
Chapter

4
Are you root? Reproducible Experiments in User
Space

Vinícius Garcia Pinto
Centro de Ciências Computacionais, Universidade Federal do Rio Grande
Rio Grande, Brasil

Lucas Leandro Nesi, Lucas Mello Schnorr
Instituto de Informática, Universidade Federal do Rio Grande do Sul
Porto Alegre, Brasil

Abstract

High-performance computing platforms are usually shared by users with diverse de-
mands. Often legacy applications or those with very specific requirements and dependen-
cies overload system administrators or simply cannot run. A solution is to build, compile,
and install the application and its dependencies fully in user space. However, this task is
timely expensive and error-prone, which motivates the use of automated solutions. In this
chapter, we present two solutions to install packages fully in user space in a shareable
and reproducible way.

Resumo

Plataformas computacionais para processamento de alto desempenho são usualmente
compartilhadas por usuários com demandas variadas. Com frequência aplicações legadas
ou aquelas que possuem requisitos e dependências muito específicos sobrecarregam os
administradores do sistema ou simplesmente tem sua execução inviabilizada. Uma solução
passa a ser configurar, compilar e instalar a aplicação e as respectivas dependências
inteiramente em espaço de usuário. Entretanto, tal tarefa é custosa e propensa a er-
ros, motivando a adoção de soluções automatizadas. Neste capítulo, apresentamos duas
soluções que permitem a instalação de pacotes inteiramente em espaço de usuário de
maneira reprodutível e compartilhável.

4.1. Introduction
One fundamental step when using computational platforms is the correct installation of
software. When considering large, shareable resources, users usually do not have admin-
istrative permissions and must install their software stack in regular user environments.
This installation may also require many dependencies that suffer from the same principle.

Although one can manually download the latest source and check the newest manual for
each one of the dependencies, this would present many problems. These problems include
spending significant time in this process, a chance that such steps are not portable for other
platforms, and discovering that specific versions of dependencies may not work for that
software stack. These problems motivate modern approaches that can handle complex
dependencies stacks while maintaining the installation reproducibility of that build in a
non-privileged environment.

Two initiatives, Spack and Guix, aim to install software and its dependencies in user space
while being portable and reproducible. This course focuses on explaining both tools and
how to create installation recipes for desired software.

The remainder of this chapter is structured as follows. Section 4.2 presents the Spack
package manager. Section 4.3 presents the usage of Guix as a package manager. Section
4.4 concludes the chapter with a discussion and future perspectives.

4.2. Part I – Spack
Spack (GAMBLIN et al., 2015) is a fully user-space package manager that targets High-
Performance Computing platforms. Package definitions and Spack itself are written in
Python, each package being a class that inherits from a base class representing a standard
build tool. To request the installation of a package, the user must prepare a package spec-
ification that can be as brief as <package-name> or as detailed as <architecture
compiler compiler-version package-name package-version list-of
-package-options>. The same structure applies recursively to package dependen-
cies, resulting in a Directed Acyclic Graph (DAG). Figure 4.1 shows the DAG with the
software stack of openblas in two stacks: one depending on perl@5.37.9, and the
other on perl@5.38.0. Each node represents a unique package specification identified
with a hash. At the install phase, Spack will download the tarball and build each package
in the DAG, setting the correct paths at configure step (or equivalent). Even if iden-
tical dependencies can be recycled, as one can see in the figure, many installations of the
same package can coexist.

4.2.1. Installation

Spack can be installed and deployed entirely in user space as long as the target sys-
tem meets some minimal requirements. For a modern Linux distribution, the expected
tools are: a Python 3 interpreter; C/C++/Fortran compilers; standard build tools such as
configure, make, and cmake; git, compression/decompression tools such as tar
and gzip; curl.

perl@5.37.9%gcc@=12.3.0
/ywttbo6

bzip2@1.0.8%gcc@=12.3.0
/4vqro4d

gdbm@1.23%gcc@=12.3.0
/mp7hnjb

berkeley-db@18.1.40%gcc@=12.3.0
/2h246cr

zlib@1.3%gcc@=12.3.0
/rrurapx

pkgconf@1.9.5%gcc@=12.3.0
/icgpskv

diffutils@3.9%gcc@=12.3.0
/dmzwixe

readline@8.2%gcc@=12.3.0
/7ukppar

ncurses@6.4%gcc@=12.3.0
/qnpxltt

libiconv@1.17%gcc@=12.3.0
/5ql5c2l

perl@5.38.0%gcc@=12.3.0
/azizmd4

openblas@0.3.23%gcc@=12.3.0
/lwe6tgl

openblas@0.3.23%gcc@=12.3.0
/fm6vaw7

Figure 4.1. Dependency graph of two OpenBLAS installs at Spack

Once these dependencies are available, one can install Spack with:

SH

git clone --branch v0.20.1 https://github.com/spack/spack.git
source spack/share/spack/setup-env.sh

Spack will try to detect installed compilers automatically. It is possible to check which
ones were detected with:

SH

spack compilers

STDOUT

Available compilers
-- clang ubuntu23.04-x86_64

clang@15.0.7

-- gcc ubuntu23.04-x86_64

gcc@12.3.0
gcc@13.2.0
gcc@4.8.5

After upgrades or when installing new compilers on the system, one should run spack
compiler find before being able to use it. Inclusion of compilers installed in non-
standard paths can be done with:

SH

spack compiler add /local/my-compiler

4.2.2. Installing packages

Before installing a new package, one may wish to check the full list of available packages
with spack list. Filtering this output with a pattern is also possible:

SH

spack list "z*"

STDOUT

z-checker z3 zabbix zfp zfs zig zip zipkin zlib zlib-ng
zoltan zookeeper zookeeper-benchmark zopfli zpares zsh
zstd zstr zziplib

19 packages

The basic command to install a new package is spack install <package name>.
This command will download, configure, build, and install zlib in the current Spack
tree. Any other zlib installation living in the root system or in another spack instance
will not be touched. Let’s see an example:

SH

spack install zlib

The previous install command used only the default parameters defined in the zlib
package. A summary of all the package information, including its description, versions,
configure and build options (i.e., the variants in the Spack jargon), and dependencies is
obtained with:

SH

spack info zlib

STDOUT

MakefilePackage: zlib

Description:
A free, general-purpose, legally unencumbered lossless

data-compression
library.

Homepage: https://zlib.net

Preferred version:
1.3 http://zlib.net/fossils/zlib-1.3.tar.gz

Safe versions:
1.3 http://zlib.net/fossils/zlib-1.3.tar.gz
1.2.13 http://zlib.net/fossils/zlib-1.2.13.tar.gz

Deprecated versions:
1.2.12 http://zlib.net/fossils/zlib-1.2.12.tar.gz
1.2.11 http://zlib.net/fossils/zlib-1.2.11.tar.gz
1.2.8 http://zlib.net/fossils/zlib-1.2.8.tar.gz
1.2.3 http://zlib.net/fossils/zlib-1.2.3.tar.gz

Variants:
Name [Default] When Allowed values

Description
======================= ====== =================

===

build_system [makefile] -- makefile, generic
Build systems supported by the package

optimize [on] -- on, off
Enable -O2 for a more optimized lib

pic [on] -- on, off
Produce position-independent code (for shared libs)

shared [on] -- on, off
Enables the build of shared libraries.

Build Dependencies:
None

Link Dependencies:
None

Run Dependencies:
None

One of the main features of Spack is to allow the coexistence of multiple installations of

the same package. This way, one can install a second instance of zlib enabling (with +)
the pic variant and disabling (with ~) the shared and optimize variants:

SH

spack install zlib+pic~shared~optimize

As well as variants, installations using different version numbers, specified with
@<version-number> and/or compiled with other compilers (using %<compiler>)
can also coexist:

SH

spack install zlib@1.2.13+pic~shared~optimize%clang

These three installations live in the same Spack tree. Spack uses rpath (run-time search
path) to keep each executable isolated with its dependencies. One can check a list of
installed packages with spack find, which can include a package name to filter the
search, for example:

SH

spack find zlib

STDOUT

-- linux-ubuntu23.04-ivybridge / clang@15.0.7

zlib@1.2.13

-- linux-ubuntu23.04-ivybridge / gcc@12.3.0

zlib@1.3 zlib@1.3
3 installed packages

When there are several installations of the same package, it may become difficult to dif-
ferentiate them. The output of spack find can be extended with the options -v to
show the full spec and -L to list the hash that acts as an installation’s unique identifier:

SH

spack find -L -v zlib

STDOUT

-- linux-ubuntu23.04-ivybridge / clang@15.0.7

qkdk6s2blk5dqqyha3pper6uelymtwpr zlib@1.2.13~optimize+pic~shared
build_system=makefile

-- linux-ubuntu23.04-ivybridge / gcc@12.3.0

xkwdb6nqvajfcwfjuc75vrc7stzc7zck zlib@1.3~optimize+pic~shared
build_system=makefile

rrurapxw3hus5ia5vrszozxykmcoffw2 zlib@1.3+optimize+pic+shared
build_system=makefile

