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Abstract. The ever increasing amount of context-aware systems lead us to large
volumes of data being generated and stored at every moment. In this scenario,
one of the most interesting dimensions currently is geospatial data, that repre-
sent the position of an entity (e.g., vehicles) on Earth. Based on that, public and
private sectors work to extract useful knowledge, aiming to understand urban
mobility behavior, improving services and providing state-of-the-art solutions in
areas related to mobility, disease control, and so on. With this in mind, the ob-
jective of this chapter is to present the main theoretical concepts together with
practical examples related to working with geospatial data including collection,
storage, transformation, and visualization.

2.1. Introduction
Data is one of the major ingredients for the technological, political, and economical ad-
vances, as well as an ever-increasing byproduct. By using data, policies and services can
be enhanced and personalized to guarantee a better experience [Hess et al. 2015]. For
example, when it comes to human mobility specifically, issues such as traffic flow predic-
tion, contagion models, network resource optimization, urban planning, social behavior
analysis and even migratory flows can be dealt with data collected at scale from mul-
tiple sources [Barbosa et al. 2018]. Another approach, a more traditional one, is done
through the construction of mathematical and statistical models to derive the behaviors of
the entities being studied with a certain degree of realism. On the other hand, due to the
ever-increasing collection of geospatial data through means such as mobile devices and
location-based social networks (LBSN), a second approach based on historical mobility
data analysis has become notable. These historical mobility data – often called mobility
traces – allow the construction of models with a high degree of realism without the need
for prior expert knowledge about the entities.

As expected, both private and public sectors take advantage of this kind of data:
for the former, we can highlight location-based social networks, ride-sharing services
(e.g., Waze Carpool), car-hailing services (e.g., Uber and Lyft) and mobility-based car
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Figure 2.1. Published articles per year with the topic "geospatial data" (Source:
Web of Science)

insurances. For the latter, geospatial data collection from public services and systems,
such as buses’ live locations and the spatial distribution of criminal activities, serve both
as a way to increase transparency of resources management, as well as an opportunity for
the community, including academics, to generate new knowledge from this data. Cities
such as New York1, Chicago2, and Rio de Janeiro3 have large collections of geospatial
data openly available to the public. To illustrate this growing interest, Figure 2.1 shows a
survey of published articles per year that include the topic geospatial data, since the year
2000, where a clear upward trend can be seen.

With this in mind, this work aims to increase the body of knowledge regarding
concepts and techniques applied in the analysis of geospatial data – from collecting the
data to applying it. We hope that by the end of this chapter, the reader is able to produce
relevant results from geospatial data analysis, adopting the most appropriate practices and
selecting adequate tools and algorithms.

2.1.1. Why geospatial data?

Next, we present some current and promising applications for which the usage of geospa-
tial data brings benefits, aiming to illustrate to the reader the importance of this kind of
data, as well as of its adequate use. For each application, Table 2.1 shows examples of
open access geospatial datasets found in the literature that can be used as relevant sources
for the development of analysis and applications.

2.1.1.1. Urban Mobility

To understand and model the urban behavior of people, vehicles and other mobile ob-
jects is one of the pillars of urban computing [Zheng et al. 2014]. From the knowledge
obtained, cities can plan better the future of urban centers, improving the quality of life
of its inhabitants. In this context, geospatial data can provide information about mobil-
ity dynamics from millions of people, being more precise and cheaper to obtain when

1https://opendata.cityofnewyork.us
2https://data.cityofchicago.org
3https://data.rio
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compared to conventional strategies of data collection, such as field surveys and inductive
loop counters [Naboulsi et al. 2016].

From the application point of view, we can highlight datasets of large populational
scale, such as public mobility data, and logs from mobile network operators. For the
former, urban mobility flow, transport demand, as well as points of interest (PoI) can be
extracted from public mobility data, such as taxi and buses trips [Castro et al. 2012]. For
the latter, network and call logs, referred to as Call Detail Records, can be used to plan
and to allocate network resources, allowing better services during peak hours and large
events [Marques-Neto et al. 2018].

2.1.1.2. Internet of Drones

According to [Motlagh et al. 2016] in a few years millions of drones will be available to
work in many economy sectors, performing activities such as package delivery, tracking,
surveillance in dangerous or hard to reach locations, agricultural, and even in combat. For
this to happen, the mobility and communication between these unmanned aerial vehicles
must be enhanced, through the development of communication protocols and orchestra-
tion methods. These technologies will make use of (among others) geospatial sensors,
such as GPS, Bluetooth, and high-definition cameras, allowing the creation of drones
swarms and coordinating their mobility.

2.1.1.3. Mobile and Vehicular Networks

Mobile and Vehicular Ad hoc Networks (MANETs and VANETs, respectively) are net-
works that enable the communication between mobile entities (in the second case, vehi-
cles) and roadside auxiliary units, aiming to provide services such as traffic and accident
alerts, multimedia sharing, and so on. Their main objective is to make mobility safer and
more enjoyable for drivers, passengers and pedestrians. To do this, we have to model
vehicular mobility so that the applications, systems and network protocols can take ad-
vantage of this information to adapt themselves to the vehicles’ behavior. Data sources
such as taxi, buses and private vehicles mobility are essentially important for the develop-
ment of these technologies, being used both during behavior analysis, generating mobility
models, as well as during the validation of proposed algorithms and protocols which will
be used in urban environments.

2.1.1.4. Epidemics and Contagion models

Geospatial data are capable of capturing the human mobility behavior and its charac-
teristics, such as PoI, social interactions, collective mobility patterns and flows. These
factors make possible the usage of geospatial data to construct and enhance contagion
models, that by themselves allow us to estimate the effects of infectious diseases on
a population. By applying the information obtained from geospatial data to contagion
models, we can estimate infection rates and model transmission in a given population,
aiding in the development of actions and preventive measures. Specially during the pan-
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Table 2.1. Open access geospatial datasets found in the literature

Name Description Applications Source

Yellow Taxi Trip Data

Taxi trip records, capturing pick-up
and drop-off dates/times, pick-up
and drop-off locations, trip distances,
itemized fares, rate types,
payment types, and driver-reported
passenger counts.

Urban mobility data.cityofnewyork.us

Transporte Rodoviário -
GPS dos Ônibus

Geographical position and status of
buses from the Rio de Janeiro
city, collected at each minute

Urban mobility,
Vehicular Networks data.rio/

NYPD Complaint
Data Historic

Includes all valid felony, misdemeanor,
and violation crimes reported to the
New York City Police Department
from 2006

Safety data.cityofnewyork.us

Crimes - 2001 to Present

Reported incidents of crime that
occurred in the City of Chicago from
2001 to present, extracted from the
Chicago Police Department

Safety data.cityofchicago.org/

Traffic Crashes
Information about each traffic crash on
city streets within the City of Chicago

Urban mobility,
Safety data.cityofchicago.org/

Package Delivery
Quadcopter Drone

Flight data from drones performing a
series of experiments carrying
different payloads

Internet of Drones kilthub.cmu.edu

New South Wales COVID-19
cases by location

COVID-19 cases by notification date
and postcode, local health district,
and local government area.

