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Abstract

Programmable Network Interface Cards (SmartNICs) have gained increasing momentum
due to their flexibility to offload complex networking tasks from the host CPU to a pro-
grammable hardware architecture. Despite the performance gains (e.g., lower latency),
programming, debugging, and operating SmartNICs pose challenges due to diverse hard-
ware architectures (e.g., System-on-Chip, FPGA, and ASIC), various programming lan-
guages, and operation modes. This tutorial aims to shed light on the design principles and
operation of modern SmartNICs, covering hardware architectures, programming soft-
ware ecosystem, performance capabilities and open research challenges in this evolving
domain, The tutorial concludes with a hands-on experience involving cutting-edge Smart-
NICs such as Nvidia BlueField, Mellanox ConnectX, and Netronome NFP.

Resumo

As placas de rede programáveis (SmartNICs) têm recebido crescente visibilidade devido
à sua flexibilidade para descarregar tarefas de rede complexas da CPU do host para uma
arquitetura de hardware programável. Apesar dos ganhos de desempenho (por exemplo,
menor latência), a programação, depuração e operação das SmartNICs apresentam de-
safios devido a diversas arquiteturas de hardware (por exemplo, System-on-Chip, FPGA
e ASIC), várias linguagens de programação e modos de operação. Este tutorial tem como
objetivo esclarecer os princípios de projeto e operação de aplicações em SmartNICs mo-
dernas, abrangendo arquiteturas de hardware, ecossistema de software de programação,
capacidades de desempenho e desafios de pesquisa abertos neste domínio em evolução. O
tutorial conclui com uma experiência prática envolvendo SmartNICs atuais, como Nvidia
BlueField, Mellanox ConnectX e Netronome NFP.
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2.1. Introduction and Motivation
The ability to program the network data plane has reshaped the network operations and
management landscape, opening up a multitude of opportunities for delivering custom-
made networking solutions [Kianpisheh and Taleb 2023]. By running home-brewed net-
working solutions within network programmable devices, network operators and practi-
tioners have an opportunity to close the management control loop and instrument per-
packet processing decisions, at line rate, in the order of nanoseconds.

Recently, there has been an increasing interest from both academy and indus-
try towards programmable NICs (Network Interface Cards), commonly referred to as
SmartNICs1. For instance, Nvidia (BlueFlied model), Netronome (Agilio model), In-
tel (IPU model), AMD (Pensando), Xilinx (Alveo models), and others are already bat-
tling for shares of this new market. These devices are gaining attention due to their abil-
ity to efficiently offload from the host CPU to the SmartNIC hardware a wide range of
intricate networking tasks, as well as tasks unrelated to networking – promising high-
performance packet processing while reducing the total cost of ownership. Examples of
offload tasks include in-network caching [He et al. 2023] and in-network machine learn-
ing [Saquetti et al. 2021, Swamy et al. 2022] – just to name a few examples.

The term SmartNIC appeared first in the 1990s, when NICs were mostly used
to connect computers to networks [Ponomarev and Ghose 1998]. They performed ba-
sic tasks like packet reception, transmission, and simple processing, such as checksum
offloading. However, NIC offloading has since evolved to include more advanced and
specialized capabilities that are necessary to meet the demands of modern networking en-
vironments. This is due to the increasing need for improved performance, efficiency, and
scalability. For example, in the 2000s, NICs were developed with a TCP Offload Engine.
Later, in the 2010s, NICs evolved to support virtualization requirements such as VLAN
and RSS. Nowadays, NICs (or SmartNICs) support a long list of embedded functions,
including advanced features such as RoCE (RDMA over Converged Ethernet), stateful
connection tracking, or even storage acceleration [Xilinx 2024].

Despite the constant evolution of NICs, they only become “Smart” as networking
vendors add some level of programmability to them. There are different levels of Smart-
NICs programmability. Some vendors allow rewriting the whole hardware description
(e.g., FPGA-based SmartNICs), while others allow offloading only specific networking
tasks to computing units (e.g., SoC-based SmartNICs). To support such a level of pro-
grammability, SmartNICs often rely on a wide variety of hardware platforms and pro-
gramming languages (e.g., P4, Micro-C, VHDL/Verilog). Nevertheless, programming,
debugging, and operating SmartNICs remain a challenging task.

Differently from programmable switches architectures (e.g., Tofino TNA architec-
ture [Intel 2021]), SmartNICs usually follow a run-to-completion model where network
packets are assigned to computing units without preemption [Guo et al. 2023]. Therefore,
in multi-core SmartNICs, network packet processing may experience variable latency de-

1SmartNICs are also commonly touted as DPU (Data Processing Unit) or IPU (Infrastructure Processing
Unit). Despite some attempts – mostly driven by marketing – to provide technical differences between a
SmartNIC, DPU, and IPU, a well-accepted understanding is lacking. Therefore, and considering the scope
and objectives of this book chapter, we use these terms interchangeably.
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pending on the program structure, such as the number of Match/Action tables. That is not
the case, for instance, in TNA architectures where resource constraints are a first-order
concern, and performance guarantees come for free as long as the program fits inside the
device.

To shed light on the design of emerging in-network solutions, this chapter intro-
duces essential principles related to the design and operation of state-of-the-art Smart-
NICs. We cover and discuss different hardware architectures and the available program-
ming software ecosystem. Then, we dive into the performance limitations of existing
SmartNICs and discuss tailored networking applications for them. Finally, we present a
hands-on tutorial with selected state-of-the-art SmartNICs (Nvidia BlueField, Mellanox
ConnectX, and Netronome NFP).

2.2. Fundamentals of SmartNICs
This section provides a solid background on SmartNICs and on the Portable NIC Ar-
chitecture (PNA) [(PNA) 2023]. We start with a broad overview of the network packet
processing pipeline in existing NICs. Then, we will cover the state-of-the-art SmartNIC
architectures: (i) Nvidia Bluefield, (ii) Xilinx Alveo, and (iii) Netronome NFP-4000.

As previously mentioned, NICs have evolved to support network speeds that go
beyond 100 Gbps, while incorporating programmable units. The hardware architecture
necessary for achieving high-speed network packet processing requires a high degree of
parallelism to achieve performance scalability in NIC programs. To address this, current
programmable NICs rely on multiple hardware architectures including (i) ASIC (e.g.,
Netronome NFP); (ii) System-on-Chip (e.g., Nvidia BlueField); and (iii) FPGA (e.g.,
Xilinx Alveo). Our discussion in this section will focus on the referred architectures,
which play a central role in many academic studies [Liu et al. 2019, Min et al. 2021,
Schuh et al. 2021, Wei et al. 2023a].

SmartNICs typically employ an alternative processing approach in comparison
to an ASIC switch (e.g., Tofino), wherein a packet is directed to a specific processing
engine following a run-to-completion model. In this model, a packet is assigned to a
processor (or specific hardware) which executes all the instructions required for pro-
cessing the packet. For example, Nvidia BlueField adopts a “disaggregated RMT” ar-
chitecture [Chole et al. 2017]. In this design, a group of ASIC packet engines handles
header computation and retrieves Match/Action (MA) entries from SRAM via a mem-
ory bus. In contrast, Netronome Agilio utilizes a collection of SoC-based CPU cores for
packet processing, with corresponding entries situated in a more distant memory hier-
archy [Xing et al. 2023]. In the case of multicore SmartNICs, packet latency can vary
based on the program structure, including factors such as the number of Match/Action
tables and their match types. Additionally, packets following distinct execution paths
within the same program may encounter varying levels of latency. Despite that, the run-
to-completion model is more flexible in the sequence of actions executed on the packet
because a processor is not limited in the sequence of actions. This is not the case, for
instance, in an RMT pipeline model (e.g., Tofino TNA architecture [Intel 2021]), where
the sequence and number of used stages limit the programability.
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Figure 2.1. Overview of different SmartNIC architectures. Adapted from [Wei et al. 2023b].

2.3. SmartNIC Architectures
In this section, we discuss the main SmartNIC architectures in use on commercial pro-
grammable NICs. We start discussing general architectural designs: on-path and off-
path. Then, we deep dive into System-on-Chip (SoC), Field Programmable Gate Ar-
rays (FPGA), Application-Specific Integrated Circuit (ASIC), and hybrid architectures.

