puting model over the Internet’s infrastructure.

Cloud Computing has five essential characteristics: on-demand self-service, ubiq-
uitous network access, pooling of resources, location independence, rapid elasticity, and
measured service, all aimed at transparently using clouds. In the cloud, the provider’s
computing resources are pooled to serve multiple consumers using a multi-tenancy model.
Different physical and virtual components are dynamically assigned and reallocated ac-
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cording to consumer demand. Providers must provide rapid elasticity, allowing the con-
sumer to increase or decrease resources and on-demand service so that the customer can
unilaterally allocate resources dynamically [Takabi et al. 2010]. Cloud providers can han-
dle large amounts of data and high processing rates.

The basic characteristics of cloud computing make it an important processing
mechanism for IoT applications that capture large amounts of information. However,
its use also has disadvantages, as this centralization of processing and storage resources
implies a great separation between the physical IoT devices and the data centers of the
cloud. This fact, which according to [Satyanarayanan 2015], results in the growth of
average latency and jitter.

Then came Fog Computing, capable of solving the abovementioned problems for
IoT applications. It extends the cloud closer to the user so that data access, process-
ing, and storage tasks are performed by local resources such as routers, gateways, and
switches. Therefore, the processing and storage of temporary data and the execution of
local analyzes are carried out without long transmissions over the Internet. This way, fog
computing doesn’t suffer from high latency and jitter problems [Ni et al. 2018].

1.2.3. Fog Computing

Authors [Bonomi et al. 2012] define Fog Computing as a highly virtualized platform that
provides computing, storage, and network services between IoT devices and cloud data
centers. In addition, it is generally close to IoT devices at the edge of the network, as seen
in Figure 1.1.

Figure 1.1. Illustration of existing layers in an environment based on the IoT-Fog-
Cloud architecture [Iorga et al. 2018].
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The main idea of this paradigm is to extend cloud computing closer to end de-
vices to provide efficient data access, processing, and storage. Therefore, the hallmark of
fog computing is the distribution of resources, communication services, processing, and
storage close to users [Marín-Tordera et al. 2017].

Fog computing did not emerge to replace cloud computing for remote processing
and storage but rather to complement it. Allowing the creation of a hierarchical infras-
tructure where local data is processed and stored by fog computing and permanent storage
and global analysis are performed in the datacenters of the cloud [Ni et al. 2018].

As it is a recent paradigm, research into security and privacy issues is still at an
early stage.

1.2.4. Threats in IoT and Fog Computing

This work considers the context of intelligent environments based on fog computing and
IoT. Security in these environments is paramount, as IoT devices are often embedded in
people’s daily lives and handle sensitive information. In addition, some systems perform
monitoring and critical actions, which need uninterrupted operation.

IoT and fog solutions comprise various technologies, services, and standards, each
with security and privacy requirements [Zarpelão et al. 2017]. The IoT paradigm presents
several security vulnerabilities that communication networks, cloud services, and the In-
ternet have [Zarpelão et al. 2017]. However, traditional security tools have difficulties to
be applied directly in this context due to three fundamental aspects: the limited compu-
tational power of IoT components, the high number of interconnected devices, and the
sharing of data between objects and users [Sicari et al. 2015]. Furthermore, the rapid
expansion of IoT solutions has left these networks vulnerable to security and privacy
risks. Authors [Kolias et al. 2016] discovered several security vulnerabilities by creat-
ing IoT use cases using popular commercial products and services. Fog computing has
emerged to provide greater computing resources for the IoT and low latency and compute-
intensive use. These facts make it a great place to deploy IoT security applications like
intrusion detectors [Nguyen et al. 2019]. However, security research on fog computing
and IoT applications is still at an early stage [Ni et al. 2018]. This fact, combined with
the great damage that attacks in this environment can cause, generates the need to con-
centrate efforts in this area. The authors [Garcia-Morchon et al. 2013] organized threats
to the security of IoT environments into the following categories: device cloning, mali-
cious replacement of devices, replacement of firmware, extraction of security parameters,
interception, Man-In-The-Middle (MITM), routing attack, Denial of Service (DoS) and
Distributed Denial of Service (DDoS). Threats related to cloning, replacement, and ex-
traction usually occur during device manufacture, installation, maintenance, and updating
[Zarpelão et al. 2017].

[Kolias et al. 2016] highlight the main attacks present in IoT: DoS, DDoS, MITM,
routing attacks, and conventional attacks. Security threats related to conventional tech-
nologies that are part of the IoT environment may also apply, for example, insecure con-
nections, malicious code injection, probing, interception, fabrication, and modification of
messages [Muhammad et al. 2015].
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As illustrated in Figure 1.2, these environments are subject to attacks from exter-
nal sources, from the Internet, and internal attacks, by malicious devices in the IoT net-
work. Malicious entities outside the network may attempt to gain privileged access to IoT
devices to control them [Muhammad et al. 2015]. Through this access, it is possible to
carry out botnet attacks, where compromised IoT devices can be used as bots or zombies
to perform various malicious tasks [Aversano et al. 2021]. Furthermore, spoofing attacks
involve impersonating legitimate devices, exploiting their identities to gain access to the
IoT network, and then launching other types of malicious actions [Aversano et al. 2021],
such as stealing confidential information handled in the IoT network. DoS attacks are
quite common and aim to affect the victim’s availability. This can be done by flooding
with a large volume of requests or depleting resources such as memory and computing
power. In the context of IoT, the device can be part of the network under threat or be used
as a zombie to launch a DDoS on another network. Probing attacks, where the attacker
scans a network to gather information and discover vulnerabilities, are common. This
attack usually collects information from the target before launching another, more severe
type of attack [Arshad et al. 2019].

Figure 1.2. Illustration of potential threats in an IoT and fog computing environment.

In the case of an insider attack, the attacker is presumed to be a malicious entity
that was successfully authenticated in the fog or a legitimate IoT device that has become
malicious over time. It can carry out various attacks, including denial of service, by
sending a high data packet rate in the fog. This allows overloading the devices and the
upper layers, as illustrated in Figure 1.2, impairing or even causing the interruption of
services provided by the systems, services that in many cases are extremely important.
Therefore, these actions can damage the entire IoT system, and external users who access
services and information generated by the IoT solution can be harmed.

Based on the classification presented by the [Zarpelão et al. 2017] authors, the
main attacks found in the fog and IoT environment are presented below.
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• Denial of Service (DoS): Denial of Service attacks aim to affect the availability
of the victim. This can be done by flooding with a huge volume of requests or
depleting resources like memory and computational power [Zarpelão et al. 2017].
Both an IoT node and the fog can fall victim to this attack.

• Distributed Denial of Service (DDoS): Distributed denial of service attacks have
the same objective as a DoS. However, they are executed by a set of hosts, whereas
in a common DoS, a single host is the attacker [Yan et al. 2016]. Furthermore, in
the context of the Internet of Things, the IoT node can be part of the network under
threat or be used as a zombie to launch a DDoS on another network.

• Man-In-The-Middle (MITM): a man-in-the-middle attack is performed when an
attacker interferes with the communication between an entity A and an entity B,
without A and B realizing it [Zarpelão et al. 2017]. Authors [Navas et al. 2018]
demonstrate the risks of MITM attacks on IoT networks caused by malicious insider
devices.

• Routing attacks: Routing attacks consist of spoofing, modifying network routing
information to create loops, attracting or rejecting traffic, extending or shortening
routes, etc. Other possible routing attacks include sinkhole attack, selective for-
warding, wormhole attack, and sybil attack [Zarpelão et al. 2017].

• Conventional attacks: Security threats related to conventional technologies that are
part of the IoT environment can also apply to IoT systems, for example, insecure
connections, malicious code injection, interception, probing, fabrication, and mod-
ification of messages [Muhammad et al. 2015].

In addition to the existing threats related to computer networks, IoT needs to deal
with the resource constraints that its devices have. Intrusion detection and prevention
systems can be used to secure IoT networks. The basic concepts related to these systems
are presented below.

1.2.5. Intrusion Detection

An intrusion can be defined as a set of actions to overcome an application’s defense bar-
riers to compromise the integrity, confidentiality, and availability of computational re-
sources [Heady et al. 1990]. Intrusion Detection Systems (IDS) are intended to recognize
intrusive actions and behavior to alert administrators or automatically execute counter-
measures [Bace and Mell 2001].

Intrusion detection research efforts have been conducted since 1980. Around that
time, [Anderson 1980] presented a threat model and security monitoring system based on
detecting anomalies in user behavior. IDSs are inserted as the last line of defense within
a computational architecture, making them of great importance, making it possible to in-
fer the legitimacy of actions taken and having a proactive behavior in attack situations
[Patel et al. 2010]. The structure of the IDSs can vary in relation to the way it is imple-
mented, the frequency of operation, the data they analyze, or the analyzes carried out on
them [Campello and Weber 2001].
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IDSs can be classified according to the detection methods employed. Thus, they
can be classified into analysis by signature or behavior, also known as analysis by anomaly.

In signature detection, monitored actions are compared with predefined intrusive
events, normally stored in a database. These previously known patterns are called sig-
natures. Signature detection allows quick detection and reduces the occurrence of false
alarms. However, it has the limitation of detecting only known attacks, that is, only attacks
with a signature known by the IDS [Northcutt et al. 2001]. Most commercial antivirus
systems use this strategy [Bace and Mell 2001].

Anomaly detection assumes that any abnormal activity is necessarily an intrusion,
and any activity that does not fit the defined normal behavior models is considered an
attack. The great advantage of the anomaly detection technique is that it allows the de-
tection of new attacks and/or variations of already known ones since it is not necessary
to know about them previously. However, this technique is more likely to suffer from
problems related to false positives [Boukerche et al. 2007]. This strategy is usually mod-
eled using Machine Learning techniques. Section 1.3 presents more details about these
techniques.