Epidemics data.nsw.gov.au

Ciclovias
Geometries of all cycle paths in the
city of Sao Paulo Urban mobility dados.prefeitura.sp.gov.br/

Foursquare Dataset
Includes check-in data from users of
Foursquare all around the world

Urban mobility,
Epidemics,
Mobile Networks

paperswithcode.com/dataset/foursquare

Salzburg’s 4G Driving Tests
4G measurements via repeated drive
tests that covers two years on
a typical highway section

Mobile Networks ieee-dataport.org/

Gowalla
Check-in data from users of Gowalla
along with their friendship networks

Mobile Networks
Epidemics snap.stanford.edu/data/loc-gowalla

demics period, geospatial data has been used to monitor population and the formation
of agglomerations, allowing scientists to track the evolution of dissemination in almost
real-time [Cebrian 2021].

2.1.1.5. Privacy and Safety

At last, geospatial data analysis from multiple sources can help protect the popula-
tion, both individually and collectively. In vehicular networks, for example, telemetry
data (e.g., current speed and engine temperature) from one’s vehicle and from the ve-
hicles surrounding it, road and weather conditions can aid the driver in preventing ac-
cidents, providing assisted or autonomous driving systems, with autonomous braking,
collision and traffic detection, among other possibilities. Additionally, by understand-
ing one’s mobility behavior, collection processes can be enhanced to reduce the risks
of sharing personal and private data, which can be used to pose threats if in the wrong
hands [de Mattos et al. 2019]. Regarding the aspects of public and private safety, geospa-
tial data provide a spatial coverage that together with collective sensing, allows each user
in the network to contribute to the general safety. Also, it can contribute to map the be-
havior of suspicious entities and events, allowing the prediction and resolution of crimes.
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2.2. Fundamental Concepts

In this section, we discuss the main concepts related to geospatial data, essential in all
steps during analysis. First, we highlight the Earth’s geographic characteristics and how
they can affect operations with geospatial data. Next, in a broader context, we explore
what are reference systems and introduce the definition and properties of spatial projec-
tions. Finally, we discuss the different distance measurements used for geospatial data
and their characteristics.

2.2.1. Geography and its properties

Geodesic sciences are responsible for studying the shape and surface of the Earth, con-
sidering its imperfections and the many existing objects – natural or artificial – over (and
under) it. It deals with gathering the information and defining representations and mea-
surements for it. According to Bolstad [Bolstad 2016], to make use of geospatial data and
its derived systems in an effective manner, we need to establish a clear understanding of
how coordinate systems are defined for the Earth, how these coordinates are measured
over its curved surface, and how they can be converted in different projections for its us-
age. If these factors are not taken into consideration, geospatial data collected will not
be precise, and consequently, the operations performed with them can generate wrong
results. While this imprecision may appear small and irrelevant for some cases, high risk
applications such as the trajectory calculations for airplanes and missiles cannot allow it.

We can define two main factors to be considered in relation to geography: the
shape of the Earth and the lack of precision from measurements. Regarding the former,
the most common models used to represent the terrestrial surface are the planar projec-
tion, the spherical projection, and the elliptical projection. Although they allow for an
easier visualization of maps in 2D surfaces, Earth’s planar projections cause distortions
to its curved geometry. Take, for example, a straight line between any two points in a
planar map: it omits the existing curvature of the Earth between them (although for very
short distances this curvature is virtually non-existent). On the other hand, while spherical
projections eliminate the limitations of planar ones, they lead to imprecise measurements
when closer to the poles due to the flattening of the Earth at these regions. Finally, ellip-
tical models are the closest to Earth’s geometry. As they become more realistic, models
also become more complex, requiring advanced calculations – as we will discuss in Sec-
tion 2.2.4 – which can affect the efficiency of the proposed solution.

It is worth mentioning that the existing models are simplified representations of
Earth’s real format, and therefore they present imperfections. It is not feasible to capture
all the geographical characteristics of the Earth surface at a given moment, especially
considering that it is constantly changing. In practice, we choose the model according to
the spatial resolution of the research problem being dealt with.

2.2.2. Coordinate systems

Coordinate systems use coordinates to determine the position of objects in space. This
space can be composed of one or more dimensions, and each dimension can contain
particular properties such as inferior and superior limits, notations and scales. Thus, for
a Cartesian coordinate system with two dimensions, we can define the location of an
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Figure 2.2. Geographic coordinate systems used to locate objects on Earth

object over the Cartesian surface by the pair of coordinates P = (x,y), where each value
represents the position in one of the dimensions. Similarly, geographic coordinate systems
represent the location of objects on the Earth through geographic coordinates. These
can be of two or more dimensions and consider different models for the Earth’s shape.
Following, we discuss about geographic coordinate systems and their properties.

The most used model of geographic coordinates is based on a spherical coordinate
system to locate objects in a surface that resembles the Earth’s shape. This system uses
two rotational angles to specify positions on the modeled surface. The first rotation angle,
called longitude (Figure 2.2(a)), is computed over the imaginary axis where the Earth
performs its rotational movement. This axis go through the center of the Earth and has as
extremities the North and South Poles. The positional variation over the axis is measured
in degrees, with the zero position (0◦) located on a imaginary line (a meridian) close to
the Royal Observatory Greenwich, in England. The variation is positive when moving
East and negative when moving West, reaching the maximum values of 180◦and -180◦,
respectively, exactly at the opposite point of the zero position on the Earth’s surface.

The second rotational angle, called latitude (Figure 2.2(b)), is computed over the
Equator line, which represents half the distance between North Pole and South Pole. Its
zero position (0◦) is located exactly on the Equator line, with northbound variations be-
ing positive and southbound variations being negative, reaching maximum and minimum
values at the Poles of 90 ◦ and -90 ◦, respectively. As such, we can define the position
of an object on the Earth through a pair of latitude and longitude angles (Figure 2.2(c)).
By its turn, each degree can be divided in 60 minutes (and each minute in 60 seconds),
allowing geographic coordinates of latitude and longitude to specify the location of an
object with precision under 1 meter. By convenience, angles are always specified in the
order (latitude, longitude).