2.3.1. On/Off-Path Designs

SmartNICs can be categorized in on-path and off-path [Wei et al. 2023b]. On-path Smart-
NICs expose the NIC cores to the system with low-level programmable interfaces. In this
design, the offloaded code is on the critical path of the packet processing pipeline and
competes for the NIC resources. Therefore, if offloading too much computation, the NIC
might suffer performance degradation. Also, NIC’s core has direct access to memory
subsystems such as DRAM or caching. Figure 2.1 illustrates the On-path design.

In turn, on off-path designs, NICs are equipped with additional computing cores
and memory in a separate SoC, sitting next to the NIC cores. In this design, the of-
floaded code is off the critical path of the packet processing pipeline. In this case, the
offloaded computation does not affect packet processing performance as long as it does
not involve networking communication. Figure 2.1 illustrates the off-path design. Ob-
serve the computing cores are sitting next to NIC cores, interconnected by an internal
PCIe interconnection.

2.3.2. Representative SmartNICs Architectures

2.3.2.1. SoC-based Designs

SoC architecture refers to a microchip that integrates most or all components of a com-
puter or other electronic system into a single integrated circuit. These components typ-
ically include a central processing unit (CPU), memory, input/output ports, and various
peripheral interfaces such as USB, HDMI, and Ethernet. In the context of SmartNICs,
SoC architectures have been used to allow network programmability inside the NIC.
Netorking-based SoC is usually composed of multiple CPUs (e.g., ARM cores), inte-
grated with high-speed RAM, and fixed-function accelerators (e.g., encryption and regex
engines). On top of the architecture, there is usually a running Operating System that
manages NIC resources. In other words, a SoC SmartNIC can be seen as an individual
computing node inside the server.
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Figure 2.2. Overview of NVIDIA BlueField Architecture. Adapted from [NVIDIA 2024].

One representative SoC-based architecture is the Nvidia BlueField. Figure 2.2
illustrates the 100Gbit Nvidia BlueField-2 architecture. This SmartNIC has eight ARM
cores interconnected in a mesh. ARM cores have direct access to DDR4 memory and
specific networking accelerators (e.g., regular expression, SHA-2). That allows, for in-
stance, to process packet payloads in hardware using the regular expression engine. One
of the fundamental building blocks of this architecture is the eSwitch subsystem. Network
packets are received from the Ethernet/Infiniband physical ports. Then, these network
packets are processed by the eSwitch Flow Steering subsystem, which can be seen as a
programmable switch inside the NIC (e.g., to Open vSwitch[Pfaff et al. 2015]). As such,
it allows programming how network packets are steered from/to physical network ports,
as well as to steer them to networking applications running on top of the ARM cores, or
even send them via PCIe to the host CPU.

As there is an Operating System in the SoC-based SmartNIC, programmers can
run any application inside it (ranging from high-performance DPDK-based applications
to C-alike sockets). However, to get the best performance out of the architecture, each
networking vendors provide a programming suite (e.g. DOCA framework) to better use
the available resources (as we later explore in detail in Section 2.7). Therefore, different
from a programmable switch (e.g., Tofino and its TNA architecture), SoC-based Smart-
NIC performance can vary depending on the running networking application. As there
is no upper bound on the number of instructions each packet can be submitted to, the
line rate (and the latency) can be compromised depending on how intense is the packet
processing.
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Figure 2.3. Overview of OpenNIC architecture. Adapted from [OpenNIC 2024].

2.3.2.2. FPGA-based Designs

An FPGA is an integrated circuit that allows users to configure it after manufacturing.
Unlike conventional integrated circuits, which have fixed functionalities, FPGAs consist
of programmable logic blocks and interconnects that can be customized to implement
various digital circuits. By loading a configuration file onto the chip, users can specify
how the logic blocks should be interconnected and what functions they should perform.
This flexibility makes FPGAs suitable for prototyping, fast development, and applications
requiring hardware reconfiguration or customization.

In the context of SmartNICs, there are a few vendors that provide FPGA-based
SmartNIC (e.g. Xilinx). FPGA SmartNIC provides flexibility to prototype anything di-
rectly in hardware. However, the programmer needs to write the whole NIC hardware
description (usually using High-Level Synthesis languages), and the operating system
drivers. The NIC hardware is usually composed of many components (e.g., DMA sub-
systems, multiple RX/TX queues, Ethernet MAC subsystems, schedulers, etc). As one
can observe, writing an FPGA hardware description might become a hard task to be done.
Fortunately, the Open-Source community provides a reference FPGA NIC implementa-
tion called the OpenNIC project2.

The OpenNIC project offers an FPGA-based NIC platform tailored for the open-
source community. This platform comprises various components: a NIC shell, a Linux
kernel driver, and a DPDK driver. The NIC shell encompasses RTL sources and design
files, optimized for deployment on numerous boards featuring UltraScale+ FPGAs. It
furnishes a NIC implementation supporting up to four PCI-e physical functions (PFs) and
two 100Gbps Ethernet ports. The shell features well-defined data and control interfaces,
facilitating seamless integration of user logic. Figure 2.3 illustrates the basic components
of OpenNIC project.

2.3.2.3. ASIC-based Designs

ASIC-based SmartNICs utilize customized fixed-function processors (or integrated cir-
cuits) to process packets. One representative ASIC-based architecture is the Netronome

2https://github.com/Xilinx/open-nic
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NFP4000. The architecture of the Netronome NFP4000 SmartNIC is depicted in Fig-
ure 2.4, with its flow processing cores (FPC) organized into multiple islands.

Each FPC operates as a 32-bit machine, with all internal registers and local mem-
ory consisting of 32-bit words. Within each FPC, there are eight Micro Engines (MEs),
each functioning as a separate processor with its own instruction store (code) and local
memory (data). Consequently, each ME can execute in parallel with all other MEs. With
8 threads per ME, cooperative multithreading is enabled, allowing at most one thread to
execute code from the same program concurrently. Thus, each FPC can accommodate
up to 8 parallel threads, running at a frequency of 1.2GHz (one thread per ME). FPCs
adhere to a Harvard Architecture, where code and data are stored in separate memories:
4K bytes are shared between threads for data and private memory, while 8K instructions
are reserved for the code store.

The local memory within each FPC consists of 32-bit registers shared among all 8
threads, categorized into: (i) general-purpose registers (256 registers of 32 bits each), (ii)
transfer registers (512 registers of 32 bits each) for interconnection bus operations, (iii)
next-neighbor registers (128 registers of 32 bits each) mainly for communication with
neighboring FPCs, and (iv) local memory (1024 registers of 32 bits each), slightly slower
than general registers with a 3-cycle access time. When local FPC registers cannot ac-
commodate the required memory, variables are automatically and statically allocated to
other in-chip memory hierarchies.

In addition to local memory, FPCs have access to four other types of memory:
Cluster Local Scratch (CLS) memory (20-50 cycles), Cluster Target Memory (CTM) (50-
100 cycles), Internal Memory (IMEM) (120-250 cycles), and External Memory (EMEM) (150-
590 cycles). Each memory type serves specific purposes, ranging from storing frequently
used data to managing packet headers and accommodating large shared tables.

Incoming packets from the network are picked up by an FPC thread from the Dis-
tributed Switch Fabric and processed accordingly, thereby constituting an on-path Smart-
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NIC operation. For instance, the SmartNIC NFP-4000 supports up to 60 FPCs, with each
FPC capable of handling up to 8 threads, enabling the device to process up to 480 packets
simultaneously.

2.3.3. Hybrid Designs

In addition to the aforementioned SmartNIC architectures, there are still hybrid architec-
tures made of a combination of existing architectures. The most popular combination is
the SoC + FPGA architecture. These architectures provide the hardware expressiveness
of FPGAs, combined with the flexibility of using ARM cores in the SoC. Note, however,
that other architectural combinations also exist such as SoC + ASIC.