In addition, some works consider a branch of analysis by behavior called analy-
sis by specification [Mitchell and Chen 2014]. This type of solution employs rules and
thresholds that define the expected default behavior for monitored components. It is simi-
lar to anomaly detection, and both detect intrusions when network behavior deviates from
specified. The main difference is that in specification-based analysis, a human expert sets
the rules [Mitchell and Chen 2014, Zarpelão et al. 2017]. This type of analysis’s major
drawback is the specificity and domain knowledge required to specify benign behavior.

IDSs can analyze data from multiple sources and can be deployed in different lo-
cations. These data are generally related to how the approach is implemented. There
are two main categories of implementation related to capturing information. The Host-
Based Intrusion Detection System (HIDS) seeks to analyze the information captured from
the very host where they are deployed, and Network-Based Intrusion Detection System
(NIDS) analyzes traffic captured from the monitored network [Zarpelão et al. 2017]. Fur-
thermore, in the context of IoT, approaches can be deployed at different levels: on IoT
devices themselves, on devices in the fog, or in the cloud.

In a host-based IDS, all components, from event collection to classification, are
located on the same host. The event monitoring and analysis mechanisms only use infor-
mation from the host itself. Events can originate from system logs and data about users,
services, and processes. This approach enables network independence and the detection
of insider attacks. However, host-based solutions employed on IoT nodes may suffer
from memory constraints. Those employed in fog devices allow the detection of attacks
against the device itself but may have difficulty dealing with attacks on the network and
IoT devices.

On the other hand, NIDS approaches are implemented in a device capable of cap-
turing the network traffic intended to be monitored. Events and activities are obtained
by capturing network traffic in promiscuous mode. These IDSs typically monitor a net-
work made up of multiple devices. Sensors can also be used to capture information

112



in a distributed manner at various points in the network. One of this approach’s diffi-
culties is determining the best places to position the information capture sensors. The
analysis method, in these approaches was generally included in the fog devices. This
strategy allows the detection of external attacks and is more independent of the platform
[Mukherjee et al. 1994]. Fog computing is one of the most promising alternatives for im-
plementing IoT network monitoring approaches. Furthermore, it is interesting to divide
the detection tasks along the complete architecture, considering IoT devices, fog, and
cloud.

In addition to detecting intrusions, it is very important to have mechanisms to ex-
ecute countermeasure actions, with the aim of blocking and preventing the intrusion from
succeeding. Among the existing actions are issuing alerts to the network manager. Issuing
just one alert does not configure a prevention action, as it only makes the manager aware
that an intrusion has occurred, but does not prevent it. Issuing an alert is considered a pas-
sive post-detection. Another class of post-detection approaches is the active one, where
the actions taken aim to stop an attack in progress and then block the attacker’s access
[Bace and Mell 2001]. IDSs that have active countermeasures are known as Intrusion
Prevention Systems (IPS) [Birkinshaw et al. 2019].

In the following sections, other concepts involved in the context of this work are
presented. Section 1.3 initially presents the basic concepts of ML and a brief description
of its applicability for intrusion detection. Next, several classification techniques that are
employed in behavioral detection approaches are presented.
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1.3. Machine Learning techniques employed for intrusion detection
In [Russell and Norvig 2010], several definitions are presented for the term Artificial In-
telligence (AI), which, in general, point to this as the ability to make machines reproduce
intelligent activities and cognitive abilities found in humans. When we analyze more em-
phatically the currently proposed solutions in the area of computational security, there is
increasingly stronger research and application of machine learning methods for improve-
ments in the intrusion detection process.

According to [Goodfellow et al. 2016], ML is the ability of a given technique to
acquire its knowledge, extracting information from raw data and representing it through
some kind of mathematical model. ML has several sub-areas, including classification.
A classification task consists of classifying data and objects into certain classes in an
automated way.

It is observed that this ability of the machine learning classification methods fits
perfectly with the context of intrusion detection since the detection approaches have the
task of analyzing the information captured from the network or hosts, verifying the occur-
rence of abnormal behaviors, and performing the classification of information in benign
or intrusive. In addition, there is also a need to classify attacks into types or categories.
Therefore, classification techniques are great for composing anomaly-based detection ap-
proaches.

Machine learning methods usually need to train to acquire knowledge and gen-
erate a model with added knowledge. Next, the two most common types of learning
employed in solutions found in the state of the art of intrusion detection are presented.

The main characteristic of approaches based on supervised learning is the exis-
tence of labels in the subset of training data. This type of learning reflects an algorithm’s
ability to generalize knowledge from available data with target or labeled cases so that
the algorithm can be used to predict new unlabeled cases [Berry et al. 2019]. Thus, the
method training process uses this prior knowledge to train and generate the classification
models. After training, the methods can classify new data. This approach’s difficulty lies
in need for labeled data for training the models [Russell and Norvig 2009].

Unsupervised learning refers to grouping data into unlabeled data using automated
methods or algorithms. In this situation, algorithms need to understand the underlying
relationships or features of the available data and group cases with similar features or
characteristics [Berry et al. 2019].

In this section, several Machine Learning (ML) techniques used in intrusion detec-
tion in fog computing and IoT environments are presented and discussed. They are often
employed in behavior-based detection strategies. The main focus of this short course will
be methods based on supervised learning, as they are the most used in this context of
intrusion detection. Next, the K-Nearest Neighbors (KNN) method is presented first.

1.3.1. K-Nearest Neighbor (KNN)

The k-Nearest Neighbors (kNN) algorithm is one of the most basic instance-based learn-
ing methods. It assumes that all examples correspond to points in an n-dimensional plane
Rn, where n is the number of attributes used to represent them. Despite its simple oper-
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ation, KNN generally has a very low error rate. This method uses a distance function to
determine one instance’s proximity to another [Mitchell 1997].

When numerical attributes describe the data set, distance measures are used to
calculate the similarity so that the smallest distance corresponds to the greatest similar-
ity. The Euclidean Distance [Mitchell 1997] stands out among the commonly applied
measures.

The Euclidean distance is calculated as the square root of the sum of the squared
differences between points of instance p in relation to points of instance q, as can be seen
in Equation 1. Since pi and qi, for i = 1,2, ...,n, are the attributes n that describe the
instances p and q, respectively.

Euclidean Distance (p,q) =
√

(p1 −q1)2 + ...+(pn −qn)2 =

√
n

∑
1
(pi −qi)2 (1)

The K-Nearest Neighbor (KNN) algorithm identifies the closest k neighbors to
the new data point and classifies it according to the nearest neighbors [Mitchell 1997]. If
k > 1, the classes of the closest k examples are considered to carry out the classification.
In this case, the most common approach is to assign the new instance to the majority class
present in the set of the closest k examples.

Figure 1.3 presents a basic implementation of the KNN algorithm for data classi-
fication. As can be seen, the method has some parameters that influence the classification
process. The main one is n_neighbors, corresponding to the number of neighbors consid-
ered for the classification process.

Figure 1.3. Example application of the KNN algorithm in Python using the scikit-
learn library.

Furthermore, the parameter weights indicates the influence of n_neighbors on the
ranking. In the case of "uniform" weights, all neighbors are weighted equally. On the
other hand, with "distance" weights, among the k neighbors, the closest ones will have
more influence than the farther neighbors. The algorithm parameter indicates the tech-
nique used to store the training data, usually transformed into a fast indexing structure,
such as Ball Tree ("ball_tree") or KD Tree ("kd_tree"). A KD Tree is a binary tree where
each node is a k-dimensional point. The standard metric used in this library to calculate
the similarities between the data is the Minkowski distance. It is a metric in a normalized
vector space that can be considered a generalization of the Euclidean distance. As can be
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seen in Figure 1.3, the algorithm is trained using the fit() method, where training data and
labels are passed as parameters. The predict() method is used to carry out the classifica-
tion, and data without labels is provided. The method will then generate class predictions
for this data as a result.

The KNN algorithm is commonly used in intrusion detection approaches due to
its low error rate [Illy et al. 2019]. An existing disadvantage in KNN is the computational
cost, which can become high because it is necessary to compare the new instances with
all the instances stored in the example base.

1.3.2. Artificial Neural Networks (ANN)

The brain has densely interconnected neurons forming a highly complex structure. In-
spired by it, the Artificial Neural Networks (ANN) was proposed [Haykin 2001]. The
artificial neuron is a logical mathematical structure that aims to simulate the biological
neuron’s shape, behavior, and functions. Inputs replace the dendrites, and the connec-
tions of these inputs with the artificial cell body are known as weights, which simulate
synapses. The summation function processes the stimuli received by the inputs. The fir-
ing threshold of the biological neuron is simulated by the activation function in the artifi-
cial neuron [Chua and Yang 1988]. According to [Dalton and Deshmane 1991], synaptic
weights play an important role in artificial neurons. The purpose of the weights is to weigh
the influence of input signals on postsynaptic neurons. Positive weights tend to increase
a neuron’s activation level, consisting of an excitatory connection. Negative weights, on
the other hand, tend to decrease the level of activation, which are called inhibitory con-
nections.

Figure 1.4 shows a simplified model of an artificial neuron. Where the neuron k
receives an input x (x1,x2, ...,xn) that enters through the synapse j. Each signal x j from
the input x that enters the synapse j is multiplied by a weight wk j. The result of this
process passes through an adder that adds the input signals weighted by the weights of
the respective synapses with an external bias (bk). Concerning a given synaptic weight
wk j, the first index (k) refers to the neuron in question, and the second index ( j) refers to
the input of the synapse to which the weight is related to [Haykin 2001]. The previously
mentioned bias bk has the role of increasing or decreasing the value generated by the
adder before passing it on to an activation function, which will then transform the output
into a closed interval, usually between [0,1] or [−1,1] to be passed on to other neurons
[Haykin 2001].