2.2.3. Spatial Projections
Geospatial data provide the precise location of objects on Earth through latitude and lon-
gitude angles. However, oftentimes we need to represent these positions on surfaces with
different formats, such as a plain map. Plain maps cover bigger surfaces, are easier to
visualize on paper, and their creation is simple. On the other hand, it is impossible to
apply directly the position of objects in a spherical surface over a plain surface. As such,
we apply spatial projections, that use mathematical formulas to transform locations from
an original surface to a new one.
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Figure 2.3. Projection types

There are different projections available for the Earth, and although they are all
used to represent locations on a planar surface, they vary in type and properties. The pro-
jection type refers to the geometric shape used to convert the sphere into a planar surface.
This shape can be cylindrical, conic, planar, or a combination of those (Figure 2.3). Re-
garding properties, they represent the characteristics the projection preserves in relation
to the Earth’s surface, which can be conformal (preserving angles and shapes), equivalent
(or equal-area, preserving area measurements), compromise (a half term between confor-
mal and equivalent), and equidistant (preserving the real distance between points in the
map). Table 2.2 presents a comparison of the main existing projections regarding their
type and properties.

Different projections distort the Earth’s surface differently. To adjust to a planar
map, distortions are used to compress or elongate regions of the map. In fact, globe dis-
tortions are inevitable in planar projections. It is the case for the Mercator projection,
that in order to keep the correct shape of continents, distort regions close to the poles,
presenting sizes far bigger than their real areas, which can cause inconsistencies between
visualizations and numeric results4. A variant of Mercator projection, the UTM (Univer-
sal Mercator Transverse) preserves the angles and formats of the regions, at the cost of
distorting distances and areas. By the other hand, Gall-Peters projection presents surfaces
with exact proportion and areas, at the cost of distorting their shapes. Lastly, the equidis-
tant projection preserves the real distance between any two points on the surface, at the
cost of distortions in the shape and area of regions.

2.2.4. Measuring distances
Finally, when dealing with geospatial data in the format of geographic coordinates, mea-
suring distances between two or more points requires attention. Due to the Earth’s ellip-
soidal format, methods such as Euclidean distance will generate errors. In this situation,
two other methods can be highlighted: Haversine formula and Vincentys formula. How-
ever, all methods have errors, and depending on the application even the Euclidean one
can be used.

4An interactive graphic of these distortions can be seen at www.thetruesize.com

Tópicos em Gerenciamento de Dados e Informações: Minicursos do SBBD 2023

37



Table 2.2. Comparison of the main projections found in the literature regarding
their types and properties

Projection Type Properties
Mercator Cylindrical Conformal
UTM Cylindrical Conformal
Gall-Peters Cylindrical Equivalent
Equidistant Cylindrical Equidistant
Equidistant Conic Conic Equidistant
Azimuthal Equidistant Planar Equidistant

Figure 2.4. Measurements errors caused by irregularities on the Earth’s surface

By inferring that the distance between two points is a line, the Euclidean method
generates the biggest error of the three. As the distance between two coordinates increase,
this error aggravates, impacting negatively its application. On the other hand, if the data
analyzed is projected into a plane or if the expected distance between the points is too
small, Euclidean distance can be used. By its turn, Haversine formula considers the dis-
tance between two points as a curve, better fitting the shape of the Earth, making it one
of the most used methods in geospatial data applications. However, by considering the
Earth as a sphere and not as an ellipse, this method also generate errors – although smaller
ones. Lastly, Vincentys method computes the distance between two points based on an
ellipse, being the most accurate one between the three. On the other hand, it is also the
most complex, being more compute-intensive. Figure 2.4 shows an example of errors ob-
tained when measuring distances on Earth. While it is clear that the Euclidean approach
of measuring with lines produces significant errors, as we can see from the yellow dotted
line between points A and B, the ellipsoid and spheroid approaches can also be at fault.
Although the Haversine or Vincentys formula produces small errors for the distance be-
tween points A and B, Earth’s irregularities still allow for larger errors, such as when
measuring the distance between points A and C, or when measuring distances closer to
the poles (in case of using Haversine formula).

2.3. Data Collection
Geospatial data often represent a simplified vision of the relation between one or more
physical entities, such as a person or a vehicle, in relation to one or more locations, such as
roads, cities, geographical coordinates, PoI, and so on. By capturing a check-in of a LBSN
user in a restaurant, for example, we extract the information needed to represent this event
as a geospatial datum, with the timestamp of when the check-in occurred, and the name
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Figure 2.5. How different geospatial data sources collect their data

and geographical coordinates of the location (when available). The definition of which
information to collect must occur according to the analysis to be done, considering also
the limitations of the technology applied for the collection. Also, issues such as sensed
users privacy and the ethic of the proposed analysis must be taken into consideration.

Nowadays, the majority of geospatial data is collected using automatic measure-
ments, due to its scalability, as well as for being less intrusive than manual collection
methods. Such measurements are made using location sensors, and the collected data
can be streamed in real-time (as some applications demand, such as to live track vehicle
and passenger’s position in Uber) or stored for later access. These sensors can be under
possession of the sensed entity or not, e.g., smartphones and drones, respectively.

In this section, we discuss about the process of geospatial data collection, pro-
viding the reader with the concepts and tools needed to do so. Existing data sources,
their properties, and examples are shown in Section. Then, we introduce different aspects
related to the quality of the collected data in Section.

2.3.1. Data Sources

Geospatial data collection is a complex activity with high costs involved. Therefore, a
clear scope of the data usage is needed in order to obtain the expected results without in-
curring additional costs with collection and post-processing steps. One of the main steps
is selecting the data source, which must take into consideration the trade-off between the
quality of the data obtained and the application costs of the sensing technology. Consider,
for example, a scenario where we want to map points of interest within a city region. In
this case, location data collected from Call Detail Records (CDR) do no have similar accu-
racy such as GNSS data; however, check-in data from LBSN may produce similar results
with inferior collection costs. These suppositions are also valid to previously collected
data from third-party agents that may have acquisition costs.

2.3.1.1. Global Navigation Satellite Systems

Global Navigation Satellite Systems (GNSS), such as GPS5, GLONASS, and BeiDou, are
satellite-based technologies that provide precise information about objects location on the

5Although this term is commonly used in the literature, GPS is a specific implementation of a GNSS.
Most modern sensing devices (e.g., smartphones) are capable of connecting to multiple GNSS networks.

Tópicos em Gerenciamento de Dados e Informações: Minicursos do SBBD 2023

39



Earth’s surface (Figure 2.5(a)). To do this, we need receptors that capture the signals from
the satellites, calculating their position in degrees of latitude and longitude. To obtain its
position, a receptor captures the signal from three satellites and performs a process called
triangulation. In the presence of a fourth satellite, a receptor can also obtain the current
date and time with high precision. GNSS are robust, capable of operating uninterruptedly,
independently of weather conditions, and virtually in any exterior environment on the
Earth’s surface.

On the one hand, GNSS sensors are the most advanced geospatial data collec-
tion devices, obtaining accurate positioning with high frequency. Adding to that, nowa-
days these sensors are found in the majority of mobile devices such as smartphones and
smartwatches, allowing a high-scale collection with low-cost. On the other hand, issues
such as users’ privacy, high energy consumption, and loss of signal must be addressed.
First, the accuracy and frequency of positioning sensing of a user allows obtaining per-
sonal information such as home and work location [Kang et al. 2004], as well as work
times [Gu et al. 2016]. Next, the elevated energy consumption must be considered, given
that mobile devices have limited sources of energy and that most of the times the sensing
devices have other functions sharing the same source; thus, the frequency of update must
be just enough for the purpose. Together with that, physical barriers such as buildings
and mountains can interrupt the signal reception, generating spatial and temporal gaps in
the sensing [Silva et al. 2015] as well as positioning errors, issues that must be addressed
using post-processing techniques such as filling and calibrating data [Celes et al. 2017].