Figure 2.5 illustrates the architecture of Xilinx SN1000. As one can observe,
the physical ports (QSFP28) are directly interconnected with the FPGA board (XCU26).
The FPGA is directly connected to memory multiple subsystems and to the SoC subsys-
tem (LX216A). The SoC in this architecture is composed of 16 ARM cores which also
access to private memory subsystem.

2.3.4. Portable NIC Architecture (PNA)

Over the last years, the P4 (Programming Protocol-independent Packet Processors) lan-
guage [Bosshart et al. 2014a] has been mainly used to program programmable switches.
A P4 is an open source, domain-specific programming language for network devices,
specifying how data plane devices process packets. The data plane architecture describes
the structure and capabilities of the data plane device and exposes architecture-dependent
functions to a P4 program [(PNA) 2023] (e.g., hashing functions). The P4 architec-
tural reference (i.e., V1model3) reflects the pipeline nature of existent packet processing
switches. However, with the emergence of other programmable network devices such as

3P4 reference model: https://github.com/p4lang/p4c/blob/main/p4include/
v1model.p4
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Figure 2.6. Overview of packet paths in the PNA architecture. Adapted from [(PNA) 2023].

SmartNICs, there is a need to adapt that architectural reference to fit existing new require-
ments/constraints.

In this context, the Portable NIC Architecture is a design framework aimed at
encapsulating the fundamental characteristics of a wide array of Network Interface Con-
troller (NIC) devices [(PNA) 2023]. It constitutes a P4 architecture delineating the orga-
nization and shared functionalities inherent to NIC devices. PNA consists of two primary
elements:

1. A configurable pipeline engineered to accommodate diverse packet pathways travers-
ing between different ports on the device, such as network interfaces or the host
system to which it connects.

2. A library of types (e.g., intrinsic and standard metadata) and P416 externs (e.g.,
counters, meters, and registers).

The PNA Model incorporates four programmable P4 blocks and several fixed-
function blocks, depicted in Figure 2.6. The operational characteristics of the programmable
blocks are specified using the P4 language [Bosshart et al. 2014b]. Conversely, the net-
work ports, packet queues, and potentially present inline extern blocks are categorized as
fixed-function blocks, subject to configuration by the control plane, albeit not intended
for programming via P4.

2.3.4.1. PNA Overview

As illustrated in Figure 2.6, network packets can have multiple paths in the context of
a NIC. Different from a traditional switch-based P4 architecture (e.g., V1model, TNA,
etc), where packets are coming/going to physical ports, in the PNA architecture packets
can come from physical network ports, as well as to/from host interfaces. In the context
of PNA architecture, these paths are referred to as (i) Net-to-Host, (ii) Host-to-Net, (iii)
Net-to-Net, and (iv) Host-to-Host paths.
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Packets arriving from a network port go through a MainParser and a PreControl
building blocks. The MainParser, similar to other P4 architectures, is intended to parser
network packets according to packet headers. For instance, a (Ethernet + IP + TCP) packet
is going to be parsed according to the definitions of these three protocols. At the end of
the parser process, the header fields of these protocols are stored in data structures that
are available throughout the whole packet processing pipeline. Then, in the PreControl
block, packets can optionally perform table lookups. Its purpose is to determine whether a
packet requires processing by the net-to-host inline extern block. An example of an inline
extern block that packets might be submitted to in the Net-to-Host path is the decryption
of packet payloads according to the IPsec protocol. The PreControl code might drop the
packet if the packet had an IPsec header, but one or more P4 table lookups determined
that the packet does not belong to any security association that had been established by
the control plane.

The MainControl is typically where the code would be written for processing
packets. It transforms headers, updates stateful elements like counters, meters, and reg-
isters, and optionally associates additional user-defined metadata with the packet. The
MainDeparser serializes the headers back into a packet that can be sent onward. After
the MainDeparser, the packet may either: proceed to the message processing part of the
NIC, and then typically on to the host system, or turn around and head back towards
the network ports. This enables on-NIC processing of port-to-port packets without ever
traversing the host system.

While the primary programmable blocks focus on handling individual network
packets, typically limited to a single network maximum transmission unit (MTU) in size,
the message processing block assumes the responsibility of facilitating the conversion be-
tween large messages stored in host memory and network-sized packets for transmission
across the network. Moreover, it manages interactions with one or more host operating
systems, drivers, and/or message descriptor formats residing in host memory.

For instance, when converting large messages to network packets in the host-
to-network direction, the message processing block orchestrates functionalities such as
Large Send Offload (LSO), TCP Segmentation Offload (TSO), and Remote Direct Mem-
ory Access (RDMA) over Converged Ethernet (RoCE). Conversely, in the network-to-
host direction, it aids in features such as Large Receive Offload (LRO) and RoCE.

2.3.4.2. Differences from P416 language

Although the PNA architecture relies on the P416 language definition, some new features
are still not defined in the base P4 language. In particular, there are mach-action table
properties that are not included in the base P416 language specification.

The add_on_miss table property is defined by the PNA. When this property is
set to true for a table, P4 developers can specify a default action for the table, which
invokes the add_entry extern function. This function adds a new entry to the table, where
the default action involves calling the add_entry function. The newly added entry will
possess the identical key that was recently queried. That allows to create, for instance,
self-contained data plane applications that do not depend on the control plane. The control
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plane API would still be able to add, change, and remove entries from the mentioned
table. However, entries added through the add_entry function operate independently of
the control plane software.

Another table property envisaged in the PNA architecture is the table entry timeout
notification. PNA utilizes the pna_idle_timeout parameter to allow a table implementation
in sending notifications from the PNA device. These notifications are triggered when a
configurable duration has elapsed since an entry was last matched.

2.3.4.3. Existing efforts to make PNA usable

Despite the growing involvement of the Open-Source community to make PNA a stan-
dard architecture for SmartNICs, little is still possible to be done using PNA to program
SmartNICs. To date, the only P4 backend compiler that adheres to the PNA architecture is
the p4c-dpdk4. The p4c-dpdk backend translates the P4-16 programs to DPDK API
to configure the DPDK software switch (SWX) pipeline. DPDK introduced the SWX
pipeline in the DPDK 20.11 LTS release. Each pipeline is created using a specification
file that can either be manually developed or generated using a P4 compiler.

Therefore, one can write P4-based PNA code, compile it to DPDK, and run it
either on SmartNICs (e.g., SoC-based ones) or in the host system using DPDK-enabled
NIC interfaces using the DPDK pipeline application. For more information, please refer
to the official DPDK documentation [DPDK 2024].

2.4. SmartNIC Software & Hardware Ecosystem
In this section, we provide an overview of SmartNICs from the vendor’s perspective.
We discuss the available SmartNIC models considering the existing architectures, the
programming suite available, and existing hardware requirements and specifications.

2.4.1. Brief Historical Perspective

The emergence of the SmartNIC term dates back to the 90s [Ponomarev and Ghose 1998].
However, at that time, NICs were primarily responsible for interfacing a computer with a
network. They handled basic functions such as packet reception, transmission, and some
basic processing tasks like checksum offloading.

NIC offloading has evolved from basic functionality to more advanced and spe-
cialized offloading capabilities, driven by the increasing demands of modern networking
environments and the need for improved performance, efficiency, and scalability. For in-
stance, in the 2000’s, NICs have been empowered with TCP Offload Engine. Later, in the
2010’s, NICs evolved to support virtualization-driven requirements such as VLAN, RSS,
etc.

However, it was only after the emergence of Software-Defined Networking (SDN)
(and later the P4 language) concepts that SmartNICs started to emerge as a “smart” device.
The network programmability fostered by these concepts has driven the development of

4https://github.com/p4lang/p4c/blob/main/backends/dpdk/README.md
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Figure 2.7. SmartNIC vendors timeline.

high-level programmable NICs. Figure 2.7 illustrates SmartNIC vendors over the last
year. Note that this is not an exhaustive list and many models are not mentioned.