The activation function, which in Figure 1.4 is represented by ϕ(.) is extremely
important in the neural model, as it defines what the neuron’s output will be according
to the received input [Haykin 2001]. Therefore, the activation function ϕ(v) defines the
neuron’s output according to the result of the sum (v) of the weighted inputs. Several
activation functions are used in neural networks, including Binary Step, Logistic Sigmoid,
Hyperbolic Tangent, ReLU, and Softmax.

The Binary Step activation function defines the output of the summation result in
v. In this model, if the result of the adder of the neuron in question is greater than or equal
to 0, that is, it is positive, the output of the neuron assumes a value of 1, and if the result
of the adder is negative, the output value of the neuron will be 0.
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Figure 1.4. Simplified model of an Artificial Neuron. Adapted from [Haykin 2001].

The sigmoid activation function has an “S” shaped graph and assumes a continu-
ous range of values between 0 and 1. It is one of ANN’s most common activation func-
tions and exhibits a good balance between linear and non-linear behavior. An example of
a sigmoid function is the Logistic function, where a is the slope parameter of the sigmoid
function. When this parameter tends to infinity, the function approaches the threshold
function. While the threshold function assumes the value of 0 or 1, the logistic function
assumes a continuous range of values between 0 and 1.

The hyperbolic tangent function is similar to the logistic sigmoid, but its continu-
ous values range from −1 to 1. Allowing an activation function to assume negative values
provides analytical benefits and advantages during the training phase [Haykin 2001].

Softmax generalizes the sigmoid function for non-binary cases. It is not usually
applied to the hidden neural network layers but to the multiclass classification problems’
output layer. The softmax function transforms the outputs for each class to values between
0 and 1 and divides them by the sum of the outputs. It is the probability that the input is
in a given class.

Finally, ReLU is an abbreviation for Rectified Linear Unit (ReLU). It returns 0 for
all negative values and the value itself for positive values. Thus, if the input is negative,
the neuron will not be activated. This means that only a few neurons are activated si-
multaneously, making the network sparse and efficient. Therefore, it is a computationally
light function widely used in hidden layers of neural networks [Goodfellow et al. 2016].

Artificial neural networks are composed of a large number of artificial neurons
organized in the input layer, hidden layers, and output layer [Haykin 2001]. How neu-
rons are arranged in an ANN is directly related to the learning algorithm. For this
work, we will approach the class of networks Multilayer Perceptron (MLP) feedforward
[Russell and Norvig 2010]. In this way, neurons in one layer are connected to neurons
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in the next layer through weighted links. There are no recursive bindings present in this
network topology. This model does not have feedback loops between neurons, so the
flow of the synaptic process occurs from the input layer toward the output layer. The
architecture displayed in Figure 1.5 illustrates a common basic structure of MLP neural
networks. However, there may be several variations in the design of the hidden layers,
both in terms of the number of layers and the number of neurons in each. These inter-
mediate or hidden layers’ design is crucial in defining a neural network, especially Deep
Neural Networks (DNN). DNNs are deep networks, with more than one hidden layer
[Goodfellow et al. 2016].

Figure 1.5. Simplified architecture of a deep feedforward neural network with two
hidden layers.

An essential characteristic of an ANN is its ability to learn from its environment
and improve its performance through training. An ANN learns more about its environ-
ment through an iterative process of adjusting its synaptic weights and bias levels, and
this process is defined as training. The neural model is generated through the supervised
training process, where the link weights are updated in several iterations based on the es-
timated error. ANN becomes more knowledgeable of its environment after each iteration
of the training process [Haykin 2001]. ANN knowledge is represented through synaptic
weights, forming a compact and distributed representation, thus providing generalization
capabilities and adaptability to the neural network. ANN manage to achieve great ranking
performances. However, they may suffer from instabilities caused by noise and variance
in training. This instability means small changes to the training data used to build the
model can result in very different models [Cunningham et al. 2000].

Training of MLP networks is usually performed using the backpropagation algo-
rithm. The training takes place by propagating the data from the input layer to the output,
passing through each of the hidden layers, and at that moment, the weights remain un-
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changed. Afterward, based on the error calculated using the expected result (supervised
learning) and the output value of the last layer, the weights are adjusted, and a new training
iteration is performed. Training is considered completed when the error is small enough.
From this, the network starts operating only in the forward direction for classifying new
examples.

Figure 1.6 shows an implementation example of a basic DNN for classification,
which can be used for intrusion detection. In this example, Keras and Tensorflow libraries
are used. Keras Sequential() handles the ordering or sequencing of layers within a model.
It makes the layers associated with neural networks work like a model that receives only
one input as a feed and expects an output. The add() method adds layers to an already
created layer stack. The Dense() layer is the regular deeply connected neural network
layer and is the most common and frequently used. The f it() method is used to train the
model, and the predict() method returns the values generated by the output neurons. The
np.argmax() method obtains the neuron with the highest output value.

Figure 1.6. DNN implementation example using Keras and Tensorflow library.

1.3.3. Ensemble Learning

Ensemble Learning (EL) is the field of study of machine learning that works with Ensem-
ble methods, which combine the decisions of various classification models to improve
overall performance. The predictions from the various models are combined in some way
to generate the final prediction [Breiman 1996].

Individual classifiers may experience instability. There is no guarantee that a clas-
sifier will always perform at its best in all situations. However, with ensemble learn-
ing, a better classification performance than any individual classifier can be achieved
[Traganitis et al. 2018].

The main idea of ensemble learning is that combining several models decreases
variation, especially in the case of unstable classifiers. In this way, it is possible to produce
a more reliable classification than a single model [Breiman 1996].
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1.3.3.1. Bagging

One of the main strategies for creating ensemble methods is Bagging (Bootstrap Aggre-
gating). It generates multiple models of a classifier and uses them to obtain an aggregated
classifier. Random samples of the training dataset are created for each model. Several sub-
sets of the training dataset are created, and each model is trained with a subset. Finally,
the results of these various models are combined using average or majority voting. Tests
on real and simulated datasets using classification trees show that Bagging can provide
substantial gains in accuracy [Breiman 1996].

Figure 1.7 presents an implementation example of a bagging method. The n_estimator
parameter indicates the number of classifiers that will compose the method and the estimator
indicates which is the base classifier.

Figure 1.7. Ensemble bagging application example in Python using the scikit-
learn library.

Two specific ensemble methods for decision trees are presented below: the Ran-
dom Forest and Extra Tree algorithms. These techniques create a diverse set of decision
tree classifiers by introducing randomness in constructing the classifier.

1.3.3.2. Random Forest (RF)

Random Forest (RF) is an ensemble learning method based on Decision Tree (DT) created
to reduce Overfitting. Decision Tree consists of a supervised machine learning algorithm
based on the idea of recursively dividing a more complex problem into simpler problems.
The input data are divided into homogeneous groups where each division performed rep-
resents a node of the tree where the data are separated according to a division criterion
until reaching indivisible points. DTs have a tree-like structure composed of nodes. These
nodes can be divided into a root node, a set of intermediate nodes, and a set of leaf nodes
[Breiman et al. 1984]. The root node corresponds to the first division specifying how the
data should be divided into separate parts. Successive intermediate nodes divide the data
into smaller partitions until no further partitioning is needed. In this way, the leaf nodes
of the structure represent the final partitions [Rokach 2016]. DTs classify using a hierar-
chical set of feature decisions. The decisions made in the internal nodes are the division
criteria.

The basic decision tree induction algorithm builds decision trees recursively on a
divide-and-conquer basis, starting from the top down. Each iteration seeks the attribute
capable of best dividing the dataset. A good split in a decision tree corresponds to choos-
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ing the attribute with the maximum separation power. In other words, the purpose of each
node is to create child nodes dominated by a single class. The most suitable attribute
is selected according to specific division criteria. Attributes are evaluated according to
the division criterion, with the best attribute selected. The process is recursive, so each
node further subdivides the training set into smaller subsets after selecting an appropri-
ate split. For numeric attributes, there are many possible cut-off points. The induction
algorithm looks for the best cut-off point by evaluating the split criterion at each possible
cut-off point [Rokach 2016]. When the node satisfies the stopping rules, for example,
because all instances of the current partition belong to the same class or no future split
attributes can be determined, the DT terminates the splitting process, and the node is
labeled [Rokach 2016]. One of the significant challenges of decision tree algorithms is
finding the attribute that best divides the data into its corresponding classes. The main
metrics used for this are the Gini Index and information gain based on entropy.

The Gini coefficient measures how well a given attribute separates the classes
contained in a node. Possible values for the Gini index vary between 0 and 1, where 0 ex-
presses the purity of the classification. All elements belong to a certain class, or only one
class exists. Furthermore, 1 indicates a unequal distribution [Sundhari 2011]. The Gini
index is determined by subtracting the sum of squared probabilities for each class from
1. It is expressed mathematically in Equation 2 [Breiman et al. 1984]. Where Pi denotes
the probability that an element is classified into a class. When building the decision tree,
resources with the lowest values of the Gini Index are chosen [Sundhari 2011].

GiniIndex = 1−
C

∑
i=1

(pi)
2 (2)

Another way to measure the quality of an attribute is to evaluate its degree of
association with the class through the Information Gain measure. It evaluates the degree
of association of attributes with the class to find the values with the highest degree of use
and importance by calculating the entropy reduction. The greater the entropy, the greater
the degree of impurity. The information gain indicates the entropy reduction. Thus, the
attributes with the highest information gain will be the most useful for detection.