2.3.1.2. Call Detail Records and Wireless Networks

Wireless networks – such as mobile telecommunications networks and Wireless access
points (AP) – used by mobile devices, computers, and even vehicles, can be employed as
low-cost sources of geospatial data. Mobile networks obtain location information for a
user by the closest base stations, even if the user is not actively interacting (for example,
making a call) with the network at the moment. The reported position corresponds to
the transmission range of the contacted tower (Figure 2.5(b)). By its turn, the location
of devices connected to access points is given by the unique identifier of the AP and the
timestamp of when the access started. Like in mobile networks, the positioning precision
corresponds to the transmission range of the AP. For both, multiple towers or multiple
access points can be used to obtain a preciser positioning through triangulation and signal
reception angles [Naboulsi et al. 2016].

There are certain advantages in using wireless networks to collect geospatial data.
First, the energy consumption is low, given that the collection depends only on the con-
nection of the devices to the network, a fundamental activity for their usage. Moreover,
by being less precise, this collection is also less intrusive in comparison to the one using
GNSS sensors, which reduces the rejection of the sensed individuals to provide their lo-
cation. Finally, we can highlight the larger number of devices capable of connecting to
wireless networks in comparison to devices with GNSS sensors. On the other hand, the
biggest drawback of this source is the reduced precision, which can influence the qual-
ity of the geospatial data collected. Additionally, in comparison to GNSS, collection can
suffer from the lack of coverage in remote areas, where network signal cannot be found.
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2.3.1.3. Check-in Data

Check-in records represent the presence of a user in a location of interest (also called
point of interest) during a determined time interval. These can be public spaces, such as
parks, restaurants, and shops, as well as private and individual spaces, such as home and
workplaces (Figure 2.5(c)). Check-in records are collected through location-based social
networks such as Facebook, Twitter, and Foursquare, that capture information about the
user, the visited location and the time of the visit, and may or may not contain the ge-
ographical coordinates of the PoI. The LBSN can use location sensors, such as GNSS
and AP’s identifiers - to automatically detect (or suggest) the user location, instead of
requiring manual input. Like CDRs, check-in records present coarse temporal and spatial
granularity, because the visits performed by a user during their activities are only regis-
tered if they voluntarily share it through their LBSN, which does not always happen due
to issues such as privacy (i.e., the user does not want others to know where he is) and
safety (i.e., the user fears that reporting his location may put himself in danger).

2.3.2. Collection Quality

Besides the technologies used and the sources of geospatial data, other issues must be
taken into consideration during the definition of the data collection scope. Next, we in-
troduce the main questions that arise, discussing how they can affect, not only the data
collection, but its processing and the resulting analysis as well.

2.3.2.1. Location accuracy and precision

Accuracy, in terms of geospatial data collection, refers to the proximity of the collected
location measurement to the real position of an entity. Therefore, the bigger the accu-
racy, closer the measurement is to the real value. It can vary from a few millimeters (e.g.,
high-capacity GNSS sensors) to kilometers (e.g., mobile networks in remote areas), thus
comprehending accuracy is fundamental to select the most suitable source to the analysis
subject. Precision, on its turn, represents the variance of the collection, and the bigger
its value, more centered are the samples around a single point. To obtain preciser mea-
surements, more powerful location sensors can be applied, nonetheless resulting in higher
energy consumption and a higher collection cost overall.

Although they are related, a higher accuracy does not necessarily translate into
a higher precision, and vice-versa. In the presence of data with low accuracy or preci-
sion, two approaches can be applied. The first is using more powerful sensors – when
possible. The second is applying techniques to calibrate the collected measurements.
This can occur during the collection, such as in the usage of additional signals in GNSS
and wireless networks, as well as during data processing [Newson and Krumm 2009,
Hoteit et al. 2016].

2.3.2.2. Privacy

Geospatial data can be used to report the location of various entities, in special those
capable of moving such as humans and vehicles. Therefore, by providing their location,
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an individual allows the access to a real and valuable information. By the one hand,
numerous benefits are provided from mobility data analysis and its applications. For
example, services such as Uber and Pokemon Go are only possible by sharing location
data. By the other hand, this information can be used by malicious agents to construct
privacy attacks for the users being sensed, which can in turn demotivate them to share
their data. The compromise between the utility of geospatial data and the risk to their
privacy must be considered when collecting their data.

To be able to share their location information, we must guarantee users’ pri-
vacy with the usage of techniques that reduce the amount of details or that make it
harder to access the shared data. We can highlight two techniques: data anonymiza-
tion and obfuscation. For the former, we replace the users’ identifiers by randomly-
generated pseudonyms, which can be done during data processing and even directly
in the sensing devices [Krumm 2009]. However, even with this anonymization, at-
tacks may re-identify users by detecting mobility patterns [Maouche et al. 2017]. The
role of obfuscation is to prevent this by creating small distortions in the data in an at-
tempt to break existing patterns, without affecting its quality [Duckham and Kulik 2005a,
Duckham and Kulik 2005b].

2.3.2.3. Sampling rate

The interval between two consecutive location reports is also an important aspect to be
discussed. We call this interval sampling rate, in a way that data with higher sampling
rates present a smaller time interval between two samples. Therefore, during a given
interval, collections with higher sampling rates will produce larger amounts of data. As
expected, more data implies in more details and bigger utility, allowing, for example, the
analysis of detailed mobility trajectories. On the other hand, collecting data with high
sampling rates leads to higher usage of resources such as power and storage, which are
limited in portable and mobile devices. When implementing a geospatial data collection
process, we need to specify the collection sampling rate to guarantee the coverage of the
activities or behaviors which are subject of our analysis.

While some data sources allow us to set the sampling rate (e.g., GNSS), others
depend on the interaction of the users with the system (e.g., LBSNs), and thus their rates
cannot be controlled directly. Even when possible, adjusting the sampling rate can be
costly, as discussed above. From that, spatial and temporal gaps will occur, intervals in
which there is no information regarding the whereabouts of the user. These gaps can be
filled using techniques such as interpolation [Hoteit et al. 2016] and algorithms based on
historical data [Silva et al. 2015, Chen et al. 2017]. The enrichment of geospatial data
transforms sparse into dense in an artificial manner, with no need to change the methods
and tools of collection.