In 2015, Netronome5 was the first vendor to announce a SmartNIC model sup-
porting data plane user-level programmability using P4 language. They provided a P4-
to-MicroC compiler, allowing the user to write their own NIC firmware with full access
to the NIC computing power. Then, in 2017, Cloud players also announced the design
of SmartNICs to support the ever-growing demands of their data centers (e.g., AWS Ni-
tro). In 2018, Xilinx announced the Alveo SmartNICs designed also aimed at data center
workloads. These cards were one of the first FPGA-based SmartNICs. These cards lever-
age Xilinx’s FPGA technology to accelerate a wide range of compute-intensive tasks. In
2019 and 2020, SoC-based SmartNICs were announced such as the NVIDA BlueField.
Following this trend, in 2021, Intel also announced Intel SoC interfaces. More recently,
Marvel and Asterfusion also announced powerful SoC-based SmartNICs with up to 36
ARM cores. Table 2.1 summarizes the main SmartNICs by vendor.

As we observe in Table 2.1, SmartNICs can handle a few hundred gigabytes per
second. In 2015, Netronome architecture was able to handle up to 40Gbit/s. Today,
we see SmartNICs supporting up to 200Gbit/s per physical port. SmartNIC models are
evolving together with just approved Ethernet standards. The IEEE P802.3bs Task Force
developed the 400 Gigabit Ethernet (400G, 400GbE) and 200 Gigabit Ethernet (200G,
200GbE) standards, which were approved back in 2017. These standards employ tech-
nology similar to that of 100 Gigabit Ethernet. Last, in 2024, the IEEE P802.3df Task
Force approved the 800 Gigabit Ethernet (800G, 800GbE) standard.

2.4.2. Programming SmartNICs

Designing and implementing SmartNIC programs might take time and effort, depending
on the vendor and available architecture. Despite increasing interest in PNA architecture
and P4 language, they are still very restricted and are not widely available. For this reason,
each vendor/model takes advantage of its development framework. Next, we overview the
main programming frameworks available from the leading vendors: Netronome, Xilinx,
and NVIDIA. We later deep dive into the NVIDIA framework as it is used in Section 2.7

5https://netronome.com/
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in a step-by-step, hands-on programming tutorial.

2.4.3. ASIC-based SmartNIC: Netronome Programming Framework

The Netronome was the first vendor to support P4 language as the primary way to program
the SmartNIC data plane. Netronome supports P414 and P416, however much of the de-
velopment framework is still limited to P414. That includes, for instance, the Netronome
simulation engine.

The P4 development in the Netronome board follows a similar architecture to
the v1model reference. This allows programmers to translate P4 code seamlessly into
the SmartNIC architecture. Besides programming the SmartNIC using P4 language,
Netronome allows users to write low-level Micro-C code. Micro-C can be written as
P4 externs or as a standalone data plane application. This way, users can get the best out
of the Netronome hardware architecture. For instance, Netronome P4 compiler assumes
the code is identically running in all NFP cores. Furthermore, it applies simple heuristic
procedures to utilize the memory hierarchy (e.g., NFP caches, DRAM, etc). Therefore,
the P4 programming might end up with data plane misbehavior for applications that uti-
lize external memory extensively. In those situations, it is recommended to write Micro-C
code instead of relying on P4 translations.

The Netronome SmartNIC is backed up by a Linux Run Time Environment (RTE)
service that allows flexible interaction with the SmartNIC application from the operating
system perspective. That allows, for example, populating Match-Action tables or creating
more refined Control Plane applications. Unfortunately, OpenFlow or P4Runtime are not
supported by default.

In addition to allowing the data plane firmware to be written from scratch, the
Netronome also provides Linux drivers with native support for eBPF/XDP. Therefore, it
also allows hardware programability when offloading eBPF/XDP instructions to be exe-
cuted by the SmartNIC.

2.4.4. FPGA-based SmartNIC: Xilinx Programming Framework

Xilinx Vitis represents a pioneering advancement in development environments, spear-
headed by Xilinx to redefine the dynamics of embedded software and hardware platform
development. Within its unified interface, Vitis seamlessly converges software and hard-
ware development tasks, accommodating a range of programming languages, including C,
C++, OpenCL, and the P4 language. This comprehensive integration allows developers to
leverage the unique capabilities of the P4 language, which is particularly advantageous for
programmable data planes in networking applications, thereby enhancing both flexibility
and performance in their projects.

Central to Vitis is its holistic suite of features, meticulously designed to simplify
and elevate the development process. Developers can succinctly articulate algorithmic
descriptions through high-level abstractions, while pre-built acceleration libraries cater to
common tasks such as image processing and machine learning, optimizing performance
and efficiency. The environment’s inherent versatility extends to seamless integration with
Vivado, Xilinx’s acclaimed FPGA synthesis and implementation tool, ensuring a seamless
transition from algorithmic formulation to hardware realization. Such synergies empower
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developers to efficiently map their applications onto Xilinx hardware platforms, accelerat-
ing innovation across diverse domains, including artificial intelligence, high-performance
computing, automotive, aerospace, and telecommunications.

Moreover, Xilinx offers flexible licensing options for Vitis, providing developers
with tailored access to its comprehensive suite of tools and features. Whether through
perpetual licenses or subscription-based models, developers can choose the licensing op-
tion that best aligns with their project requirements and budget constraints. With Vitis
and its adaptable licensing structures, developers are equipped to confidently navigate the
complexities of modern development landscapes, forging new frontiers in technology and
driving forward the boundaries of possibility.

2.4.5. SoC-based SmartNIC: Nvidia Programming Framework

NVIDIA DOCA brings together a wide range of powerful APIs, libraries, and frameworks
for programming and accelerating modern data center infrastructures. DOCA is a consis-
tent and essential resource across all existing and future generations of BlueField DPUs.
DOCA offers a rich set of APIs that allow interactions with the BlueField computing
units. These include DOCA Flow, DOCA Core, DOCA RDMA, and DOCA GPUNetIO,
among others. For a complete list of APIs, please consult the official documentation6.
In this chapter, we overview the DOCA Flow API, as this is used later for a hands-on
tutorial.

DOCA Flow is the most fundamental API available, as it enables the creation of
generic packet processing pipes in hardware. The DOCA Flow library provides an API
for constructing a set of pipes, each consisting of match criteria, monitoring, and a set of
actions. Pipes can be chained so that after a pipe-defined action is executed, the packet
may proceed to another pipe. A pipe is a template that defines packet processing without
adding any specific hardware rule. It comprises four elements: Match, Monitor, Actions,
and Forward.

Figure 2.8 illustrates a pipeline implementation in DOCA Flow. On using DOCA
Flow, it is easy to develop hardware-accelerated applications that have a match on up
to two layers of packets: (i) MAC/VLAN/ETHERTYPE, (ii) IPv4/IPv6, (iii) TCP/UD-
P/ICMP, (iv) GRE/VXLAN/GTP-U, or (v) packet metadata. The execution pipe can also
have monitoring actions such as counters and policers. Last, the pipe also has a forward-
ing target: software application (RSS to subset of queues), physical/virtual port, another
pipe, and Drop packets.

DOCA Flow pipes offer a versatile framework with a user-defined set of matches
parser and actions, allowing for precise control over packet processing. These pipes can
dynamically create or destroy, adapting to changing network demands seamlessly. Lever-
aging specialized hardware acceleration, packet processing within these pipes achieves
optimal efficiency. Each flow pipe contains specific entries tailored to accelerate packet
handling, ensuring high-performance throughput. In cases where packets fail to match
any hardware entries, Arm cores step in for exception handling, providing a robust mech-
anism to address diverse scenarios. Following exception handling, packets are seamlessly

6https://docs.nvidia.com/doca/
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Figure 2.8. DOCA Flow Pipeline. Adapted from NVIDIA DOCA documenta-
tion [NVIDIA 2024].

re-injected back into the hardware pipeline, maintaining the flow’s integrity and efficiency.

2.5. Performance Benchmarking
This section focuses on the details of performance benchmarking designed specifically
for certain models of SmartNICs. We examine important concepts, methodologies, and
key considerations from recent academic studies that have benchmarked some SmartNIC
models.

It is worth noting that, despite the growing popularity of SmartNICs, there have
been relatively few efforts to benchmark these hardware devices. Furthermore, bench-
marking is usually conducted individually and does not involve comparing multiple mod-
els or architectures. Nevertheless, we hope that this summary of existing benchmarks
can provide an overview of the current performance of various SmartNIC models. In the
following, we provide information about some of the performance evaluations available
in the literature. These evaluations cover relevant aspects of the current performance and
bottlenecks of SmartNICs, including the Netronome NFP4000 SmartNIC and the Smart-
NICs from the Mellanox ConnectX family.