The measure of information gain is based on the concept of entropy. Entropy is
a measure of the impurity and inhomogeneity of an attribute. The formula presented in
Equation 3 corresponds to the entropy calculation for an attribute A, whose domain is
(a1,a2, ...,ak), with k >= 1. The values pi, with 1 <= i <= k, correspond to the ratio
between the number of instances of the base in which the value ai occurs for the attribute
A and the total number of instances.

Entropia(A) =
m

∑
i=1

pi log2(pi) (3)

Decision trees can have problems related to overfitting, which can degrade their
predictive power when applied to new data [Breiman 2001]. In addition, they are consid-
ered models that can be unstable, where small variations in the training data can result
in completely different trees. This can be avoided by training several different trees and
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aggregating their predictions. Below are several methods based on the aggregation of
ML models. This strategy is known as Ensemble Learning (EL) and seeks to generate
methods with lower variance and more reliability.

RF builds a “forest” with a large number of uncorrelated decision trees and com-
bines the results yielding the final classification results. Provides an additional layer of
randomness over Bagging. In addition to building each tree using a different bootstrap
sample of the data, RF changes how classification trees are built. Unlike standard DT,
where each node is split using the best split among all features, in RF, each node is split
using the best among a subset of features chosen randomly on that node [Breiman 2001].
It can get very good performance compared to many other classifiers like SVM and neural
networks. Furthermore, it is robust against overfitting [Breiman 2001].

One of the main characteristics of RF is using a degree of randomness in selecting
attributes to be considered for the division. Unlike DT, which applies impurity metrics
across the entire set of attributes to find the best, RF applies these metrics only to a ran-
domly selected subset of candidate attributes. Furthermore, it uses only a subset of the
training data, with replacement, to construct each structure tree. The algorithm searches
for the attributes that generate the best separability in each tree node. It randomly selects
a set of candidate attributes and applies the measures to find the best cutoff point for each
attribute and the best attribute among the candidates. This process ensures that each tree
generates a different model. After RF training, the structure can perform the classification
of new data. Each generated tree will classify the record, and its results will be combined
through average or majority voting.

The RF method has several parameters, as shown in Figure 1.8, which presents a
basic implementation of using RF for classification.

Figure 1.8. Random Forest application example in Python using the scikit-learn library.

In RF, it is possible to define the parameters related to the internal structures of the
decision trees that make up the RF structure. One of the parameters is the criterion that
defines the metric used to choose the best attributes, where the metrics mentioned above
can be used: Gini Index ("gini") and Entropy ("entropy"). The parameter max_depth
indicates the maximum allowed depth of the tree. It is used to control this growth because
normally, they can grow until all the leaves are pure or until all the leaves contain less than
min_samples_split samples. However, this can lead to extremely long and costly trees.
The parameter min_samples_split indicates the minimum size of the training set to split
a node, and the (min_samples_lea f ) indicates the minimum number of samples needed

122



to form a leaf node. A split point in any depth will only be considered if you leave at least
min_samples_lea f samples in each of the left and right branches.

Furthermore, there are some additional parameters specific to the ensemble ap-
proach, one of which is n_estimators, which corresponds to the number of trees that will
be created in the RF structure. Another important parameter is max_ f eatures, which indi-
cates the number of randomly selected features in each node, where max_ f eatures is re-
sponsible for the intensity of the feature selection procedure and n_estimators the strength
of variance reduction of the aggregation of the ensemble model [Geurts et al. 2006]. The
RF is trained through the fit() method and performs the classification with the predict()
method, as can be seen in Figure 1.8.

1.3.3.3. Extra Tree (ET)

Extra Tree (ET) [Geurts et al. 2006] classifiers are important tools in classification tasks.
Like the RF, the Extra Tree consists of an ensemble method aggregating the results of
several uncorrelated DTs accumulated in a “forest” to produce the classification results.

ET focuses on heavily randomizing the choice of attributes and the cutoff point
while splitting a node in the tree. Therefore, a random sample of resources from the
resource pool is selected at each intermediate node. Each decision tree must select the
best feature to split the data based on some mathematical criteria, usually the Gini index.
In the extreme case, it builds totally random trees whose structures are independent of the
learning sample output values [Geurts et al. 2006]. The prediction trees are aggregated
to produce the final prediction by majority vote in classification problems and arithmetic
means in regression problems [Geurts et al. 2006]. It is very similar in operation to RF
and varies mainly in the way of building the DTs inside the forest. In ET, randomness
goes a step further in how divisions are calculated. Cutpoints are randomly drawn for
each candidate attribute, and the best of these generated cutpoints is randomly chosen as
the splitting rule.

Figure 1.9. Example application of ExtraTree in Python using the scikit-learn library.

The rationale behind the method is that precise slicing and attribute randomization
combined with ensemble mean should reduce variance more strongly than the weaker ran-
domization schemes used by other methods. Using original and complete training data
rather than bootstrap replicates is motivated to minimize bias [Verma and Ranga 2020].
In addition to precision, the main strength of the resulting algorithm is computational
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efficiency, because, given the simplicity of the node split procedure, the constant factor
can be much less than in other ensemble methods that locally optimize the cut points
[Geurts et al. 2006]. The ET method also allows the definition of parameters of the inter-
nal decision trees that compose the structure. Furthermore, as it is a very similar technique
to RF, it presents similar parameters, as seen in Figure 1.9.

1.3.3.4. Boosting

Boosting is another ensemble technique. It produces a highly accurate classifier by com-
bining several “weak” models, each of which may not be good for the whole data set
but is good for part of the data set so that the performance of these classifiers is improved
[Schapire 1990]. Like bagging, boosting trains each model using a different training set. It
is an iterative approach that adjusts the weight of an observation based on the last ranking.
The performance of previously generated models influences each generated model. The
boosting strategy is to focus on poorly classified examples. Each new model is created to
classify well the examples poorly classified by previous models [Meir and Rätsch 2003].
Boosting generally decreases bias error and creates strong predictive models.

Decision trees are susceptible to overfitting, and to solve this problem, the Gra-
dient Boosting Decision Tree (GBDT) can be used. It consists of a machine learning
algorithm with effective implementations like XGBoost. Although many engineering
optimizations were adopted in these implementations, the efficiency and scalability still
needed improvement when the resource dimension was high, and the data size was large.
One of the main reasons is that they have to scan all data instances for each feature to
estimate the information gain of all possible split points, which is very time-consuming.
To solve this problem, the authors [Ke et al. 2017] proposed LightGBM, which is based
on Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB)
techniques. The two techniques form the characteristics of the LightGBM algorithm,
and they integrate to make the template work efficiently and provide an advantage over
other frameworks. These techniques work around the limitations of the histogram-based
algorithm primarily used in all GBDT structures.

Figure 1.10. Ensemble LightGBM application example in Python using the scikit-
learn library.

The GOSS technique excludes a significant proportion of data instances with small
gradients and uses only the remainder to estimate the information gain. According to the
information gain definition, those instances with larger gradients will contribute more to
the information gain. Therefore, when downsampling the data instances, to maintain the
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accuracy of the information gain estimate, one should better keep those instances with
large gradients, for example, greater than a predefined threshold or between the upper
percentiles, and randomly eliminate instances with small gradients. GOSS can get a very
accurate estimate of the information gain with a much smaller data size [Ke et al. 2017].

EFB groups mutually exclusive features, which rarely assume non-zero values
simultaneously, to reduce the number of features. Finding the optimal grouping of unique
features is NP-hard, but according to [Ke et al. 2017] authors, a greedy algorithm can
achieve a good approximation ratio and effectively reduce the number of features without
greatly impairing the accuracy of the split point determination. Figure 1.10 presents the
implementation with the LightGBM technique in an example in Python.

1.3.3.5. Voting

Combining conceptually different machine learning classifiers and using a voting mecha-
nism to generate the final classification is also possible. In this scheme, all classifiers are
trained with the complete dataset, and their predictions are combined through voting.

The types of voting that can be used are hard and soft. In hard voting, each clas-
sification technique votes for a class, and the class that obtains the most votes is the final
classification. The other strategy consists of a combiner based on the maximum sum
of prediction probabilities. In a simplified way, each classification technique provides
a probability value that the instance belongs to a given class. The predictions are then
summed, and the class with the highest sum of probabilities is defined as the final classi-
fication.

Figure 1.11 presents an example of implementing an ensemble voting strategy. In
the case presented, ’hard’ voting is used, however, the voting parameter (voting) can also
receive the value ’soft’.

Figure 1.11. Ensemble voting application example in Python using the scikit-learn library.

The base classifiers used to compose the voting-based method are passed as a
parameter estimators in sequential form following the notation: name of the classifier
and the object of the classifier. Although the example depicts only two base classifiers,
the approach can work with more. Finally, the parameter weights indicates weights to
weight the votes of the base classifiers. By default, it assumes the value ’None’ where all
base classifiers have a vote with the same weight.
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1.3.3.6. Stacking

The Stacking technique consists of an ensemble strategy that combines several machine
learning algorithms through a metamodel. The various base-level algorithms are trained
on a complete training dataset, and the metamodel is trained on the final results of the
base-level models. The predictions made by the basic models serve as a resource for
the metamodel. In this way, the metamodel is responsible for learning to combine the
individual results of each base classifier into an overall final result [Kumar et al. 2021a].

Figure 1.12 shows an example of implementing the ensemble stacking strategy.
The base classifiers used to compose the stacking-based method are passed as a param-
eter estimators in sequential form following the notation: name of the classifier and the
object of the classifier. The stackmethod parameter indicates the method called for each
base classifier. In the case of the example, each of the base classifiers will perform class
predictions through their predict() methods. The predictions generated by the base classi-
fiers will be submitted to the final classifier, which is responsible for generating the final
classification. This classifier is defined through the f inal_estimator parameter. The pre-
diction generated by the f inal_estimator classifier is considered the final classification of
the stacking method.