2.3.2.4. Scale

Finally, we discuss the collection scale. To represent the simulated environment and pro-
duce meaningful results, the set of entities contained in the data must be significant. The
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scale can refer to the number of distinct users being sensed, to the number of time in-
tervals (hours, days or weeks), and to the dimensions of the area being monitored. The
scale of these dimensions must comprise a scenario in which the resulting analysis does
not present bias due to: user limitations (the sample of individuals does not represent the
population); time limitations (the period does not contains all the expected situations);
and space limitations (the dimensions of the covered area do not represent the real envi-
ronment).

When the collected geospatial data are not enough to produce results, some ap-
proaches are used to increase the data volume. Data fusion [Rettore et al. 2020] is a
technique that combines two or more datasets producing as output a single set contain-
ing all the data. However, for very distinct datasets, its application can be compute-
intensive. Another approach is the generation of synthetic data, which uses statisti-
cal [Kosta et al. 2012] and machine learning methods to generate data that is similar to
the real behavior. Although it demands a precise modeling of real data, this technique has
as benefit the capacity of generating synthetic data on demand and in large-scale.

2.4. Data Storage
This section will discuss concepts, techniques and existing tools for storing geospatial
data, which is fundamental for dealing with massive amounts of data. It is important
to discuss this topic, given that in its majority, traditional relational databases are not fit
for efficiently storing geospatial data. This is due to the different forms of representing
geospatial data that may not be compatible with tabular storage. Moreover, we must
consider data manipulation, i.e., inserting and querying data, and the need to perform
geospatial filters.

2.4.1. Spatial components structure
The real world is too complex to be fully represented by a data structure, and thus we must
select the relevant characteristics (e.g., roads, buildings) for each scenario. To digitally
represent geospatial data, there are two primary structures: vector and raster. Vector
structure is based on using points, lines, and polygons to define the location and limits
of an object. By its turn, raster structure uses a regular cell grid to define objects. Each
structure has its own advantages and drawbacks in data modeling. Moreover, we can
combine the two approaches in a single project aiming to get the best of both. Table 2.3
presents a comparison between the two data structures.

The characteristics of each structure impact directly on the details they are capable
of capturing. Figure 2.6 shows the transformations of a real world representation into
vector and raster structures. The vector one represents the existing entities considering
their dimensions and shapes. To do so, we must select which geometric shapes will be
used in the representation. On the other hand, the raster structure reduces every feature
contained in a single cell into a basic identification according to a codification criteria.
In the example shown in Figure 2.6, we used the dominant area criterion, in which the
label corresponds to the feature that occupies the majority of the cell. Another possible
criterion is using the feature located at the center of the cell.

Taking into consideration the characteristics mentioned above, it is clear that there
is not a superior structure. Raster structure has the advantage of being simpler to store,
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Table 2.3. Comparison between vector and raster structures

Characteristic Vector Raster
Data structure Generally complex Generally simple
Storage requirements Small, for most data Big, for most uncom-

pressed data
Coordinate systems con-
version

Simple Can be slow due to the
volume, may require re-
sampling

Positional precision Limited Depends on the resolution
adopted

Accessibility Often complex Easy to modify by using
specific programs

Visualization and output Similar to maps, with con-
tinuous curves; poor for
images

Good for images, but can
produce jagged effects

Spatial relations between
objects

Topological relationships
between available objects

Spatial relationships must
be inferred

Modeling and analysis Map algebra is limited Easier superposition and
modeling

Figure 2.6. Vector and raster structures (Adapted
from [Lisboa Filho and Iochpe 2001])

specially when dealing with digital images, such as aerial pictures and satellite images.
On its turn, vector structure tends to be more accurate, providing better visualizations and
efficient calculations of topological operations. At last, vector structure stores only the
essential elements, reducing the amount of storage needed, while raster codifies the entire
grid, which can be unnecessary.

2.4.2. Data Compression
As it can be noted, geospatial datasets are used to represent large amounts of information,
demanding considerable storage capacity. Just as in traditional datasets, compression
algorithms can be applied in geospatial datasets, resulting in a more efficient storage.
Compression algorithms can be classified into lossy and lossless: while the former obtain
high compression levels at the cost of reducing the data quality, the latter preserves its
quality but obtains lower compression levels. Although for certain applications lossy
compression is acceptable, when dealing with geospatial data it can severely impact the
analysis’ results. Thus, using lossy compression algorithms when processing or analyzing
geospatial data is not recommended.
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Figure 2.7. Run-length and Quad Tree compression of raster data

Given their representation characteristics, most compression algorithms for
geospatial data are focused on raster structured data. A common method for compress-
ing raster data is Run-length code. This compression technique is based on codifying a
sequence of cells to optimize space when there are large sequences of cells with the same
value. This coding is represented by two numbers, with the first indicating the amount
of cells with the same identification and the second being the identification itself. An-
other well-known coding is a bi-dimensional version of Run-length code called Quad
Tree [Finkel and Bentley 1974]. In this method, areas with same values are represented
with a single identifier. To do this, the grid is divided recursively into increasing square
blocks until the division is not possible anymore, resulting in squares where all identifiers
inside them are equal. An application example of both methods can be seen on Figure 2.7.

2.4.3. Databases

One of the most important components for geospatial data analysis tools, such as Ge-
ographic Information Systems (GIS), are Spatial Database Management Systems (Spa-
tial DBMS). Besides having the conventional functionalities found in traditional database
management systems, Spatial DBMS accept different geospatial reference systems, pro-
viding functions for querying and manipulating this type of data. Additionally, they are
capable of indexing geospatial data both using coordinates as well as using polygons,
improving efficiency. However, without indexing, both querying locations and filtering
regions are inefficiently, mainly when dealing with large volumes of data.

Some examples of commonly used DBMS for storing geospatial data are MySQL,
PostgreeSQL with PostGis extension, and Oracle Spatial. They use the same spatial
data standard, called Simple Feature Specification - Structured Query Language (SFS-
SQL), which describes a common storage and access model for geometries (points,
lines, and polygons). SFS-SQL is a standard defined by Open Geospatial Consortium
(OGC) [ogc 2023] that, besides describing the geometries used by GIS, present the defi-
nition of operations between geometries.

2.4.4. Indexing

Finally, indexes are data structures used to increase the performance of queries in database
systems, allowing data to be retrieved in more efficient ways than linear searches. Index-
ing (i.e., the creation of indexes) in geospatial databases is useful not only to efficiently
query data, but also to perform many spatial operations. We can cite the identification
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of k-nearest neighbors, geocoding (obtaining coordinates from an address), and reverse
geocoding (obtaining an address from coordinates).

The most applied structure for indexing geospatial data is called R-
Tree [Guttman 1984], that indexes geometries by using a balanced tree structure. This
strategy has as advantage the capacity of querying data with logarithmic time complexity
(O(log|M||N|)), justifying its usage in diverse databases and geospatial analysis tools, such
as PostGis, Oracle and GeoPandas. On the other hand, we must take into consideration
the processing costs for generating the tree, which may limit its usage.