2.5.1. Performance Evaluation of ASIC Netronome NFP4000 SmartNIC

As previously mentioned, the Netronome NFP4000 represented a pioneering advance-
ment in the domain of SmartNICs, characterized by its sophisticated architecture and
versatile programmability. In the study of Viegas et al. [Viegas et al. 2021], they provide
detailed benchmarking of the performance of P4 instructions running on the NFP4000. To
do this, they evaluate the cost (in terms of latency and throughput) of the main operations
available in P4, in addition to varying SmartNIC parameters, such as the use of Micro
Engines (or processing units). Their evaluation covered aspects such as tables, register
operations, recirculations, hash functions, ingress and egress pipelines, and packet sizes.
Next, we summarize their SmartNIC evaluation for table accesses, register operations,
and recirculations, as we consider the main operations in current P4 programs.

First, we discuss the results for Match-Action table accesses in P4 programs.
In the context of SmartNICs, this evaluation is important because, unlike conventional
forwarding devices that utilize Match-Action tables solely for routing purposes, the P4
language allows for more diverse applications of this construction. The authors aim to
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analyze how using multiple match-action tables at different pipeline stages affects perfor-
mance. In the experiments, they vary the number of tables in their P4 programs and ensure
sequential matching on all tables for every packet. Upon packet matching, an action is
invoked to read a single 32-bit data from the table and store it in a metadata structure.
Packet size and the number of tables per pipeline (ingress or egress) also vary. Figure 2.9
illustrates the measured throughput 2.9(a) and latency 2.9(b). Throughput behavior shows
that for small packets, the throughput remains nearly constant for up to 5 Match-Action
tables before experiencing a sharp drop. The Netronome architecture limits a P4 program
to 5 tables in each pipeline. Interestingly, the ingress pipeline consistently demonstrates
faster memory allocation, even when tables are defined only in the egress pipeline.

(a) Measured throughput cost. (b) Measured latency cost.

Figure 2.9. Table access costs in the P4 pipeline. Figure from: [Viegas et al. 2021]

To evaluate the memory access costs (register access in P4 code), the authors ex-
amine the cost associated with executing multiple register operations within the same
P4 pipeline. Register operations serve as fundamental components in modern P4 ap-
plications. Throughout the experiments, they varied the number of register operations
conducted consecutively by the P4 program, ranging from 10 to 200 register operations,
keeping the register width 32-bit. The authors specifically investigate the placement of
registers within the ingress pipeline, categorizing them as read-only, write-only, or read-
and-write operations. Figures 2.10(a) and 2.10(b) show throughput and latency, respec-
tively. With increasing registers and P4 instructions, significant performance degradation
occurs. Line rate sustains only with 10 registers for reading operations, but even with 10
registers, writing operations experience a 30% bandwidth drop (50% for read & write).
Throughput linearly decreases by up to 87% (i.e., 2 Mpps) with 200 registers. Latency in-
creases linearly with operation count per packet, from acceptable levels (e.g., 10 registers:
8650ns reading) to higher levels (e.g., 50 registers: 0.12 milliseconds).

Finally, we overview their evaluation of the implications of packet recirculation
within the P4 pipeline. Given P4’s lack of support for iteration-based structures, packet
recirculation is a workaround to emulate loop-based functionalities. Packet recircula-
tion involves sending a packet back to the ingress pipeline post-processing, mimicking a
loop-based structure. Throughout the experiments, they vary the number of packet recir-
culations per packet, ranging from 0 to 50, alongside altering the packet size from 64B
to 1500B. The focus lies on forwarding network traffic from physical interfaces. Fig-
ure 2.11 illustrates the measured throughput 2.11(a) and latency 2.11(b). Throughput
behavior shows a super-linear decrease with an increase in packet recirculations. Fewer
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(a) Measured throughput cost. (b) Measured latency cost.

Figure 2.10. Register operation costs in the P4 pipeline. Figure from: [Viegas et al. 2021]

recirculations sustain a line rate for small packets, while larger packets maintain a line rate
even with multiple recirculations. As packets recirculate, more are pushed into the data
plane, causing enqueueing and eventual drop, reducing throughput. Observed latency also
increases notably as packets recirculate. Even for large packets, per-packet latency dou-
bles with just three recirculations, with sharper increases as the number of recirculations
rises, especially for small packets.

(a) Measured throughput cost. (b) Measured latency cost.

Figure 2.11. Packet recirculation costs in the P4 pipeline. Figure from: [Viegas et al. 2021]

2.5.2. Performance Evaluation of ASIC/SoC Mellanox SmartNIC

The NVIDIA Mellanox ConnectX SmartNICs offer unparalleled networking performance
and processing capabilities, operating at link speeds of up to 100 Gbps and beyond. Other
vendors’ models have certain limitations such as lower link speeds and limited flow rule
capacities. For instance, the upcoming Intel E810 series still needs to catch up when
compared to the ConnectX NICs. This demonstrates the superior scalability and perfor-
mance capabilities of Mellanox SmartNICs. Next, we present a performance evaluation
of some ConnextX SmartNICs, providing valuable insights into their performance evo-
lution and highlighting the significance of ConnectX SmartNICs in modern data center
environments.

The evaluation carried out by Katsikas et al. [Katsikas et al. 2021] delves into
the architectural intricacies and differences among the NVIDIA Mellanox NICs, empha-
sizing their robust capabilities and innovative design features. The authors evaluate the
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ConnextX-4, ConnextX-5, ConnextX-6 and BlueField SmartNIC. Leveraging a PCIe 3.0
x16 bus interface, except for the ConnectX-6 adapter, which utilizes two PCIe 3.0 x16
slots, these SmartNICs ensure optimal connectivity and throughput to the server’s CPU.
Furthermore, including an 8-core ARM processor in the BlueField-2 (and a 16-core ARM
processor in BlueField-3) NIC extends its capabilities for in-NIC traffic processing, en-
hancing overall network performance and efficiency. Notably, Mellanox NICs boast a
root table with ample space for rule entries and high-performance exact-match tables that
facilitate efficient packet classification and offload tasks from the CPU. With the flexibil-
ity to accommodate many rules limited only by the host’s available memory, Mellanox
SmartNICs emerge as indispensable components in modern server architectures, offering
unmatched scalability, performance, and flexibility for demanding networking environ-
ments.

In their evaluation, the authors cover aspects such as the cost of the number of table
rules pre-installed, the impact of batch and rate-based updates, the impact of inserting new
rules, and the impact of in-memory or out-memory updates. In our summary, we only
present the cost of the number of rules pre-installed and the cost of rate-based updates,
as they are the main table operations. Their experiments use a single-core forwarding
network function on a Device Under Test (DUT). The DUT’s NIC routes incoming frames
to this network function based on flow rules stored in the NIC. These rules are in either
the default “root” flow table or non-root tables. The results presented an overview of the
ConnectX-5 NIC results, but the observed trends apply to other NICs tested.

(a) Measured throughput (Table 0).) (b) Measured throughput (Table 1 to 16).

(c) Measured latency (Table 0). (d) Measured latency (Table 1 to 16).

Figure 2.12. Throughput and latency costs for a different number of pre-installed
table rules. Figure from: [Katsikas et al. 2021]

Figure 2.12 illustrates how the performance of packet classification varies with the
number of rules installed on different types of tables in the NVIDIA Mellanox ConnectX-
5 NIC. When rules are uniformly distributed across non-root tables, throughput remains
stable even with many entries. However, performance dramatically declines when the
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root table (Table 0) reaches over 85% occupancy, rendering the last 15% of memory prac-
tically unusable. Despite lower input loads, throughput decreases significantly, indicating
a design issue with the root table rather than an excessive load. Additionally, while non-
root tables exhibit faster throughput and lower latency, spreading rules across more tables
leads to performance degradation, highlighting trade-offs in table distribution strategies.