3 installed packages

To distinguish very similar installations, one can provide hashes to spack diff:

SH

spack diff /qkdk6s2b /xkwdb6nq

STDOUT

--- zlib@1.2.13/qkdk6s2blk5dqqyha3pper6uelymtwpr
+++ zlib@1.3/xkwdb6nqvajfcwfjuc75vrc7stzc7zck
@@ hash @@
- zlib qkdk6s2blk5dqqyha3pper6uelymtwpr
+ zlib xkwdb6nqvajfcwfjuc75vrc7stzc7zck
@@ node_compiler @@
- zlib clang
+ zlib gcc
@@ node_compiler_version @@
- zlib clang 15.0.7
+ zlib gcc 12.3.0
@@ package_hash @@
- zlib 2w7eqxylpvimalu26prt37tmbdsbqbvjytjjlvpyph6yuqwl63ga====
+ zlib u7vqvwmacj5j7zngg2evhytlxmzhad35mxlxna6tmr4bjyeisgsa====
@@ version @@
- zlib 1.2.13
+ zlib 1.3

Installing a package may require a long dependency chain. With spack spec, one can
check which new packages will be installed and which ones are already installed and can
be reused (i.e., those prefixed with [+]).

SH

spack spec cbc

STDOUT

Input spec

- cbc

Concretized

- cbc@2.10.9%gcc@12.3.0 build_system=autotools arch=

linux-ubuntu23.04-ivybridge
- ^cgl@0.60.7%gcc@12.3.0 build_system=autotools arch=

linux-ubuntu23.04-ivybridge
- ^clp@1.17.7%gcc@12.3.0 build_system=autotools arch=

linux-ubuntu23.04-ivybridge
[+] ^coinutils@2.11.9%gcc@12.3.0 build_system=autotools

arch=linux-ubuntu23.04-ivybridge
[+] ^osi@0.108.8%gcc@12.3.0 build_system=autotools arch=

linux-ubuntu23.04-ivybridge
[+] ^pkgconf@1.9.5%gcc@12.3.0 build_system=autotools

arch=linux-ubuntu23.04-ivybridge

Several High-Performance Computing platforms restrict Internet access from compute
nodes, making users download all external data on the front-end and then automatically
exporting /home or /scratch directories to compute nodes via NFS (Network File
System). At the same time, many of these platforms also limit user process duration on
the front-end. These two policies, however, can disturb the use of package managers as
Spack, since even the building of a single package can demand the download and long
compilation of several dependencies. To handle this scenario, one can rely on spack
fetch to download not only the target package but also its dependencies. For example,
to fetch the default llvm release and all its missing dependencies (i.e., those that are not
yet installed), we run:

SH

spack fetch --dependencies --missing llvm

After fetching the package and its dependencies on the front-end, the user can log into
the compute nodes and proceed the installation with spack install using the cached
files available in NFS home directory.

When removing a package, it is possible to remove only the package or include all its
dependents, i.e., any package that depends on the one being removed. For example, to
remove zlib and its dependents:

SH

spack uninstall --dependents zlib

4.2.3. External packages

In terms of reproducibility, ideally, the entire software stack should be managed by Spack.
However, many production HPC platforms provide customized or third-party MPI, accel-
erator, compiler, or linear algebra libraries. To take advantage of these optimizations,
one can rely on spack external commands that will incorporate these package and
their respective paths into the Spack structure. For example, to add a system installed
openmpi:

SH

spack external find openmpi

STDOUT

==> The following specs have been detected on this system and
added to /home/user/.spack/packages.yaml

-- no arch / gcc@11.4.0

openmpi@4.1.2

After this, one can use the discovered package (i.e., openmpi@4.1.2) as a usual de-
pendency to build other packages:

SH

spack install hwloc^openmpi@4.1.2

4.2.4. Using a package

After installing a package, Spack provides two ways to use it. The simpler one is spack
load which will load and update the PATH and MANPATH environment variables with
the install paths of the package and its dependencies. For example, one can load the
unrar package and then use the homonymous command.