Besides R-Tree, we can use grid-based systems, which are easier to implement,
such as Geohash [Morton 1966] and H3 [Uber 2015]. Grid-based systems can analyze
massive amounts of geospatial data through the division of larger areas into uniquely
identifiable cells. H3 provides an hierarchical spatial index based on hexagons, grouping
points in hexagons of different sizes according to the precision needed in the analysis.
H3 index levels determine the area of hexagons and its selection is essential for a better
precision during indexing. On the one hand, hexagons too big will group distant points
in a same cell. On the other hand, hexagons too small will result in a very large number
of indexes, decreasing performance. Geohash, on its turn, uses rectangles instead of
hexagons. However, the indexing approach is the same as H3, with the disadvantage that
each rectangle has eight neighbors while each hexagon has six – more neighbors means
more locations to search.

2.5. Data Transformation and Knowledge Extraction
This section presents the core of the process of geospatial data analysis, which compre-
hends the steps of data transformation and knowledge extraction.

2.5.1. Data Transformation
The transformation of geospatial data involves five steps: formatting, sampling, cleaning,
filtering, and aggregating. Although they are all essential in preparing data to analyze,
the need to apply each one is defined by the initial conditions of the input data and the
characteristics of the analysis. Moreover, multiple transformation iterations can occur
with the aim to refine and validate the obtained results.

2.5.1.1. Formatting

When working with geospatial data, it is essential to observe formatting, since it can be
represented in different forms. When dealing with geographical coordinates (latitude and
longitude), for example, there are three basic formats in which they can be found: de-
grees, seconds, and minutes; degrees, seconds, and decimal seconds; and degrees and
decimal degrees. The choice of which format to use will depend of the application, given
that a larger number of decimal places allows representing locations with higher pre-
cision. Tools such as Geospatial Databases, GIS software, and sources of official data
often use the last format, that represents coordinates as degrees and decimal degrees (e.g.,
38.8897◦). Another form of representation is the set of coordinates, creating polygons
or lines. Platforms such as OpenStreetMaps represent polygons as a sequence of co-
ordinates; The Shapely library, on the other hand, adopts the Well-Known Text (WKT)
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format to represent sequences of coordinates. Other approaches are Shapefiles, sheets,
and JSON. Besides certifying that all data are with the same format, it is important to
verify if all records are under the same projection and datum, since different projections
will lead to wrongful analysis.

Other data sources, such as check-in and wireless networks, may require data
formatting as well. For the former, different LBSNs may refer to a same location with
different names (by abbreviating words, for example), requiring the identification of all
the possible formats and the conversion to a unique identifier. Additionally, during the
collection time span, locations can change names or addresses, which also must be con-
sidered during formatting. Similarly, for the latter, access points and towers can change
their identifiers over time, as well as each device can reproduce this identifier in a partic-
ular way, according to different technologies and software specifications.

2.5.1.2. Cleaning

Besides undesired locations, the usage of data collected from urban areas can bring some
challenges, such as the imprecision of geographical coordinates. This occurs due to the
large number of obstacles, such as buildings, that obstruct the line of sight of satellites, a
phenomenon called urban canyons [Johnson and Watson 1984], reducing their capacity to
attribute a location with the required accuracy. For this reason, it is important to analyze
the impact of the affected locations in the collected data, and if needed, remove them.
The main consequence of using erroneous data (or data with low location accuracy) is
reducing the significance of geospatial analysis, specially when dealing with distances
between points and users’ density.

Even if they do not refer to geospatial data, other data dimensions must be con-
sidered during cleaning. These, besides not being affected by the issues presented above,
can also contain irregularities such as null values or outliers. Therefore, cleaning them is
crucial to guarantee trustful results.

2.5.1.3. Filtering

While the cleaning step aims to remove wrongfully sensed information, the filtering step
aims to select, given a cleaned dataset, a subset that meets the specified rules for analysis.
While here we specifically refer to rules applied to geospatial data, it is valid to point out
that filtering can include other data dimensions as well. Thus, according to the application,
we can remove data located at unwanted regions, e.g., outside the city limits where we
want to focus our analysis.

It is important to highlight that records from geospatial data are frequently rep-
resented as a single point, that is, a single latitude and longitude pair. To filter records
within a location of interest – which can be a street, a place, or even a city – we can
consider the geometric representation of this area (i.e., a polygon or a set of polygons en-
compassing the whole area). To do this, various geographic operations can be applied to
evaluate the relationship between geometries. Such operations can be found in GIS soft-
ware and databases with support for geospatial data, as well as in libraries such as Shapely
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Figure 2.8. Examples of operations that verify a relation between two geometries

Figure 2.9. Examples of spatial operations on geometries

and GeoPandas. Figure 2.8 details the main operations, with each returning a Boolean
value (true or false) by comparing two geometries. Additionally, there are operations that
do not analyze the relationship between two geometries, but perform spatial operations,
returning values or new geometries as output, as it can be seen in Figure 2.9.
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2.5.1.4. Sampling

When analyzing large amounts of data, we may not possess the computational capacity or
even the interest in the whole dataset. Frequently, a small sample is enough to understand
and to generate knowledge about all the data. Once data is formatted, cleaned and filtered,
we can consider using samples of data. Sometimes, data sampling is the first step in
the data transformation process, making it easier to clean and filter the dataset, since
we are dealing with a reduced volume. For this, we must guarantee that the sample is
representative of the population, otherwise it will introduce bias, invalidating the results.
In a valid sample, records are selected randomly to guarantee that no biased record gets
picked on purpose. In the resulting sample, the distribution of the data inside it must
originate from the same distribution of the population.

Regarding geospatial data, we must also observe if the sample represents the exist-
ing variations regarding space and time. For the former, entities in different regions may
behave differently, and thus it is important to capture all this variability. For the latter,
the original dataset can cover a time interval with comprising many weekdays, holidays,
and even multiple seasons. Considering the change in the users’ routine caused by these
periods, we must consider splitting the sampling process or creating a stratified sampling,
generating one or more samples to meet the needs of our analysis.

2.5.1.5. Aggregation

Finally, with the data ready to be used, we must analyze if its current granularity is enough
for the desired analysis. If not, then we must aggregate our data, according to defined
aggregating rules and aggregating regions. For example, if our analysis is focused on
populational metrics by neighborhood, then aggregating records allows us to proceed
while also reducing the processing needed by decreasing the amount of data. Aggregation
can also happen due to privacy considerations: in certain scenarios, analyzing the raw
data can reveal personal information. By aggregating, individual traces can disappear
or become indistinguishable from one another. Finally, aggregation can also occur to
enable fusing with other data sources. Weather forecast, safety, and traffic indicators
are examples of data sources frequently used in geospatial data analysis, each one with
different granularity. In order to combine these sources in an efficient way, aggregation
can be used with few or no information loss.

2.5.2. Knowledge Extraction

Next, we showcase applications of knowledge extraction from geospatial data. For each
one, we give examples of its functioning and highlight its importance in data analysis.