Next, the authors evaluate the cost of updating rules in a rate-based way. Peri-
odic rule installations from a single core are typical in systems like NATs and Layer 4
load balancers. Figure 2.13(a) and Figure 2.13(b) illustrate forwarding network function
throughput during simultaneous rule insertions into the NIC classifier. When insertions
originate from a different core, throughput remains stable. However, using the same core
as the forwarding network function results in a notable performance drop, with throughput
decreasing by approximately 70 Gbps for 10K and 500K rule insertions per second in Ta-
ble 0 and Table 1, respectively. This highlights a bottleneck in the NIC’s standard API for
updating the forwarding table. While using a different core for rule installation helps, it
requires costly inter-core communication and consumes significant CPU resources, such
as 100% of a core for several hundreds of milliseconds to install 500K rules. Latency
increases by more than 2x for Table 0 and 82% for Table 1 when rule insertions occur
from the same core, indicating significant performance degradation due to interference in
the NIC data plane.

(a) Measured throughput (Table 0)). (b) Measured throughput (Table 1).

(c) Measured latency (Table 0). (d) Measured latency (Table 1).

Figure 2.13. Throughput and latency costs for rate-based updates in table rules.
Figure from: [Katsikas et al. 2021]

2.6. Related Work
In this section, we describe recent works that used the SmartNICs presented in the previ-
ous sections to optimize or accelerate network functions. To do this, we initially present
Table 2.2, which contains works published in the last four years (i.e., within 2020-2023)
in some of the high-impact conferences that used SmartNICs in their solutions or exper-
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iments. In our search, we consider the ACM SIGCOMM (ACM Special Interest Group
on Data Communication)7, USENIX NSDI (Symposium on Networked Systems Design
and Implementation)8, and the ACM International Conference on emerging Networking
EXperiments and Technologies (CoNEXT)9 conferences, and the table presents the title
of the work, conference and year, model, and architecture of the SmartNIC used. Please
note that this is not an exhaustive list of all the works published in these conferences. Still,
we aim to provide a comprehensive overview of the most relevant recent research studies
that highlight the relevance of SmartNIC architectures in high-impact research. There
may be other works related to SmartNICs in other high-impact conferences and journals
that we may have missed.

Next, in addition to the general overview provided in Table 2.2, we also discuss
recent works that use SmartNICs in their solutions in more detail. We divided this de-
scription into subsections based on SmartNIC architectures and discussed three works for
each architecture.

2.6.1. FPGA-based SmartNICs

The increasing reliance of data center applications on proxies that shift application layer
processing into the network motivated the emergence of new packet dispatch strategies.
However, prior work has shown that this comes with a performance and resource cost.
Wang et al. [Wang et al. 2023] aim to address this challenge by investigating the possi-
bility of offloading Layer 7 (L7) processing to hardware, specifically FPGA SmartNICs.
They focus on L7 dispatch, which involves analyzing application requests and distributing
them to target service processes. Unlike L3/4 processing, L7 logic operates on application
data spanning multiple packets, making offloading more complex due to variable-length
fields and packet reassembly. The authors introduce QingNiao, a solution comprising a
co-designed protocol, application interface, and hardware design, aiming to offload L7
dispatch efficiently. Prototyped on an FPGA integrated with a 100Gbps Corundum NIC,
QingNiao demonstrates programmability and performance gains over software-based L7
dispatch. Results indicate throughput improvements of 7.5x to 8x and latency reductions
of 72.5% to 74% compared to state-of-the-art software solutions, showcasing the viabil-
ity of hardware offloading for L7 processing. The authors have made their software and
hardware designs open-source to facilitate further research in L7 processing offload.

Yao et al. [Yao et al. 2023] address challenges in network scheduling by introduc-
ing the Balanced Multi-Way sorting Tree (BMW-Tree). This novel data structure aims
to improve the efficiency and scalability of scheduling algorithms, particularly in mod-
ern data centers with high flow volumes. The BMW Tree enables the realization of the
Push-In-First-Out (PIFO) model, which is crucial for packet prioritization. The paper
presents two hardware designs, register-based (R-BMW) and RPU-driven (RPU-BMW),
leveraging the BMW-Tree concept. These designs offer high throughput and scalabil-
ity, addressing the limitations of traditional implementations. Evaluation of the proposed
hardware designs using Verilog targeting a Xilinx Alveo U200 Data Center Accelerator
Card demonstrates their significant performance improvements over traditional PIFO im-

7https://www.sigcomm.org/events/sigcomm-conference
8https://www.usenix.org/conference/nsdi23
9https://conferences.sigcomm.org/co-next/2023/
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plementations. For instance, an 11-level 2-way R-BMW achieves a throughput of 192
Mpps (million packets per second) for 4k flows, while an 8-level 4-way RPU-BMW sup-
ports 87k flows at 93 MHz.

In turn, Zhang et al. [Zhang et al. 2023] explore the challenges of federated learn-
ing (FL) and the cryptographic techniques used to secure cross-silo FL operations. It iden-
tifies nine common cryptographic operations and highlights the performance degradation.
The study proposes the FLASH architecture for hardware acceleration, focusing on FPGA
and ASIC implementations. Evaluation of FLASH demonstrates significant performance
improvements over CPU and GPU implementations across cryptographic operations and
FL applications. Specifically, FLASH outperforms CPU and GPU by 10.4x to 14.0x and
1.4x to 3.4x, respectively, across cryptographic operations. Additionally, software eval-
uation as an ASIC shows further performance gains of up to 23.6x and 7.1x over FPGA
implementation with 12nm and 28nm fabrication techniques, respectively.

2.6.2. SoC-based SmartNICs

Olteanu et al. [Olteanu et al. 2022] investigate challenges in data center networks, propos-
ing the Edge-Queued Datagram Service (EQDS) to improve network utilization and sup-
port diverse transport protocols. EQDS moves queuing from switches to network edges,
providing a datagram service via dynamic tunnels. Its receiver-driven control loop man-
ages inbound traffic, ensuring isolation between protocols and facilitating fair sharing.
EQDS offers improved protocol performance, protection from queuing delays, and in-
creased throughput through load balancing. The study details EQDS design, implementa-
tion, and evaluation on Linux hosts and BlueField-2 SmartNIC, demonstrating its compat-
ibility with existing transport protocols and its ability to enhance network performance.

Wei et al. [Wei et al. 2023c] delved into the performance characteristics of var-
ious communication paths on off-path SmartNICs, shedding light on essential aspects
often overlooked in prior research. It highlighted the increasing adoption of RDMA in
modern data centers, driving network bandwidth towards 400 Gbps. However, the in-
tensified network speed demands more CPU resources to leverage RDMA-capable NICs,
significantly burdening distributed systems fully. While one-sided RDMA can mitigate
CPU pressures by allowing direct host memory access, limited offloading capabilities may
lead to network amplification and performance degradation. Amidst these challenges, the
emergence of SmartNICs with programmable capabilities offers a promising avenue for
offloading complex computations. Two main types of SmartNICs are distinguished: on-
path SmartNICs, which expose NIC cores for direct processing, and off-path SmartNICs,
which employ programmable multicore SoCs adjacent to the RNIC cores. Due to their
generality and programmability, the study primarily focused on off-path SmartNICs, such
as NVIDIA Bluefield-2 and Broadcom Stingray. The study found that the RDMA path
from the NIC to the SoC can be up to 1.48 times faster than the path to the host. It also
revealed that RDMA requests involving the SoC may suffer from up to 48% bandwidth
degradation due to performance anomalies introduced by the SoC.

Today, computing environments require seamless integration of hybrid environ-
ments spanning edge, cloud, and HPC systems, connecting sensors, elastic resources, and
cloud-native frameworks with high-performance systems for efficient workflows. How-
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ever, prevalent container networking architectures, reliant on overlay networks, often
incur performance overhead, particularly affecting co-processes on the same node. To
address this challenge, [Njavro et al. [Njavro et al. 2022] explore leveraging the Nvidia
Bluefield 2 SmartNIC to offload Docker overlay networks, aiming to enhance support
for cloud-native overlay networks alongside existing HPC workloads sensitive to system
noise. Through characterizing different offloading approaches, investigating the feasibil-
ity of DPU offload, and evaluating performance benefits, the paper contributes to opti-
mizing the integration of cloud-native technologies with traditional HPC environments,
enabling efficient coexistence and operation of diverse workloads in hybrid computing
infrastructures.