SH

spack load unrar

Another option is to use spack view to create a new directory populated with links
to mimic the traditional UNIX tree structure, i.e., bin/, lib/, include/. Users can
choose between symbolic or hard links. This is more powerful than spack load en-
abling not only the execution but also development using the installed packages as third-
party libraries. For example, to create such structure using soft links for openblas and
its dependencies, and then compile and execute an application:

SH

1 spack view soft blas-dir openblas
2 gcc blas-example.c -Lblas-dir/lib -Iblas-dir/include -lopenblas

-o ex-openblas
3 LD_LIBRARY_PATH=blas-dir/lib ./ex-openblas

4.2.5. Sharing configs

Users can share their stack of installed packages by creating a spack.yaml file. This
file can be later used to rebuild and deploy the setup in another moment and machine in
a reproducible way. Each spack.yaml is associated with an environment, so we start
with spack env create and activate. Once the environment is ready, we can
add the desired packages. At this point, these packages are not installed, they just are
included in the spack.yaml file. To effectively install them, we need to explicitly run
spack install.

SH

spack env create --dir spack-env-wscad-2023
spack env activate spack-env-wscad-2023
spack add zlib@1.2.3
spack add nano@4.7
spack add vim features=tiny ^ncurses@6.1
spack install
spack env deactivate

The spack.yaml file contains abstract information about the packages explicitly added
to the environment. This information is flexible since it does not contain details such
as implicit dependencies, compiler, or the target platform. The concrete information, as
returned by spack spec, is stored in another file named spack.lock. Such file
allows a faithful reproduction but works only on a very similar platform, i.e., same OS
version (e.g., ubuntu22.04) and same CPU family (intel.ivybridge).

YAML

1 # This is a Spack Environment file.
2 #
3 # It describes a set of packages to be installed, along with
4 # configuration settings.
5 spack:
6 # add package specs to the `specs` list
7 specs: [zlib@1.2.3, nano@4.7, vim features=tiny ^ncurses@6.1]
8 view: true

Both files can be shared and later imported in another machine with spack env create.
For example, to import on a very similar machine:

SH

machine with same arch, OS, compiler
spack env create foo spack.lock

Otherwise:

SH

on every machine
spack env create foo spack.yaml

4.2.6. Preparing a new package

Spack packages are written in Python. Creating a new package boils down to creating a
package.py file containing basic package information, such as description, download
URL, versions, maintainers, dependencies, and build system. The command create
provides templates for common general-purpose build systems such as autotools,
meson, and cmake. There is also some support for language-specific packages, e.g.,
R, Python, and Ruby. As an example, a draft package for the pajeng tool1, which is
built using CMake, can be obtained with:

SH

spack create --name pajeng --template cmake "https://github.com/
schnorr/pajeng/archive/1.3.6.tar.gz"

This command will prepare a directory for the new package pajeng in the default spack
tree. This directory contains at least the package.py file but can also store patch and
test files.

In the code listing below, source code lines 4 to 8 describe basic information as descrip-
tion and homepage of pajeng; this information will be displayed by spack info.
Line 10 lists the github username of package maintainers while lines 12 to 16 define two
versions to install pajeng: release 1.3.6 and from the git repository. The parameter
preferred sets the first one as preferential, i.e., the one that will be installed if no ver-
sion is provided in spack install. The last three lines (18 to 20) declare the required
dependencies to build pajeng. Such dependencies should also be Spack packages and,
if needed, will be automatically installed by Spack.

1<https://github.com/schnorr/pajeng>

https://github.com/schnorr/pajeng

PYTHON

1 from spack import *
2
3 class Pajeng(CMakePackage):
4 """PajeNG is a re-implementation of the well-known Paje

visualization tool for the analysis of execution traces."""
5
6 homepage = "https://github.com/schnorr/pajeng"
7 git = "https://github.com/schnorr/pajeng.git"
8 url = "https://github.com/schnorr/pajeng/archive/1.3.6.tar.gz"
9

10 maintainers = ['viniciusvgp', 'schnorr']
11
12 version('1.3.6',
13 sha256 = '1a2722bfaeb0c6437fb9e8efc2592edbf14ba01172f9

7e01c7839ffea8b9d0b3',
14 preferred = True)
15 version('develop',
16 git = 'https://github.com/schnorr/pajeng.git')
17
18 depends_on('boost')
19 depends_on('flex')
20 depends_on('bison')

From this point, it is now possible to run spack install pajeng. Editions in pack-
ages’ receipts, both user-created or existing ones, are possible through spack edit.
For example, to look up for other releases from the base URL and update the package file,
one can use checksum:

SH

spack checksum --add-to-package pajeng

The result is a list of several lines containing all available releases with the respective
sha256 sum. Such lines can now be appended to our initial package definition.