2.5.2.1. Radius of gyration

When working with geospatial data, we frequently assume that the analyzed users have
a reference location, which can be their home, work place or any other point of interest.
Based on that, we can calculate a users’ radius of gyration, that can be defined as the
maximum distance between its reference location and the other locations visited by them.
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The radius of gyration provides information about the mobility of users, allowing their
classification and evaluation according to their radius’ value, for example.

To compute a users’ radius of gyration, we must first define the criteria to identify
their reference location through geospatial data. Some approaches found in the literature
are using a random point [Kosta et al. 2012], the average of all points, the most visited
location, and the first point reported in a day [Ekman et al. 2008]. We must consider the
characteristics of the dataset, such as its granularity and sensors used, to select a criteria
that identifies reasonable reference locations. Additionally, we must select a distance
function (haversine or euclidean, for example) to perform the measurements.

Knowing the radius of gyration of users has contributed to research about ur-
ban mobility. Previous studies have used this information to argue that users tend to
explore ever increasing regions over time [González et al. 2008], as well as shown that
some users tend to explore more than others [Pappalardo et al. 2015]. Additionally, ra-
dius of gyration analysis has been used to investigate locations visited by social networks
users [Jurdak et al. 2015]. Finally, it has aided in understanding escape routes during nat-
ural disasters [Wang and Taylor 2014] and understanding how communication in social
networks helps disseminating actions in global scale [Morales et al. 2017].

2.5.2.2. Spatial Clustering

Other common activity when dealing with geospatial data is the need of identifying groups
that present similar behavior patterns. Such patterns can be represented by users that
frequent a same region [Sakai et al. 2014], providing information to identify regions with
higher demands for services, locations where diseases can be spread easier, among others.
To identify these regions or groupings, we use a technique called spatial clustering.

There are several clustering algorithms found in the literature, using differ-
ent approaches to obtain groupings, such as algorithms based on distance (K-means),
based on density (DBScan), and based on distribution (GMM). Although they are al-
gorithms frequently used in common datasets, using them for clustering geospatial data
can lead to errors. Algorithms based on distance frequently work with euclidean dis-
tance, that fails to compute the correct distance between points on the Earth’s sur-
face [Ingole and Nichat 2013]. While algorithms based on distribution can also work,
the most popular algorithms for spatial clustering are the ones based on density, since
they can be applied for most types of data. However, parameters must be well-calibrated
so the groupings produced are representative.

There are many different applications of spatial clustering: adjusting network re-
sources to accommodate demand of a region, feeding recommender systems for indicating
similar locations, and personalizing marketing campaigns according to the visited loca-
tion [Tran et al. 2013] are some examples.
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2.5.2.3. Social relationships

Inferring social relationships between individuals in a dataset can help us better under-
stand daily activities, such as mobility patterns that change due to others [Cho et al. 2011],
or even the projection of disease propagation in a pandemic [Firestone et al. 2011]. For
this to happen, correctly identifying social links between two users is essential. Social
links derived from an analysis can indicate if two individuals are friends, acquaintances,
neighbors, workmates or housemates, for example. However, inferring theses links is not
a simple task: we must define rules – using the data – to affirm that two individuals were in
contact with each other. To define a contact, one may use the spatial proximity between
users’ reported positions (in case of GNSS data) or the presence at a same location (in
case of LBSN data). In both scenarios, the temporal proximity must also be considered,
to guarantee that users were in the same area at the same time. Moreover, commonly used
rules to identify social links are high encounter frequency, the intersection between users’
social links sets, and the detection of communities.

Regarding the relation of social links and geospatial data, there are works in the
literature to identify the probability of users having similar tastes by the occurrence of
similar routes [Hung et al. 2009]. Other works also analyze the occurrence of communi-
ties from social links obtained from geospatial data [de Melo et al. 2015], as well as using
these links to disseminate data in opportunistic networks [Domingues et al. 2022].

2.6. Visualization

Visualizing data is essential in all steps during analysis. We start visualizing data right
after collecting it, with the objective to validate and verify, identifying issues that can
be corrected through new collections or processing steps. Next, different visualizations
are created to depict the distribution of the data, allowing the detection of outliers and the
discovery of the population characteristics. During analysis, visualizations aid in decision
making and presenting partial results. Finally, the end results are also presented through
visualizations, that ease the understanding and illustrate the proposed ideas.

In this way, it is fundamental to create easy to read graphics with no considerable
time or effort. These two factors guarantee that the usage of graphics become a tool for
the process, and not another problem to be solved. For this to happen, we must know the
different forms of visualization of geospatial data and the results they provide. Different
from numerical and categorical data, in which graphics such as barplots and lineplots are
enough to transmit the information, the visualization of geospatial data generally involves
the need of a map over which the location records are drawn. Additionally, we need to
consider aggregation strategies due to the large volume of data. Drawing massive amounts
of data can be inefficient in terms of computing resources, and also produce polluted
results. Finally, we are frequently more interested in visualizing existing patterns than the
behavior of unique individuals.

To aid in understanding geospatial data graphics, we draw maps from the repre-
sented regions to approximate the figure to the real environment. To draw a map, first we
define its type and projection. Map types define the characteristics it represents, such as
terrain, territorial borders, streets and roads. Projection, on its turn, refers to representing
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data in two or three dimensions. Both factors must be selected in a way to increase the
understanding of the generated graphic, while also non essential characteristics must be
unconsidered to avoid pollution. For example, using a three-dimension projection for two
dimensional data will only add uncertainty to a figure.

Zoom levels refer to magnify the region covered by the figure, approximating
(zooming in) or distancing (zooming out). A graphic must cover the whole area where the
geospatial data are located, unless the objective is to highlight a specific region. However,
in the occurrence of outliers, we may generate visualizations that are distant from the
main region of interest, and thus, zooming in may be considered.

Finally, beyond aesthetic reasons, color scales in a graphic can be used to indicate
intensity levels (such as altitude) and to separate categories found in data (such as device
type or PoI category). Whenever possible, we must opt for color scales with high contrast
(considering that the figure may also be visualized in grayscale) and that refer to the
categories being represented (e.g., using a red and blue scale to indicate temperature).
In the presence of an elevated number of categories, colorscales can produce confusing
visualizations, and in this case, they can be replaced by textual (e.g., written values) and
visual (e.g., different symbols for each category) subtitles.

2.6.1. Visualization Types

The visualization types presented next are the basic structure to construct graphics for
analyzing geospatial data. From these approaches, it is possible to develop new visualiza-
tions, adapting and adding characteristics to meet the requirements of the desired result.
By creating the first sketches, the reader will notice that modifications are needed to make
the proposed graphic as clear as possible, which is essential for its understanding. Ad-
justing the map format, zoom levels, color scale, and visual and textual subtitles are some
examples of modifications. Figure 2.10 shows an example for each of the visualizations
presented next.