2.6.3. ASIC-based SmartNICs

Deploying machine learning algorithms in high-throughput networking environments poses
significant challenges, with existing approaches often focusing on offline post-processing
or introducing high latency. To address this, Xavier et al. [Xavier et al. 2021] introduce
a framework to create simple yet accurate machine-learning models that are deployable
directly into the data plane with acceptable performance degradation. Their approach
involves translating these models, tailored for individual packets or flows, into the P4
language, a crucial step towards in-network deployment. Through validation using an
intrusion detection use case and deployment on a Netronome SmartNIC (Agilio CX
2x10GbE), they demonstrate the feasibility of achieving high accuracy (above 95%) with
minimal performance impact, even with many flows. This work signifies a step forward
in integrating machine learning into network devices, leveraging the capabilities of pro-
grammable switches and SmartNICs to enhance real-world networking applications.

Integrating ML models into programmable networking devices has sparked in-
terest in leveraging data plane capabilities for autonomous network management. How-
ever, challenges persist in adapting unsupervised ML algorithms to the constraints of pro-
grammable forwarding devices. In response, Cannarozzo et al [Cannarozzo et al. 2024]
proposes SPINNER, an innovative approach for in-network flow clustering directly within
the data plane. SPINNER maps network flows to multidimensional vectors and dynami-
cally assigns them to clusters as packets traverse the programmable device. By clustering
flows in the data plane, SPINNER enables line-rate flow balancing, congestion control,
and differentiated services. Implemented in the SmartNIC Netronome NFP 4000, SPIN-
NER demonstrates promising results, enhancing TCP throughput by up to 2X compared
to vanilla TCP with minimal incurred latency.

The TCP protocol is the backbone of modern data networking, ensuring reliable
data transfer between endpoints. Yet, its adherence to protocol standards often incurs
performance penalties, particularly in short-lived connections and layer-7 proxying sce-
narios. Addressing this challenge, Moon et al. [Moon et al. 2020] leverages Netronome
Agilio LX 40GbE to accelerate TCP processing, presenting a dual-stack design that of-
floads select operations to the NIC stack while maintaining control-plane functions at the
host stack. This approach significantly reduces CPU and memory bandwidth overhead on
the host stack, allowing applications to focus on core functionality. Moreover, Moon et
al. [Moon et al. 2020] per-flow offloading decision offers flexibility, ensuring optimal per-
formance under varying conditions. Despite challenges in maintaining consistency across
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host and NIC stacks, the work effectively manages complexity, achieving notable per-
formance gains. Evaluation results demonstrate its superiority over existing TCP stacks
and its substantial impact on real-world applications like Redis and HAProxy, making it
a significant contribution to network performance optimization.

2.7. Diving into SmartNICs: Hands-on experiences
In this section, we are going to deep dive into practical hands-on examples using current
available SmartNICs. Note that all used coding and additional scripting materials are
available at our public repository.10

2.7.1. Hands-on with Nvidia BlueField

In this example, we will demonstrate the step-by-step process of setting up a DOCA
application. Firstly, we need to set up our environment correctly. Afterward, we will
describe a simple DOCA Flow application that utilizes DOCA pipes to offload packet
processing to the BlueField SmartNIC. It is important to note that our settings can also be
replicated in available testbeds such as FABRIC.11.

2.7.1.1. Setting up the SmartNIC

First, we need to install the DOCA framework. This is done on the host side using Ubuntu
20.04 (Kernel 5.15-0-67-generic). To install DOCA utils, download the file and follow
the installation instructions.

sm ar tne s s@hos t # dpkg − i doca − hos t − repo − ubuntu2204 *_amd64 . deb
sm ar tne s s@hos t # ap t − g e t u p d a t e
sm ar tne s s@hos t # a p t i n s t a l l doca − r u n t i m e
sm ar tne s s@hos t # a p t i n s t a l l doca − t o o l s
sm ar tne s s@hos t # a p t i n s t a l l −y doca − e x t r a
sm ar tne s s@hos t # a p t i n s t a l l pv

Then, we need to initialize the Mellanox Software Tools service (a.k.a. MST). The
MST command is used to create special files that represent Mellanox devices in the direc-
tory /dev/mst. This command loads appropriate kernel modules and saves PCI configu-
ration headers in the temporary directory. Once this command is completed successfully,
the MST driver is ready to work, and other Mellanox tools can be invoked.

sm ar tne s s@hos t # mst s t a r t
sm ar tne s s@hos t # mst s t a t u s −v

The following is an example of the output you should expect to see when running
the command mst status -v. The output will contain the PCI address (e.g. 03:00.0),
the MST address (e.g. mt41686_pciconf0), and the name of the network interface that
is exposed to the operating system (e.g. net-enp3s0f0).

10https://github.com/smartness2030/sbrc24-minicurso-smartnic
11https://fabricmc.net/
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MST modules :
−−−−−−−−−−−−

MST PCI module i s n o t l o a d e d
MST PCI c o n f i g u r a t i o n module l o a d e d

PCI d e v i c e s :
−−−−−−−−−−−−
DEVICE_TYPE MST PCI RDMA NET
B l u e F i e l d 2 ( r e v : 1 ) / dev / mst / mt41686_pc iconf0 . 1 0 3 : 0 0 . 1 mlx5_1 ne t − e n p 3 s 0 f 1

B l u e F i e l d 2 ( r e v : 1 ) / dev / mst / mt41686_pc iconf0 0 3 : 0 0 . 0 mlx5_0 ne t − e n p 3 s 0 f 0

To get started, we must first initialize the RSHIM service. The RShim serves as
the current interface for managing the SoC (System on a Chip). It enables an external
agent, such as the host CPU or BMC, to operate the DPU (Data Processing Unit) and
monitor its operational state. With this interface, the DPU can be provisioned, Arm cores
can be reset, and logs can be obtained. On the host, the SoC management interface driver
exposes a virtual Ethernet device called tmfifo_net0. This virtual Ethernet device
functions as a peer-to-peer tunnel that links the host and the DPU OS. In response, the
DPU OS sets up a comparable device. The BFB (Bootloader Firmware Binary) images
within the DPU OS are tailored to set up the DPU end of this connection, assigning a
predefined IP address of 192.168.100.2/30 within the DPU OS.

sm ar tne s s@hos t # s y s t e m c t l e n a b l e r sh im
sm ar tne s s@hos t # s y s t e m c t l s t a r t r sh im
sm ar tne s s@hos t # s y s t e m c t l s t a t u s r sh im

The following is the expected output of the RSHIM initialization mentioned above:

rsh im . s e r v i c e − rsh im d r i v e r f o r B l u e F i e l d SoC
Loaded : l o a d e d ( / l i b / sys temd / sys tem / r sh im . s e r v i c e ; e n a b l e d ; vendor p r e s e t : e n a b l e d )
A c t i v e : a c t i v e ( r u n n i n g ) s i n c e Wed 2024 −04 −03 1 3 : 1 9 : 2 5 −03; 4 days ago

Docs : man : r sh im ( 8 )
Main PID : 1322 ( r sh im )

Tasks : 6 ( l i m i t : 18833)
Memory : 1 . 1M
CGroup : / sys tem . s l i c e / r sh im . s e r v i c e

1322 / u s r / s b i n / r sh im

a b r 03 1 3 : 1 9 : 2 5 Hydra −202 sys temd [ 1 ] : S t a r t i n g r sh im d r i v e r f o r B l u e F i e l d SoC . . .
a b r 03 1 3 : 1 9 : 2 5 Hydra −202 sys temd [ 1 ] : S t a r t e d r sh im d r i v e r f o r B l u e F i e l d SoC .
a b r 03 1 3 : 1 9 : 2 5 Hydra −202 rsh im [ 1 3 2 2 ] : P r o b i n g pc ie − 0 0 0 0 : 0 3 : 0 0 . 2
a b r 03 1 3 : 1 9 : 2 5 Hydra −202 rsh im [ 1 3 2 2 ] : c r e a t e r sh im pc ie − 0 0 0 0 : 0 3 : 0 0 . 2
a b r 03 1 3 : 1 9 : 2 6 Hydra −202 rsh im [ 1 3 2 2 ] : r sh im0 a t t a c h e d