PYTHON

version('1.3.6',
sha256 = '1a2722bfaeb0c6437fb9e8efc2592edbf14ba01172f97e01c783

9ffea8b9d0b3')
version('1.3.5',
sha256 = 'ea8ca02484de4091dcf57289724876ec17dd98e3a032dc609b7e

a020ca2629eb')
version('1.3.4',
sha256 = '284e9a590a2861251e808542663bf1b77bc2c99650a1fbf945cd

5bab65402f9e')
version('1.3.3',
sha256 = '42cf44003d238fd5c4ab512bdeb445fc12f7e3bd3f0526b389f0

80c84b83b19f')
version('1.3.2',
sha256 = '97154415a22f9b7f83516e988ea664b3990377d69fca859275ca

48d7bfad0932')
version('1.3.1',
sha256 = '4bc3764aaa7e79da9a81f40c0593b646007b689e4ac20886d06f

271ce0fa0a60')
version('1.3',
sha256 = '781b8be935e10b65470207f4f179bb1196aa6740547f9f1af0cb

1c0193f11c6f')
version('1.1',
sha256 = '986d03e6deed20a3b9d0e076b1be9053c1bc86c8b41ca36cce3b

a3b22dc6abca')
version('1.0',
sha256 = '4d98d1a78669290d0a2e6bfe07a1eb4ab96bd05e5ef78da96d2c

3cf03b023aa0')

Software evolves over time; new versions include new build options or dependencies
and deprecate old ones, resulting in specific dependencies among different versions. For
example, older versions of pajeng require qt versions 4.x while the version under
development needs fmt library. To handle these cases, we can add new dependencies
that are restricted to some versions:

PYTHON

depends_on('qt@:4.999+opengl', when='@:1.3.2')
depends_on('freeglut', when='@:1.3.2')
depends_on('fmt', when='@develop')

Note that we use the Python colon (:) syntax to deal with ranges of versions, e.g.,
depends_on(’qt@:4.999+opengl’, when=’@:1.3.2’) means pajeng up
to version 1.3.2 depends on qt library up to version 4.99 with opengl variant en-
abled.

Packages usually have some build options allowing users to enable or disable features,
e.g., passing cmake or configure parameters. To illustrate this capability, we add

package variants to enable static linking, documentation, and to disable the building of
libpaje and auxiliary tools:

PYTHON

variant('static',
default = False,
description = "Build as static library")

variant('doc',
default = False,
description = "The Paje Trace File documentation")

variant('lib',
default = True,
description = "Build libpaje")

variant('tools',
default = True,
description = "Build auxiliary tools")

def cmake_args(self):
args = [

self.define_from_variant('STATIC_LINKING', 'static'),
self.define_from_variant('PAJE_DOC', 'doc'),
self.define_from_variant('PAJE_LIBRARY', 'lib'),
self.define_from_variant('PAJE_TOOLS', 'tools')

]
return args

Note the use of the default parameter to set or unset variants by default. To be-
come effective, the new variants must be transposed to the build options expected by
the package building system during compilation and install. Since pajeng is built with
cmake, we have to override the cmake_argsmethod to write the proper variables (e.g.,
PAJE_DOC).

The addition of variants and version-specific dependencies introduces a new issue, e.g.,
incompatible options. The only solution in such cases is to prevent the installation and
tell the user the reason. For example, previously, we defined two variants for pajeng: lib
and tools. While requiring the installation of pajeng+lib~tools is completely
valid, the contrary, i.e., pajeng~lib+tools, is inconsistent since building the aux-
iliary tools (+tools) depends on building the library (that was disabled with ~lib).
Besides handling contradictory package options, the same feature is useful for dealing
with known bugs or declaring incompatibilities with a given compiler or dependency.

PYTHON

conflicts('+tools',
when = '~lib',
msg = "Enable libpaje to compile tools.")

4.2.7. Publishing a new package

There are two ways to make a new Spack package public. The first one, and the more com-
prehensive, is submit it to the official repository. At the time this chapter was written, this
repository stores more than 7000 packages. Submissions of new packages can be done
with pull requests. Once the package passes by the automated tests, it will be available
for installation by any user. A complete version of the pajeng package, following the
steps listed in this chapter, was submitted to the Spack official repository and be found at
https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/pajeng/.

The second approach to publishing a new package is through the creation of additional
public or private repositories. Such repositories can be created with spack repo create
and later shared with other users who can add them to their local instances by running
spack repo add. Additional repositories are useful for software whose access is re-
stricted or for Spack packages in development that are not yet mature enough to be com-
mitted to the official repository. Some institutions maintain external and public Spack
repositories to publicize and facilitate the installation of software developed by them. An-
other use case for additional repositories is when it is necessary to override a package
from the official repository for some reason.