Figure 1.12. Ensemble stacking application example in Python using the scikit-
learn library.

1.3.4. Practical simulation experiment with machine learning techniques for intru-
sion detection

Next, details are presented regarding the proposal for a practical simulation experiment
with the IoTID20 dataset to evaluate the techniques presented in the section in an intrusion
detection scenario with IoT traffic. First, a brief discussion of the existing datasets for
intrusion detection simulation is presented.

1.3.4.1. Datasets

This section presents some datasets commonly used in research related to intrusion detec-
tion in IoT environments. The objective is to provide a survey of the validation strategies
used in state of the art and bring an updated list that can serve as a basis for future re-
searchers, providing indications that can help in deciding which datasets are most suitable
for the context of their respective areas. In addition, the dataset chosen to be used in this
mini-course is highlighted.
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Table 1.1 presents the main databases used in intrusion detection problems. In
addition, the main characteristics of the datasets are presented below. The N.F. column
indicates the Number of Features and the L. column indicates whether the dataset has
labels for all records.

Table 1.1. Datasets for evaluating intrusion detection methods.

Dataset Year N.F. L. IoT Comments

NSL-KDD [Tavallaee et al. 2009] 2009 42 D no

Reduces KDD Cup 99 redun-
dancy problems, but is too old to
represent current network stan-
dards environment

CTU-13 Botnet [García et al. 2014] 2013 33 D no Focused only on Botnet attacks

RPL-NIDS17 [Verma and Ranga 2019] 2017 21 D D Differential focus on routing at-
tacks, however, does not address
other common IoT attacks

CICIDS-2017 [Sharafaldin et al. 2018] 2017 80 D no It does not include some specific
IoT features

CICIDS-2018 [Sharafaldin et al. 2018] 2018 80 D no It does not include some specific
IoT features

N-BaIoT [Meidan et al. 2018] 2018 115 no D Only botnet attacks
DS2OS [Aubet 2018] 2018 13 D D Recent dataset focused on IoT

ToN-IoT [Alsaedi et al. 2020] 2019 7 D D Recent dataset focused on IoT

Bot-IoT [Koroniotis et al. 2019] 2018 46 D D Recent data set focused on IoT,
but lacks some types of attacks

IoT-23 [Garcia et al. 2020] 2020 21 D D Real IoT environment traffic,
but lacks some types of attacks

IoTID20 [Ullah and Mahmoud 2020a] 2020 12 D D Recent dataset focused on IoT

MQTT-IoT-IDS2020 [Hindy et al. 2021] 2020 44 D D Recent data set focusing on
IoT, however, exclusively on the
MQTT protocol

MQTTset [Vaccari et al. 2020] 2020 33 D D Recent data set focusing on
IoT, however, exclusively on the
MQTT protocol

NetFlow Datasets [Sarhan et al. 2021] 2021 43 D D Recent dataset, has some sub-
sets in the context of IoT, feature
standardization

The database used in this minicourse was IoTID20 [Ullah and Mahmoud 2020a].
This choice is mainly because the base has IoT traffic, is fully labeled, and is reason-
ably small compared to other datasets, which usually have millions of records. This will
facilitate the execution of the experiments proposed in the minicourse.

It is one of the latest intrusion detection bases focused on IoT devices. Which was
generated through a combination of IoT devices and interconnection structures, simulat-
ing a typical smart home environment having two IoT devices, namely, a smart speaker
SKT NGU and an EZVIZ Wi-Fi camera [Ullah and Mahmoud 2020b].

These two IoT devices were connected to a home Wi-Fi router, which in turn
interconnected with other devices connected to Smart Home, such as laptops, tablets,
and smartphones. IoT SKT NGU and EZVIZ devices are victim devices and all other
malicious devices. Figure 1.13 shows a simplified version of the architecture of the test
environment.
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Figure 1.13. The Figure shows the architecture of the monitored environment for
creating the IoTID20 dataset [Ullah and Mahmoud 2020b].

The IoTID20 dataset has 80 attributes of network characteristics and three at-
tributes corresponding to labels. The first label is binary, the second corresponds to attack
categories, and the last to attack subcategories. In Table 1.2, it is possible to observe the
number of instances of traffic present in each type of label.

Table 1.2. Information about the number of instances of the IoTID20 dataset.
Information is presented separated by normal traffic, anomalous traffic, their
classes and subclasses.

Binary Instances Category Instances Subcategory Instances
Benign 40073 Benign 40073 Benign 40073

DoS 59391 DoS 59391
Ack Flooding 55124
Brute force 121181
HTTP Flooding 55818

Mirai 415677

UDP Flooding 183554
MITM 35377 MITM 35377

Host Port 22192

Anomalous 585710

Scan 75265
Port OS 53073

Figure 1.14 presents the implementation for reading the dataset for a DataFrame
Pandas structure. DataFrame is a 2-dimensional labeled data structure with columns of
potentially different types.
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Figure 1.14. Example of reading the dataset into a Pandas DataFrame structure.

As part of the data pre-processing, the flow identifiers such as IDs, source IP,
destination IP, and timestamps are dropped to avoid learning bias towards attacking and
victim-end nodes. Also, the “Cat” label will be considered in this work. The traffic will
be classified as benign or in some attack category: DoS, Mirai, MITM, or Scan. The other
two labels (“Label” and “Sub_cat”) will be taken from the dataset. Figure 1.15 presents
an example of removing these columns from the DataFrame.

Figure 1.15. Example of removing columns from the DataFrame.

Figure 1.16 presents the implementation for transforming categorical columns into
numerical ones. In the case of the IoTID20 dataset, it will only be necessary to transform
the labels column (Cat).

Figure 1.16. Example of reading the dataset into a Pandas DataFrame structure.

Next, sanitizing the dataset and removing records with infinite values (in f ) and
invalid or missing values (NaN) is necessary. For this, the pd.option_context command
will be used to temporarily define options in the context within a block of code. And the
option ′mode.use_in f _as_na′ is used to consider all infinite values (in f ) as (NaN). Within
this block, the d f .dropna(inplace = True) method is used to remove records with NaN
from the dataset, as seen in Figure 1.17.

129



Figure 1.17. Example in Python for removing records with infinite and invalid or
missing values.

Another important task in dataset pre-processing is standardization. It helps to
improve the performance of some classifiers based on machine learning that needs their
resources to be normally distributed. They can misbehave if the individual features don’t
more or less resemble standard normally distributed data. The method used to standardize
the data was standard scaling, given by the equation 4, where x is the sample, u is the
mean, and s is the standard deviation. The mean and standard deviation are obtained
based on the statistic for each attribute in the data set.

z =
x−u

s
(4)

Figure 1.18 presents a basic implementation to standardize the data set using the
Scikit-learn library. The fit() method computes the mean and standard deviation to be used
for later scaling and the transform() performs standardization by centering and scaling.

Figure 1.18. Implementation example for dataset standardization.

Finally, it is necessary to separate the column of labels (Cat) from the dataset into
a separate structure called data_y. The other columns correspond to traffic attributes and
are assigned to data_x. This can be done according to Figure 1.19.

Figure 1.19. Implementation example for label separation.

Once the preparation of the dataset for the experiment is complete, some infor-
mation on the metrics commonly used to evaluate the ML method in intrusion detection
experiments is presented below.
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1.3.4.2. Metrics

The evaluation of detection methods is essential to examine the feasibility of applying
them in a real environment. One of the evaluations that can be performed is the extraction
of detection metrics through experiments, where the methods are trained and tested. The
classifications of database events performed by the methods in these experiments can be
categorized in the terms presented below.

• False Negative (FN): Events classified as normal by the detection method and
which are intrusions;

• False Positive (FP): Non-intrusive events classified as intrusive by the intrusion
detection technique;

• True Negative (TN): This category covers non-intrusive events, which were cor-
rectly classified by the detection method;

• True Positive (VP): This class includes events correctly reported as intruders by
the intrusion detection technique.

From these terms, it is possible to construct confusion matrices. They consist of
tables that present a summary of the classification performed by the method, indicating
the number of events classified in relation to the predicted class and the true class of the
element. The confusion matrix itself is not a metric for evaluating classification methods.
However, several analyzes and metrics can be made from such information. In Table 1.3,
it is possible to observe an example of a confusion matrix.

Original Label Prediction
Normal (+) Ataque (-)

Normal (+) VN FP
Ataque (-) FN VP

Table 1.3. Example of a confusion matrix.

Based on the abovementioned terms, it is possible to calculate different metrics
that help evaluate detection methods built by machine learning algorithms. Below are the
main metrics used [Liu and Lang 2019].

1. Accuracy: This metric corresponds to the proportion of correctly classified in-
stances in relation to the total number of existing instances. It may not be a good
aspect to consider in cases of large class imbalance. The accuracy is calculated
from the Equation 5, presented below:

ACC =
V P+V N

V P+V N +FP+FN
(5)
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2. Precision: Another widely used metric for evaluating machine learning methods.
This rate indicates the proportion of instances correctly detected as intrusive out of
all those detected as intrusive, as can be seen in Equation 6.

PRE =
V P

V P+FP
(6)

3. Recall: Also known as sensitivity, consists of the number of instances correctly
classified as intrusive among all intrusive instances, calculated according to Equa-
tion 7.

Recall =
V P

V P+FN
(7)

4. F1-Score: The F1 score is the harmonic mean of precision and recall, where an F1
score is best at 1 (perfect precision and recall) and worst at 0. The formula for the
F1 score is given in Equation 8.