Scatterplot. Scatterplots constitute the simplest form of visualizing geospatial
data. In it, locations are drawn as points over the map according to their coordinates.
Points can have different sizes, colors and formats to depict different characteristics found
in data. Scatterplots are easy to comprehend, to implement and modify. On the other hand,
visualizing large amounts of data in scatterplots will lead to point superposition, causing
loss of details. Additionally, in this scenario their construction will be compute-intensive.
With this in mind, they should be used to visualize the dispersion of the collected data,
but we should avoid them when we want to explore the details in the population.

Heatmap. Heatmaps are used to represent the density of a variable by means of
intensity curves and color scales. When combined with geospatial data, both the variable’s
density and its spatial dispersion (i.e., how density changes according to space) can be
shown in a single visual. In this combination, high-density regions can be formed, that
can represent a topology or PoI, for example. Heatmaps are recommended when data
does not present a uniform location distribution, leading to the existence of regions with
higher densities. Because they are base in density regions, heatmaps can produce poor
results for datasets with sparse locations, that is, when points are too far away from each
other, with no aggregation.
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Figure 2.10. Examples of geospatial data visualizations

Gridplot. Gridplots are created by dividing the analyzed region into a grid with
defined dimensions, where the minimum location unit are the cells that compose the grid.
For each cell, the data located in the coordinates within it are aggregated through an aggre-
gation function (e.g., summation, average, minimum or maximum value) and the result of
this function represents the cell. Besides the aggregation function, another parameter that
must be defined is the cell size, that is, the area covered by it. Smaller cells are capable
of capturing more details, while larger cells can lose relevant information. On the other
hand, it is easier to have an empty cell (with no data inside it) as its size reduces. Even-
tually, a compromise between the level of details and the minimum number of records
inside each cell may be needed.

Flow plot. Flow plots are used to represent the movement flow of entities (that
can be people, vehicles, drones, or others) between two or more regions. This displace-
ment is represented by arcs that connect the origin and destination regions, together with
an intensity indicator, which can be done using the arc’s dimensions (e.g., a bolder arc
indicates a bigger flow), or through a color scale. Arcs may not be symmetric, that is, the
flow’s intensity from point A to point B can be different of the one from point B to point
A. In this way, multiple graphics can be drawn to cover all cases and avoid superposition
that leads to confusion. Other forms of representing flows between regions can be found
in the literature, such as transition graphs and transition matrices. However, they do not
communicate the spatial distribution as well as flow plots.
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Barplot. Barplots for geospatial data project bars over a spatial region, where
each bar represent the impact of a variable over that specific location. Like gridplots, they
are useful when geospatial data have information sensitive to location. By its turn, these
graphics allow readers to observe regions of interest easily, due to the projection of the
bars in a third dimension. However, we must consider the limits of representing data in
third dimension through non-interactive means, such as in printing: the projection may
cover some regions, causing loss of information. Therefore, barplots for geospatial data
should be preferred for digital and interactive means.

2.6.2. Visualization Tools
Next, we discuss some libraries and tools commonly used to create geospatial data visu-
alizations. While most plotting tools (e.g., gnuplot and matplotlib) can be used to draw
geospatial data, our aim here is to focus on those that provide specific resources for this
kind of data, thus reducing the amount of work needed and speeding up the process.

Bokeh. Bokeh is a library to build and visualize graphics. Built with Python, it is
capable of generating interactive visualizations, allowing users to change parameters and
scales and add new data to an existing graphic in real time. This makes Bokeh an interest-
ing alternative for publishing results in websites. Additionally, it is capable of rendering
large amounts of data. Lastly, users can find an extensive collection of visualizations
available for use, including the ones discussed above, as well as more complex ones.

Kepler. Kepler is a geospatial data analysis tool developed by Uber. It can be used
through a Web interface that allows loading data, performing aggregations, filtering, and
projecting over a detailed map of the Earth’s surface using many different visualizations,
such as scatterplots, heatmaps, flowplots and barplots. Besides that, the user can select
the map type and projection, draw additional geometries to complement the visualization,
observe data over time (when a time variable is available) and export the results to differ-
ent formats. However, Kepler can only be used to visualize geospatial data with locations
based on latitude and longitude coordinates.

OSMNx. OSMNx is a Python library for building geospatial data visualizations
focused on road maps. Using data from OpenStreetMaps, it is capable of generating per-
sonalized visualizations of road mesh of a determined region, over which the user can
draw additional geospatial data. Besides that, it is capable of constructing the road net-
work by using graphs, allowing the mapping of geospatial locations to their closest roads,
that in turn allows computing distances, road-based shortest paths, as well as metrics and
complex networks algorithms.

QGis. QGis is a multiplatform software to visualize and edit geospatial data for
analysis. It is a robust system, capable of loading large amounts of data and that supports
different input types. Due to its advanced capacities, it can produce high-quality visu-
alization. On the other hand, it demands a stepper learning curve. Finally, by being a
standalone tool, its interaction with other geospatial data analysis (e.g., Python scripts for
processing) can be complex, making it less preferable for building quick visualizations.

2.7. Conclusion
This chapter presented an in-depth study about geospatial data and its applications in
knowledge extraction, generating new products and services and allowing the capture
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of new sources of revenue, as well as advancing the state-of-the-art in areas related to
mobility, Internet of Things (IoT), urban computing, among others. For this, we presented
theoretical concepts and the main techniques and tools applied in the steps of collection,
storage, transformation, knowledge extraction, and visualization of geospatial data.

We highlighted the importance of mobility to the development of new techniques
and technologies applied to issues such as traffic flow prediction and control, contagion
models, network resource optimization, among others. In this scenario, the interest for
studying and applying geospatial data has become bigger, due to its capacity to represent
the entities’ mobility behavior, specially in the case of humans and vehicles. However,
although there is an increasing demand for research involving this type of data, still there
is not a consensus regarding the adequate methodologies for analyzing it, due to the lack
of references that introduce in a clear way the concepts and techniques to be applied.

Aiming to fill this gap, Section 2.2 introduced the main concepts related to geospa-
tial data, such as geographic characteristics, reference systems, and spatial projections.
Section 2.3 discussed the process of data collection, highlighting the most commonly
used existing sources (GNSS devices, networks and LBSNs). Additionally, characteris-
tics from the collected data such as accuracy and precision, granularity, and entities’ pri-
vacy were discussed. Next, Section 2.4 presented the particularities of storing geospatial
data, discussing spatial database management systems, compression methods for geospa-
tial data, and spatial indexing structures, required for an efficient storage. Section 2.5
presented the steps of data transformation and knowledge extraction. The former is com-
posed by the sub tasks of formatting, cleaning, filtering, sampling, and data aggregation.
For the latter, we introduced some examples of applications, such as radius of gyration
and spatial clustering. Lastly, data visualization techniques and the tools used to create
them were discussed in Section 2.6.
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