4.3. Part II – Guix
Guix (COURTÈS; WURMUS, 2015; GNU, 2023a; GNU, 2023b) provides user-space
commands to automate package builds with a strong focus on reproducibility. The build-
ing process executes in a controlled environment to isolate details about host and user con-
figuration. Guix follows Nix (DOLSTRA; JONGE; VISSER, 2004) strategy and makes
the build be executed by a daemon on a Linux kernel container. This way, all pack-
age builds execute with a dedicated Guix user and with a restricted set of environment
variables containing only explicitly declared dependencies. Built packages reside on a
system-wide directory (e.g., /gnu/store/) and can be shared among different users.
Each install is identified by a hash computed using package source code, compiler, li-
braries, scripts, and dependencies. When a user requests a package install that matches
an existing hash, the build is skipped, and Guix only links the files on the user directory,
avoiding duplicated builds. Figure 4.2 shows the DAG for Openblas at Guix.

openblas@0.3.20

cunit@2.1-3

gfortran@11.3.0

perl@5.36.0

automake@1.16.5

autoconf@2.69

libtool@2.4.7

zlib@1.2.13

texinfo@6.8

isl@0.24

libstdc++-headers@11.3.0

gmp@6.2.1

mpfr@4.2.0

mpc@1.3.1

elfutils@0.187

autoconf-wrapper@2.69

bash-minimal@5.1.16 m4@1.4.19

libltdl@2.4.7 help2man@1.49.2

guile@3.0.9

pkg-config@0.29.2

libffi@3.4.4libunistring@1.0 libgc@8.2.2

gettext-minimal@0.21perl-gettext@1.07

libxml2@2.9.14

ncurses@6.2.20210619 xz@5.2.8

libstdc++@11.3.0

Figure 4.2. Dependency graph of OpenBLAS at Guix

https://github.com/spack/spack/blob/8089aedde11bc2aa0ae5bd478bde01b0960ccbd2/var/spack/repos/builtin/packages/pajeng/package.py

4.3.1. Installation

Unlike Spack, Guix requires administrator rights to be installed. On a Debian-like Linux,
one can run2:

SH

sudo apt install guix

From this command, all package install and administration directives can run entirely in
user space. Alternatively, in systems where the guix daemon itself is not installed and the
install cannot be requested, guix pack can be used with some limitations (see Section
4.3.4). Before executing install commands, Guix recommends that every user runs some
bootstrap configuration for locales:

SH

guix install glibc-locales
export GUIX_LOCPATH="$HOME/.guix-profile/lib/locale"
GUIX_PROFILE="$HOME/.guix-profile" source "GUIX_PROFILE/etc/

profile"

4.3.2. Installing packages

The first step when installing a new package is to check the list of all available packages
with guix package --list-available. At the time this chapter was written,
it reported more than 25000 packages. Since the database of packages is huge, a better
option is to search using a pattern. For example, to get a filtered list of all packages
starting with "ascii" in their synopsis or description fields, one can run:

SH

guix package --search="^ascii*"

Or to restrict the search to the package name:

SH

guix package --list-available="^ascii"

STDOUT

ascii 3.18 out gnu/packages/shellutils.scm:67:2
ascii2binary 2.14 out gnu/packages/textutils.scm:415:2
asciidoc 9.1.0 out gnu/packages/documentation.scm

:110:2
asciinema 2.3.0 out gnu/packages/terminals.scm:226:2

2Commands presented here consider Guix version 1.3.0

Once the exact package name is known, the installation can proceed with:

SH

guix install asciidoc

Option package --list-installed lists all the installed packages with their re-
spective version and path. For example:

SH

guix package --list-installed

STDOUT

glibc-locales 2.35 out /gnu/store/03
v1svhv6wj9pd6awpdi5zn4wd31b23f-glibc-locales-2.35

asciidoc 9.1.0 out /gnu/store/91
h31gnblv2jgqx7majqxa4wvjyr0ax5-asciidoc-9.1.0

Software evolves with time, and maybe you want to check if there are new releases for
installed packages:

SH

guix pull
guix upgrade

You can remove asciidoc package with:

SH

guix remove asciidoc

4.3.3. Using a package

Once a package was installed, you might want to use it to develop another software. Guix
provides guix shell to set-up a proper environment with dependencies and environ-
ment variables. For example, to start a shell to code something using openblas as a
library:

SH

guix shell --development openblas gcc

Another solution is creating a new directory populated with symbolic links to mimic the
traditional UNIX tree structure with bin/, lib/, and include/. For example, to
compile an openblas code:

SH

guix install openblas --profile=$HOME/blas-dir
gcc blas-example.c -Lblas-dir/lib -Iblas-dir/include -lopenblas

-o ex-openblas
LD_LIBRARY_PATH=blas-dir/lib ./ex-openblas

4.3.4. Sharing configs

There are two approaches to exporting a Guix setup to another machine. If both machines
have Guix, the first way is to use the guix archive command that packs a list of
packages into a single file. For example:

SH

on machine A
guix archive --export openblas gcc > foo.nar
on machine B
guix archive --import foo.nar

The second strategy allows to export software to a machine without Guix. The com-
mand guix pack combines a list of packages in a standalone binary tarball that can be
extracted on the other machine with standard user-space commands.