F1−Score = 2∗ Precision∗Recall
Precision+Recall

(8)

5. Balanced Accuracy (BACC): Balanced Accuracy is an interesting metric to eval-
uate detection performance on unbalanced datasets. It is defined as the average of
the recall obtained in each class, as seen in Equation 9. Where Ri corresponds to
the recall (R) obtained considering the i-th (i) class present in the dataset, and n is
the number of existing classes.

Balanced Accuracy =
∑

n
i=1 Ri

n
(9)

Figure 1.20 shows the basic Python implementation for calculating detection met-
rics using the methods provided by the Scikit-learn library.

Figure 1.20. Example of implementation of detection metrics using the Scikit-learn library.
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1.3.4.3. Experiments

Intrusion detection databases are large datasets that can be used to validate and evaluate
detection models. These data can be used to train and test the models. However, ideally,
models should be evaluated with samples not used to build, train, or tune the model. In
order to obtain an unbiased assessment of the model’s effectiveness.

Thus, it is proposed in this work to carry out experiments with the Hold-Out 70-
30 technique to divide the data set and carry out the evaluation. In this strategy, the
data set (data_x and data_y) is divided into 70% of the data for training (training_x and
training_y) the models and 30% of the data for testing (testx and testy) the performance of
the generated models. This division is performed to prevent data used to train the model
from being used to test it. Furthermore, a stratified strategy divides these data so that the
training and test sets maintain equal proportions of instances per class.

Figure 1.21 presents the basic implementation in Python for experimenting with
the Hold-Out 70-30 technique and the pre-processed IoTID20 dataset. In this exper-
iment, the data is split, and the generated training data is used to train the detection
method.Before the training, it is necessary to define which classification method will be
used in the experiment. For this, it is necessary to assign the classifier to the method
variable. This can be done according to the definitions presented in each of the previous
sections. After training, the test data, without the labels, is submitted to the method for
classification. From this, the generated classifications can be used to calculate the detec-
tion metrics of the method. The example shows the calculation of the accuracy metric,
however the other metrics presented can also be used in the experiment.

Figure 1.21. Example of experiment implementation using the hold-out 70-30 technique.

The objective is to use the points mentioned in this practical section to implement,
execute, evaluate, and compare each of the presented machine learning methods.
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1.4. State of the Art in intrusion detection in the context of IoT/Fog/Cloud
In state-of-the-art, several works proposed intrusion detection approaches for IoT, Fog,
and Cloud environments. Some approaches are based on analysis by signature and others
by behavior. In addition, some works have inserted the detection module in the layer of
IoT devices and others in the upper layers. Some of these approaches are presented and
discussed below.

In signature-based detection, monitored actions are compared to predefined intru-
sive events. Signature-based solutions enable rapid detection and reduce the occurrence
of false alarms. Thus, they are interesting options to be deployed on [Arshad et al. 2019]
IoT devices. However, they have the limitation of not being able to detect attacks that do
not have a signature known to the IDS.

Most state-of-the-art works have proposed behavior-based detection approaches.
Some works consider a branch of analysis by a behavior called analysis by the specifica-
tion. This type of solution employs rules and thresholds that define the expected default
behavior for monitored components. It is similar to anomaly detection, and both detect
intrusions when network behavior deviates from specified. The main difference is that
in specification-based analysis, a human expert sets the rules [Mitchell and Chen 2014].
[Yaseen et al. 2017] proposed a threshold-based approach for detecting selective forward-
ing attacks on Wireless Sensor Networks (WSNs). In [Aliyu et al. 2018], a challenge or
response based fog detection approach is proposed. The detection nodes periodically
interrogate nearby nodes, sending interrogation packets and waiting for a response ac-
cording to a previously specified calculation. The major disadvantages of this type of
analysis are the necessary specificity and the need for a human expert to define the sys-
tem’s expected behavior.

Anomaly detection approaches, on the other hand, are usually modeled using Ma-
chine Learning (ML) techniques. There are threats against IoT devices and even against
services deployed in the fog and cloud layer that need robust methods to be detected.
These complex detection approaches often cannot be applied to IoT devices due to their
computational constraints [Arshad et al. 2019]. In addition, approaches that only perform
analysis on IoT nodes only consider a restricted view of events, thus limiting their ability
to deal with complex, multi-stage, and distributed attacks. In this way, research on de-
tection techniques implemented in devices in the fog layer has been growing, seeking to
avoid the problem of latency, implement a distributed strategy, and take advantage of the
privileged position of these devices. Many works have proposed solutions deployed in the
fog to perform network monitoring of IoT devices through network packet analysis. This
location allows the IDS to have a global view of the IoT network, monitoring all traffic
[Souza et al. 2020, Lawal et al. 2021, Labiod et al. 2022].

The previously presented KNN method has been used in some works due to its
good classification performance. In [Lawal et al. 2021], the proposed mitigation frame-
work for fog computing uses a database that stores signatures of previously detected at-
tacks and an anomaly-based detection scheme that uses the K-Nearest Neighbor (KNN)
classification algorithm to detect DDoS attacks. The Euclidean, Manhattan, and Cheby-
chev distances were evaluated, and the first two achieved the best results. An existing
disadvantage in KNN is the computational cost, which can become high because it is
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necessary to compare the new instances with those stored in the example base. The au-
thors [Souza et al. 2020] proposed a hybrid approach called DNNKNN, composed of a
DNN model and the K-Nearest Neighbor algorithm, to improve the method’s robustness
and reduce the prediction cost of the kNN algorithm. This approach made it possible to
maintain a good detection performance and obtain a reduction of approximately 90% of
the KNN prediction cost.

Another technique commonly used in intrusion detection research is the Deep
Neural Network (DNN). In state-of-the-art, it is possible to find several works that pro-
pose detection approaches based on DNN. Most architectures consider two hidden lay-
ers. Inserting more layers did not bring detection benefits [Lalouani and Younis 2021].
In addition, architectures with a greater number of layers are more complex and de-
mand more costs for the training process. [Sahar et al. 2021] used hidden ReLu layers
with 768 and 512 neurons, respectively. However, a large number of neurons per layer
may also be unnecessary. Several other works sought to build less complex neural mod-
els with fewer neurons. [Kumar et al. 2021b] used two hidden layers with 32 and 16
neurons, respectively, with an activation function ReLU. In [Lalouani and Younis 2021],
the function used in the two hidden layers was the ReLU in the 64 neurons in each
layer. In [Kumar and Tripathi 2021], a layer with 16 neurons and another with 12 neu-
rons were used, with ReLU activation function. ReLU is more efficient for training large-
scale data in terms of time and cost [Sahar et al. 2021]. On the other hand, the Soft-
Max activation function is one of the most used in the output layer [Souza et al. 2020,
Lalouani and Younis 2021, Kumar and Tripathi 2021, Kumar et al. 2021b]. Several other
techniques based on neural networks can be used for intrusion detection and have state-
of-the-art works. However, this work focuses only on feed-forward models.

One of the major challenges regarding neural model-based detection approaches is
the high cost of training complex deep learning architectures during model updates. Mo-
tivated by this challenge, some works used the distributed characteristic of fog computing
to propose distributed training approaches between fog devices through information shar-
ing [Diro and Chilamkurti 2018, Labiod et al. 2022].

The authors [Diro and Chilamkurti 2018] proposed a new distributed approach
based on DNN feed-forward to detect intrusions in the IoT environment. The approach is
deployed distributed in fog devices and has two levels. It uses a fog device as the mas-
ter responsible for training and placing the model on the other fog nodes. Second-level
nodes send model updates to the master node. The master node updates the global model
and spreads the updates to other nodes. The experiment demonstrated that the distributed
approach could detect cyber attacks better than centralized algorithms due to the sharing
of parameters that can avoid local minima in training [Diro and Chilamkurti 2018]. How-
ever, this primary node can be considered a single point of failure (SPOF), which is easier
to compromise than a cloud-based parameter update approach.

In this context of distributed training of detection models, it is important to discuss
Federated Learning (FL), which consists of a strategy to form a global ML model from
several local data-driven models [Lalouani and Younis 2021]. This strategy decentralizes
machine learning, eliminating the need to gather data on a single device. Instead, the
model is trained through multiple iterations on different devices. FL is an ideal framework
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for aggregating distributed models, preserving privacy and allowing convergence to a
distributed learning engine with precision close to that of a centralized implementation.
The FLIDS [Lalouani and Younis 2021] approach employs federated learning to enable
privacy-preserving distributed aggregation in training deep neural models deployed in
fog computing.

The framework architecture proposed by [Rey et al. 2022] is composed of clients
that monitor IoT devices and a server that coordinates a Federated Learning process. The
approach provides for intrusion detection through neural network models. Considering
that IoT devices generally have limited resources and modest reliability, the clients re-
sponsible for training the models are not the devices to be protected, but other entities
capable of collecting traffic from IoT devices present on the same network, such as fog
nodes [Rey et al. 2022].

[Abbasi et al. 2021] presents extensive research on DL methods to detect anoma-
lies in network traffic. They point out that federated learning approaches are promising
to overcome the challenges of training a DL approach with many samples and training
parameters in environments with resource constraints, such as IoT and fog environments.
However, they are also susceptible to threats, model poisoning attacks can be carried out
through updates of corrupted models sent to the server. Furthermore, due to the privacy is-
sues employed in FL, it is difficult to verify whether the received models really correspond
to the local training data or not [Lalouani and Younis 2021]. Furthermore, using a device
as a server centralizes the process of aggregating models on a device. This centralization
can bring some concerns, such as the need to trust a central device and the possibility of
this central device becoming a single point of failure, where the failure or compromise of
this device by an attacker, could harm the collaboration network completely.