SH

on machine A
guix pack openblas gcc
on machine B
tar xf pack.tar.gz

4.3.5. Preparing a new package

Guix packages, or “package definitions” in guix jargon, are written in GNU Guile, an
implementation of the Scheme language, which itself is a dialect of Lisp. Once again, we
use the pajeng tool to illustrate a package creation:

SCHEME

1 (use-modules
2 (guix packages)
3 (guix download)
4 (guix build-system cmake)
5 (guix licenses)
6 (gnu packages boost)
7 (gnu packages bison)
8 (gnu packages flex)
9)

10 (package
11 (name "pajeng")
12 (version "1.3.6")
13 (source
14 (origin
15 (method url-fetch)
16 (uri
17 (string-append
18 "https://github.com/schnorr/pajeng/archive/refs/tags/"
19 version
20 ".tar.gz"))
21 (sha256
22 (base32
23 "1cyhp6lgx7w3qw0pxybj26h4pwfv5rcw5vz8p5zl7imhmszj49qs"
24))))
25 (build-system cmake-build-system)
26 (arguments
27 ‘(#:tests? #f
28 #:validate-runpath? #f)
29)
30 (inputs (list
31 boost
32 bison
33 flex
34))
35 (synopsis
36 "PajeNG: library and associated tools for Paje trace files")
37 (description
38 "PajeNG is a re-implementation of the well-known Paje
39 visualization tool for the analysis of execution traces.
40 PajeNG comprises the libpaje library, and an auxiliary tool
41 called pj_dump to transform Paje trace files to
42 Comma-Separated Value (CSV). The space-time visualization
43 tool called pajeng had been deprecated (removed from the
44 sources) since modern tools do a better job (see
45 pj_gantt).")
46 (home-page "https://github.com/schnorr/pajeng")
47 (license gpl3))

The first 9 lines load required modules, i.e., the Scheme equivalents of libraries or pack-
ages. Lines 2 to 5 refer to Guix internal modules, while lines 6-9 load pajeng depen-
dencies. The package definition itself starts on line 10 with package name, version, and
tarball download instructions. Lines 23 to 27 specify the cmake building system. We dis-
able tests and validate-runpath phases due to incompatibilities between pajeng building
configurations and Guix expected ones. Lines 28 to 32 declare package dependencies. Fi-
nally, lines 33 to 40 contain package synopsis and description texts, which are presented
to the user in commands as guix show and guix search. The last two lines define
the package home-page and license.

From this point, one can try to build and install the created package with:

SH

1 guix build --file=/path-to-created-file/pajeng.scm
2 guix package

--install-from-file=/path-to-created-file/pajeng.scm

In Guix, working with different version numbers or compilation options requires creating
a new package. Fortunately, it is possible to rely on inheritance to extend from an ex-
isting package. For example, to create a new package for pajeng building from its git
repository (at a given commit):

SCHEME

1 (let ((commit "ca24c95cc5b4e53455058e180f01d5a5febccac6")
2 (revision "1"))
3 (package (inherit pajeng)
4 (name "pajeng")
5 (version (git-version "1.3.6" revision commit))
6 (source
7 (origin
8 (method git-fetch)
9 (uri (git-reference

10 (url (string-append
11 "https://github.com/schnorr/"
12 name))
13 (commit commit)))
14 (sha256
15 (base32
16 "1c1ggfgdl5xxq8jkvf774440j5lyn37n8qll354d4lbqxm81v9av")
17)
18)
19)
20 (inputs (modify-inputs (package-inputs pajeng)
21 (prepend fmt)))
22)
23)

Inheritance is also helpful in building with different compilation options, which again
requires creating a new package:

SCHEME

1 (package (inherit pajeng)
2 (name "pajeng-doc")
3 (build-system cmake-build-system)
4 (arguments
5 '(#:configure-flags '("-DPAJE_DOC=ON")))
6 (inputs (modify-inputs (package-inputs pajeng)
7 (prepend texlive-scheme-basic

ghostscript poppler asciidoc
texlive-titlesec texlive-setspace
texlive-listings
texlive-gsftopk)))

8)

4.3.6. Publishing a new package

Guix provides three ways to make a new package public. The first and simpler one is
just make available the scm file of a package. After obtaining it, one can just run guix
package, passing the file to the option --install-from-file. The scm files
created here for pajeng can be downloaded from:
<https://exp-hpc.gitlab.io/wscad-spack-guix-2023>.