In addition to deep neural methods, research on ensemble approaches is also
promising for intrusion detection. Classifiers based on Ensemble Learning can be pro-
posed to improve adaptability and generalizability in multiclass classification. Several
recent works have investigated the use of the ensemble Random Forest method in intru-
sion detection approaches [Illy et al. 2019, Farukee et al. 2020, Kumar et al. 2022]. The
authors [Farukee et al. 2020], however, used RF to select the main characteristics of the
traffic to be submitted to another classifier. An important aspect of RF is the calcula-
tion of the importance of the resource. The Gini impurity criterion index is used. Thus,
they used the RF property to classify resources according to their importance. Prioritiz-
ing accuracy, features with feature importance less than 0.005 were discarded. The RF
used in the ensemble method proposed by Kumar et al. [Kumar et al. 2021a] had 100
estimators, maximum depth equal to 3, a minimum number of examples for split equal
to 10, a minimum number of samples needed to be a leaf node equal to 6 and Entropy
criteria. [Hosseini and Sardo 2022] proposed an approach with RF classification and fea-
ture selection by Spider-Monkey Optimization (SMO). The authors [Kumar et al. 2020b]
evaluated RF in the context of DDOS attack detection and found that the fact that RF is
insensitive to outliers, missing values, overfitting, and having the ability to handle a large
number of incoming traffic makes it suitable in the process anomaly detection tool for
the blockchain-IoT environment. However, no details are provided regarding the number
of trees used in the structure. The performance of the proposed distributed structure is
evaluated using a BoT-IoT dataset. The proposed distributed structure with RF and 10
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base attributes surpasses some current state-of-the-art techniques, reaching recall close to
100% in all classes. However, it is observed that several techniques have already pre-
sented similar performance with this Bot-IoT dataset.

The Extra Tree, a method very similar to RF, was also used in detection ap-
proaches. In ET, randomness goes a step further in how divisions are calculated. Instead
of looking for the most discriminating cut points, they are drawn randomly in ET, making
the ET training process faster. In [Albdour et al. 2020] is proposed an ET-based intrusion
detection approach for the fog layer. The approach has 10 DTs and uses the Gini crite-
rion. The approach showed 98.3% accuracy with the UNSW-NB15 dataset. However,
considering only the binary detection, not being able to identify the attack categories. In
[Souza et al. 2022a] ET was used in a first level of binary detection, obtaining a high de-
tection rate. The ET used is composed of 10 estimators DT, the minimum sample size
for division is 2, the number of attributes considered for better division is the root of the
number of existing attributes, and the Gini Index is used as a criterion.

Following the line of ensemble classifiers with Decision Tree, [Lawal et al. 2020]
presented an approach with Extreme Gradient Boosting (XGBoost) for anomaly detec-
tion in an IoT framework. XGBoost is based on the ensemble boosting technique, where
weak classifier predictions are combined to develop a strong classifier, employing additive
techniques. In addition to the speed and performance benefits of XGBoost, additional ad-
vantages include the avoidance of overfitting and the full utilization of [Lawal et al. 2020]
computational resources. In the experiments performed by [Lawal et al. 2020] with the
Bot-IoT dataset, XGBoost was able to achieve 99.96% average accuracy, 98% average
recovery, 97% average accuracy, and 97% average f1-score in the multiclass ranking. Su-
perior performance compared to other classifier algorithms such as DT, kNN, and Naive
Bayes.

Several proposed papers have also focused on ensemble voting approaches. The
authors [Illy et al. 2019] proposed a voting-based ensemble approach composed of KNN,
RF, DT bagging, and DT boosting. [Alhowaide et al. 2021] report two main strategies
to combine the results of the base classifiers in ensemble methods by voting: hard and
soft voting. They highlight that soft voting can perform better than hard voting because it
takes into account more information and uses the uncertainty of each classifier in the final
decision.

The ensemble technique proposed in [Al-Khafajiy et al. 2021] is composed of
three base classifiers which together provide analysis of collected traffic for intrusion
detection. The decisions generated by the three classifiers are combined using the ma-
jority voting rule (hard), where the class with the highest number of votes of the three
classification systems is defined as the final classification. The authors point out that the
majority voting rule is the simplest and most effective voting scheme in this case.

In [Souza et al. 2022a], a binary detection is applied, and only the events detected
as intrusive are submitted for multiclass analysis. The proposed multiclass analysis model
is a soft voting set comprising three classification models: ET, RF, and DNN. The com-
bination strategy employed was soft voting, that is, the complete method implements a
combinator that predicts the class label based on the argmax of the sums of the probabili-
ties predicted by each of the three classification models.
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In addition, the proposal of methods based on ensemble stacking strategy also
stands out in state of the art. [Kumar et al. 2020a] proposed an approach where the KNN,
XGBoost, and Naive Bayes classifiers are trained in parallel and act as basic classifiers.
As a result, three prediction results P1, P2, and P3 are obtained, which an RF uses for
the final classification. Thus, the RF is responsible for learning to combine the individual
results of each weak classifier into a final overall result. The experiments with the data set
showed that the approach performed well but presented difficulties in identifying some
attacks.

The authors Kumar et al. [Kumar et al. 2021a] also present another similar ap-
proach; in this case, they proposed an ensemble method with Naive Bayes, DT, RF, and
XGBoost to detect attacks on Internet of Medical Things (IoMT) networks. Naive Bayes,
DT, and RF classifiers operate in parallel on the first level. As a result, three prediction
outputs P1, P2, and P3 are obtained and are used by XGBoost to build the final predictive
model.

Ensemble techniques can be useful in intrusion detection, allowing you to build a
strong classifier to identify a specific attack’s specific class. However, as these techniques
use several classifiers, they may present difficulties related to the processing and training
time of the models.

Some of the approaches mentioned above result in classifying events as normal or
malicious, making it impossible to identify the type of attack. The methods that perform
only the identification that an intrusion has occurred, that is binary detection, are not
enough to provide efficient security. The mechanism must be able to mitigate the invasion
so that it does not succeed. Therefore, it is important to classify the attack in its category
so that specific countermeasures are executed for the given type of threat. In addition, the
classification of the type or category of the attack is important for the decision-making of
the person responsible for the network.

It is essential to identify more information about the attack so that specific coun-
termeasures can be carried out for each type of threat. For example, a probing attack
is usually performed before more powerful attacks such as DoS, DDoS, remote access
attacks, etc [Nguyen et al. 2019]. Thus, running additional detection mechanisms to rein-
force security when detecting a probing category threat may be interesting. Also, classi-
fying attack types or category is important for the network manager. From identifying the
category of a certain attack that occurs with a specific frequency, the person responsible
for the network can decide to implement actions to correct the vulnerability used by the
attack.

To improve the accuracy of multiclass detection without overloading the IoT-Fog
environment, the approach proposed in [Souza et al. 2020, Souza et al. 2022a] presents a
two-step hierarchical detection method. A binary detection analysis (Step 1 - Detection)
is performed on fog computing devices to detect intrusive events. Only events detected as
intrusive by the first step are sent to the multiclass analysis (Step 2 - Identification) in the
cloud. The analysis module of Step 2 is responsible for identifying the attack category
and providing further information to the countermeasures module. If the event is detected
as non-intrusive by Step 1, it is automatically sent to the module output to free up the
flow. The analysis performed at the cloud computing layer aims to classify the event
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into a specific attack category or normal behavior. This step allows you to correct first-
level false positives. The classifier consists of a more robust method that requires more
processing than the first stage’s analysis. This method will be activated only when the first
level detects the event as intrusive. In this way, it is possible to apply a complex analysis
that can more accurately classify the event into a specific class of attack for the execution
of countermeasures.

For the binary detection module of the first stage, the authors proposed a hybrid
DNNKNN approach previously mentioned [Souza et al. 2020]. A soft voting ensemble
analysis was proposed for the second stage, consisting of three robust classification mod-
els: ExtraTree, Random Forest, and Deep Neural Network [Souza et al. 2022a]. The
architecture also applies attribute selection and class balancing techniques. The obtained
results provided superior detection performance than several state-of-the-art approaches.

This hierarchical detection architecture proposed in [Souza et al. 2020] has al-
ready served as a basis for other works. In [Labiod et al. 2022], some modifications are
proposed in the approaches throughout the architecture, mainly concerning the first level
of detection. The VAE-MLP method, a binary detection approach based on Variational
AutoEncoder and DNN, was proposed.

As presented, several state-of-the-art works were found. However, there are still
many challenges in this context. Next section discusses some important aspects observed
in state-of-the-art related to intrusion detection in an IoT/Fog/Cloud context. The objec-
tive is to instigate an initial reflection on this research topic’s problems, challenges, and
open questions.
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1.5. Discussions, Reflections and Questions
This section discusses some important aspects observed in state-of-the-art related to in-
trusion detection in an IoT/Fog/Cloud context. The aim is to instigate an initial reflection
on this research topic’s problems, challenges, and open questions.

1.5.1. Deployment strategy

The deployment location of the detection solution is an important aspect that must be
considered when designing the network or host-based approach. Resource constraints,
usually existing in devices inserted in the context of IoT applications, make it difficult
to implement robust detection approaches in the devices themselves. However, some
works have proposed approaches partially implemented in IoT devices through lighter
signatures-based techniques. Other approaches proposed their solutions to operate en-
tirely in the fog computing layer. In addition, some works have also delegated part of the
analysis to the cloud computing layer.

The processing time and cost of robust machine learning models can be high, es-
pecially when considering strategies that use multiple detection methods. Implementing
a robust approach in IoT devices and even in the fog computing layer can be a problem.
Robust and slow multiclass analysis performed in the fog can overwhelm the device and
slow network flow. It is necessary to investigate new intrusion detection approaches ca-
pable of managing and optimizing the analysis process in the various layers of the IoT
environment. In other words, optimizing available resources on IoT devices, fog, and
cloud.