The second option is to create a Guix channel, which is just a Git repository3 containing
one or more scm files providing Guix package definitions. The scm files stored in the
repository should have some slight adjustments from the above examples due to some
Guix idiosyncrasies. The final step is to add the new channel to the Guix user local con-
figuration by including the following lines to ~/.config/guix/channels.scm:

SCHEME

1 (cons
2 (channel
3 (name 'wscad-mc-2023)
4 (url

"https://gitlab.com/exp-hpc/guix-channel-2023-wscad.git"))
5 %default-channels)

The last way is to push the contributions to the official Guix repository directly. One
can checkout https://git.savannah.gnu.org/git/guix.git and commit
the scm file of the new package. This is the recommended method for mature packages
that fully comply with the coding style and contributing rules of Guix.

3with master as the default branch

https://exp-hpc.gitlab.io/wscad-spack-guix-2023

4.4. Conclusion
This short course covered the fundamental basic concepts for managing software pack-
ages at the user level. Facilitating experimental reproducibility, a paramount topic in gen-
eral research activities, we present the Spack and the Guix tools. We hope that the general
goal provided in this short course will cause a positive involvement of new students work-
ing in High-Performance Computing and the importance of keeping track of their software
versions along their experiments. We expect that these tools provide a more rigorous data
collection and observation methods for new researchers. As examples of Spack and Guix
usage, we aggregated the code snippets presented in this text in a companion material
which is available at: <https://exp-hpc.gitlab.io/wscad-spack-guix-2023/>.

Acknowledgments
We would like to thank Jessica Imlau Dagostini which was our coauthor in a first version
of this chapter, prepared in Portuguese, for the Escola Regional de Alto Desempenho 2021
(DAGOSTINI et al., 2021) covering the Spack instructions. We also would like to thank
the developers and the community of Spack and Guix. This work was partly financed
by the Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS – ARD/ARC
14/2022) to the first author.

References
COURTÈS, L.; WURMUS, R. Reproducible and User-Controlled Software
Environments in HPC with Guix. In: Euro-Par 2015: Parallel Processing Workshops.
Cham: Springer International Publishing, 2015. p. 579–591. ISBN 978-3-319-27308-2.

DAGOSTINI, J. I.; PINTO, V. G.; NESI, L. L.; SCHNORR, L. M. Are you root?
Experimentos Reprodutíveis em Espaço de Usuário. In: CHARÃO, A.; SERPA, M.
(Ed.). Minicursos da XXI Escola Regional de Alto Desempenho da Região Sul. Porto
Alegre: Sociedade Brasileira de Computação - SBC, 2021. cap. 3, p. 70–87. ISBN
9786587003504.

DOLSTRA, E.; JONGE, M. de; VISSER, E. Nix: A safe and policy-free system for
software deployment. In: Proceedings of the 18th USENIX Conference on System
Administration. USA: USENIX Association, 2004. (LISA ’04), p. 79–92.

GAMBLIN, T. et al. The Spack package manager: bringing order to HPC software
chaos. In: SC ’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. [S.l.: s.n.], 2015. p. 1–12.

GNU. GNU Guix Cookbook. 2023. Disponível em: <https://guix.gnu.org/cookbook/en/
guix-cookbook.html>.

GNU. GNU Guix Reference Manual. 2023. Disponível em: <https://guix.gnu.org/
manual/en/html_node/index.html>.

https://exp-hpc.gitlab.io/wscad-spack-guix-2023/
https://guix.gnu.org/cookbook/en/guix-cookbook.html
https://guix.gnu.org/cookbook/en/guix-cookbook.html
https://guix.gnu.org/manual/en/html_node/index.html
https://guix.gnu.org/manual/en/html_node/index.html

	Introduction
	Part I – Spack
	Installation
	Installing packages
	External packages
	Using a package
	Sharing configs
	Preparing a new package
	Publishing a new package

	Part II – Guix
	Installation
	Installing packages
	Using a package
	Sharing configs
	Preparing a new package
	Publishing a new package

	Conclusion