1.5.2. Detection method category

The categories of detection methods can be anomaly, signature, and specification. Some
detection approaches found in the state of the art focus on signature-based detection
[Arshad et al. 2019, Lawal et al. 2021]. They are not able to detect new attacks or varia-
tions of known attacks.

On the other hand, some works have proposed approaches with analysis by spec-
ification, which detects intrusions when the network behavior deviates from the specified
[Yaseen et al. 2017, Aliyu et al. 2018]. In this type of detection, a human expert specifies
normal behavior. Thus, the approaches based on specifications found are closely linked
to specific protocols or attacks. The weakness of these approaches is the difficulty of
generalizing the approaches to a broader context with other attacks and protocols.

Finally, anomaly detection considers that all abnormal behavior is an intrusion and
can detect new attacks. Several approaches have proposed anomaly-based methods to de-
tect intrusions into the fog computing layer. Usually, they are machine learning-based ap-
proaches. IoT devices often have limited computational resources [Ni et al. 2018]. These
restrictions make it difficult to conduct analyses based on complex anomaly techniques on
IoT devices, thus preventing new attacks [Zarpelão et al. 2017]. Furthermore, anomaly-
based approaches may suffer from problems related to false positives. Also, there is only
a narrow view of events. Thus, research proposing hybrid detection approaches, combin-
ing detection categories, are interesting and necessary to maximize the advantages and
minimize the disadvantages of these types of analysis and obtain a complete solution.
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1.5.3. Machine Learning approachs

It is essential to categorize the attack to take specific countermeasures for the threat. For
example, a probe category attack is usually performed before more powerful attacks such
as DDoS, remote access attacks, etc. [Nguyen et al. 2019]. Thus, running additional de-
tection mechanisms to strengthen security when detecting an attack from the probe attack
category is interesting. Also, the type of attack or category classification is important to
the network owner. From identifying the category of a certain attack that occurs with a
specific frequency, the person responsible for the network can decide to implement actions
to correct the attacker’s vulnerability.

Many approaches found in the state-of-the-art focus on performing binary de-
tection (attack or non-attack). However, binary methods cannot identify the type or
category of attack [Albdour et al. 2020]. The approaches, which aim to classify the at-
tack into specific categories, are multiclass. However, it is observed in the state-of-the-
art that these approaches have lower accuracy rates than the binary detection methods
[Nguyen et al. 2019, Kumar et al. 2020b]. In addition, these approaches may present dif-
ficulties related to false-positive problems and low detection of some types of attacks
[Diro and Chilamkurti 2018, Kumar et al. 2020b, Kumar and Tripathi 2021].

Several works sought to propose ML-based solutions with more restricted mod-
els to respect the resource capacity of the devices involved in this context. The ap-
proaches obtained interesting results related to detection; however, single classifiers are
subject to inconsistencies and need to be improved in detecting some types of attacks
[Diro and Chilamkurti 2018, Kumar and Tripathi 2021].

Individual classifiers may experience instability. There is no guarantee that a clas-
sifier will always perform at its best in all situations. However, with Ensemble Learning
(EL), a better classification performance than any individual classifier can be achieved
[Traganitis et al. 2018]. Classifiers based on DL and ensemble approaches have been the
object of research recently and have achieved promising results in intrusion detection.
Ensemble methods can be proposed to improve adaptability and generalizability in mul-
ticlass classification [Traganitis et al. 2018]. Thus, combining different machine learning
models for optimal performance and attack detection is another research trend. However,
ensemble methods have greater computational complexity and require more training time
and resources. Thus, it is important to consider the characteristics of the devices where
the approach will be implemented in the design of detection methods.

In addition, using more complex techniques such as DL and Ensemble also makes
efforts to improve training strategies, optimize resources and reduce cost and computa-
tional time. Collaborative IDS based on federated learning in fog computing emerges as
an interesting alternative to optimize the training of complex DL and ensemble learning
approaches.

Another interesting point is that the performance of the methods is related to the
quality and quantity of the training data. This can be challenging, as obtaining training
data can be extremely arduous. In this context, hybrid approaches that combine super-
vised machine learning techniques with other techniques that work with unlabeled data,
such as unsupervised or reinforcement learning, are promising.
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1.5.4. Collaborative IDSs approachs

Collaborative detection approaches are very promising solutions in the IoT-Fog-Cloud
context, mainly due to the distributed nature of fog computing. However, these solutions
have limitations, such as vulnerability to insider attacks [Li et al. 2021]. Insider attacks
occur when attackers compromise a device that is part of the Collaborative Intrusion De-
tection System (CIDS) and, from there, perform false collaborative actions to undermine
the functioning of the collaborative detection approach. As a solution, one can investigate
trust management approaches to defend against insider attacks.

Another highlight is that although a server is responsible for aggregating the mod-
els, it would be possible to pass the steps from the server to the devices themselves, de-
centralizing the server into several entities [Rey et al. 2022]. This decentralization would
avoid the need to have a trusted device as a central server and hence the single point of
failure problem. However, a reliable decentralized approach would require a Blockchain-
based architecture to be used as a decentralized database, where each device would share
its local model and reliably retrieve models from other devices.

1.5.5. Detection models update

Another research point is training detection models based on ML e DL. This intrusion
detection subtopic still has several points that need to be further studied and improved.
Machine learning-based detection approaches must be retrained over time to prevent them
from becoming obsolete. In the IoT context, the network changes over time. New devices
can be inserted, and others removed. Therefore, detection models based on machine
learning techniques need to be updated. Considering the new components, new data
must be collected from the network to generate an updated model capable of identify-
ing truly abnormal behaviors in the new IoT network. Furthermore, IoT applications can
be inserted in a context of high device mobility, which undoubtedly makes the intrusion
detection process even more challenging. Thus, another open question is understanding
the maximum time a model can operate without becoming obsolete in this IoT context
[Abbasi et al. 2021]. The ideal strategy would be to retrain the discovery models when-
ever there is any change in the network, such as the insertion and removal of devices.
However, the training process can cost a lot of resources and overload the network. Ma-
chine learning models often suffer from high complexity in the training phase as they
consume many resources and time. Devices in the IoT context have resource constraints,
so the complexity of the detection models to be retrained can be considered a major chal-
lenge. Some works proposed a distributed training mechanism between fog devices with
the exchange of parameters of the machine learning method [Diro and Chilamkurti 2018].

Approaches based on Federated Learning are also very interesting [Rey et al. 2022,
Lalouani and Younis 2021]. However, they are also susceptible to threats. Model poison-
ing attacks can be carried out through corrupted model updates sent to the server. Trust
management approaches can be investigated to defend against these insider attacks. Fur-
thermore, due to the privacy concerns employed in FL, it isn’t easy to verify whether the
received models match the local training data or not [Lalouani and Younis 2021]. How-
ever, more studies are needed to propose detection approaches that are less susceptible to
changes in the network and lighter to optimize detection models in terms of time com-
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plexity and resource consumption so as not to overload fog computing.

Another important point is that machine learning approaches’ good detection per-
formance depends on the training data’s quality and quantity. The vast majority of works
found proposed approaches based on supervised learning. To train these approaches,
having a large number of labeled data is usually necessary. This becomes an issue as you
need to capture network traffic from the network and label it for use in the detection model
training process. Therefore, this task can become extremely costly due to the large amount
of data required. Some works have proposed promising approaches for the training data
labeling problem, using data sampling and clustering methods [Ravi and Shalinie 2020].
As points for future studies, the need for research on new hybrid approaches based on
supervised and unsupervised learning to overcome the problem of data labeling stands
out. Therefore, proposing approaches that combine supervised machine learning tech-
niques with other techniques capable of working with unlabeled data, such as unsuper-
vised learning or reinforcement learning, can be a great solution.

Updating detection approaches is a major challenge, which generates the need for
further studies to find the ideal strategy. They must consider how often it takes to update
the model, training costs, data acquisition, and labeling.
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1.6. Conclusion
IoT is spreading in all areas due to its ability to make objects smart. In this way, they
can monitor and act in the environment in which they operate. IoT devices have limited
resources and must send information to places with more computing resources. Fog com-
puting then emerged as an excellent processing solution close to devices. IoT and fog are
not free from security threats and vulnerabilities. Added to the significant damage gener-
ated by attacks in this environment, this fact generates the need to concentrate efforts in
this area. Intrusion detection systems are an essential tool to ensure IoT security.

In this mini-course, the fundamental concepts involved in the theme of this work
were presented, the main threats present in IoT environments were discussed, and con-
cepts related to Intrusion Detection Systems were introduced. In addition, several ma-
chine learning techniques that can be used to analyze and detect intrusions were pre-
sented. This section also proposes to conduct simulation experiments with the IoTID20
dataset to evaluate the machine learning techniques presented in an intrusion detection
scenario with IoT traffic. In Section 1.4, state-of-the-art surveying through a literature
review is exposed, and the approaches proposed by the main related works are presented.
Finally, Section 1.5 discusses some important aspects observed in state-of-the-art related
to intrusion detection in an IoT/Fog/Cloud context. The objective is to instigate an initial
reflection on this research topic’s problems, challenges, and open questions.

For future research, the following points are highlighted: (1) investigate hybrid ap-
proaches combining detection categories; (2) investigate solutions capable of managing
the analysis process in the various layers of the IoT-Fog-Cloud environment; (3) investi-
gate new approaches for multiclass detection to achieve accuracy greater than or similar
to binary detection; (4) investigate ensemble and hybrid methods to improve multiclass
detection considering resource constraints; (5) investigate strategies to update/retrain de-
tection models with federated learning.
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