If you are setting up the SmartNIC for the first time, you may need to install
or reinstall the operating system in the SoC SmartNIC. To get started, you will need to
download the Linux image and then use NVIDIA toolchain to install it. In this tutorial,
we will be using Ubuntu 22.04, which is provided by NVIDIA.
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sm ar tne s s@hos t # wget h t t p s : / / c o n t e n t . me l l anox . com / B l u e F i e l d /
BFBs / Ubuntu22 . 0 4 / DOCA_2 . 0 . 2 _BSP_4 . 0 . 3 _
Ubuntu_22 .04 −10 .23 −04 . prod . b fb

We need to set a configuration file and install the Ubuntu image with a predefined
password using the bfb-install tool. The following steps will help you perform these
actions.

sm ar tne s s@hos t # hash = ‘ o p e n s s l passwd −1 ‘
sm ar tne s s@hos t # echo ubuntu_PASSWORD= ’ $hash ’ >> bf . c f g

sm ar tne s s@hos t # bfb − i n s t a l l −− rsh im / dev / r sh im0
−− bfb < image_pa th . bfb >
−− c o n f i g b f . c f g

The operating system has been installed successfully and is now ready to be used.
However, before using it, we should change the SmartNIC operation mode. For the pur-
pose of this tutorial, we will be using the SmartNIC in the DPU mode. The NVIDIA
BlueField offers three modes of operation: DPU mode (or embedded function ECPF),
zero-trust mode, and NIC mode. In DPU mode, the NIC resources and functionalities
are owned by the embedded Arm subsystem. All network communication destined for
the host passes through a virtual switch control plane hosted on the Arm cores, before
reaching the host. In this operational mode, the DPU acts as the trusted entity, overseen
by both data center and host administrators. Its responsibilities include loading network
drivers, resetting interfaces, toggling interface states, firmware updates, and altering the
operational mode of the DPU device. The following steps will help you change the DPU
operation mode.

sm ar tne s s@hos t # # mst s t a t u s −v
#Use t h e above command t o check t h e MST d e v i c e a d d r r e s s

sm ar tne s s@hos t # m l x c o n f i g −d / dev / mst / mt41686_pc iconf0
s INTERNAL_CPU_MODEL=1

sm ar tne s s@hos t # m l x c o n f i g −d / dev / mst / mt41686_pc iconf0 . 1
s INTERNAL_CPU_MODEL=1

sm ar tne s s@hos t # r e b o o t

In order to access the SoC subsystem, we must configure a valid IP address for
the virtual interface called tmfifo_net0. The SoC management interface has a peer-
to-peer tunnel that connects the host and the DPU OS, and it is automatically set up in the
192.168.100.0/30 subnet. For this tutorial, use the following command to assign
192.168.100.2 to the tmfifo_net0 interface.

sm ar tne s s@hos t # i p a d d r e s s add 1 9 2 . 1 6 8 . 1 0 0 . 2 / 3 0 dev t m f i f o _ n e t 0

Also, it is necessary to configure NAT rules on the host side to enable the OS in
NIC to access the Internet. The following steps will configure iptables on the host
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Figure 2.14. Scalable Function in the Nvidia BlueField SoC. Adapted from NVIDIA
DOCA documentation [NVIDIA 2024].

side.

# r e p l a c e wi t h t h e i n t e r f a c e c o n n e c t e d t o t h e I n t e r n e t
smar tne s s@hos t # OUTFACE= enp6s0
smar tne s s@hos t # NIC= t m f i f o _ n e t 0
smar tne s s@hos t # echo 1 > / p roc / s y s / n e t / i pv4 / i p _ f o r w a r d
smar tne s s@hos t # i p t a b l e s −A FORWARD − i $NIC −o $OUTFACE \

− j ACCEPT
smar tne s s@hos t # i p t a b l e s −A FORWARD − i $OUTFACE −o $NIC \

−m s t a t e −− s t a t e ESTABLISHED , RELATED \
− j ACCEPT

smar tne s s@hos t # i p t a b l e s − t n a t −A POSTROUTING −o $OUTFACE \
− j MASQUERADE

2.7.1.2. Accessing the SoC and Preliminary Configurations

After configuring the host side, we can now access the SoC subsystem. To access the
SmartNIC SoC operating system, we can use ssh as follows.

sm ar tne s s@hos t # s s h ubuntu@192 . 1 6 8 . 1 0 0 . 2

If everything goes smoothly, you will be logged into the SmartNIC operating sys-
tem. By default, the SmartNIC OS comes with an Open vSwitch (OVS) that has two
default bridges named ovsbr1 and ovsbr2. In each bridge, there is a physical port at-
tached, namely p1 and p2. Each OVS bridge has at least one host interface representator,
such as pf1hpf and pf0hpf. These interface representators are used to connect with
the host interfaces (e.g., net-enp3s0f1). Lastly, each OVS bridge comes with a Scal-
able Function (e.g., en3f1pf1sf0 and en3f0pf0sf0). Scalable Functions (SFs), or
sub-functions, are similar to Virtual Functions (VFs) that are part of a Single Root I/O
Virtualization (SR-IOV) solution. An SF is a lightweight function that has a parent PCIe
function on which it is deployed. The SF, therefore, has access to the capabilities and re-
sources of its parent PCIe function, and it has its own function capabilities and resources.
This means that an SF also has its own dedicated queues (i.e., txq, rxq). Figure 2.14
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illustrates the relationship between internal ports and SF representators.

r o o t @ l o c a l h o s t : / home / ubun tu # ovs − v s c t l show
e350e1eb −a1f2 −4eb8 −b9ad −8 bb2a3a7f86a

Br id ge ov sb r2
P o r t p1

I n t e r f a c e p1
P o r t p f 1 h p f

I n t e r f a c e p f 1 h p f
P o r t e n 3 f 1 p f 1 s f 0

I n t e r f a c e e n 3 f 1 p f 1 s f 0
P o r t o v sb r 2

I n t e r f a c e ov sb r2
t y p e : i n t e r n a l

Br id ge ov sb r1
P o r t p f 0 h p f

I n t e r f a c e p f 0 h p f
P o r t o v sb r 1

I n t e r f a c e ov sb r1
t y p e : i n t e r n a l

P o r t p0
I n t e r f a c e p0

P o r t e n 3 f 0 p f 0 s f 0
I n t e r f a c e e n 3 f 0 p f 0 s f 0

o v s _ v e r s i o n : " 2 . 1 7 . 7 − e054917 "

In Figure 2.14, you can see how physical ports interact with SFs. SFs are used by
DOCA applications and communicate with the physical port by SF representators. It is
possible to dynamically add, remove, or modify SFs according to the application’s needs
using the mlxdevm port command. Next, we can use the mlxdevm port show
command to list all registered SFs and their features. For instance, we can see the SF
identifier (e.g., 229408) and to which physical port each SF is attached. For example, the
SF pci/0000:03:00.0/229408 is attached to physical port 0.

root@smartNIC : / # / o p t / me l l anox / i p r o u t e 2 / s b i n / mlxdevm p o r t show

p c i / 0 0 0 0 : 0 3 : 0 0 . 0 / 2 2 9 4 0 8 : t y p e e t h n e t d e v e n 3 f 0 p f 0 s f 0 f l a v o u r p c i s f c o n t r o l l e r 0
pfnum 0 sfnum 0

f u n c t i o n :
hw_addr 0 2 : eb : 3 d : 6 4 : 5 3 : 8 6 s t a t e a c t i v e o p s t a t e a t t a c h e d r o c e t r u e max_uc_macs 128

t r u s t o f f

p c i / 0 0 0 0 : 0 3 : 0 0 . 1 / 2 9 4 9 4 4 : t y p e e t h n e t d e v e n 3 f 1 p f 1 s f 0 f l a v o u r p c i s f c o n t r o l l e r 0
pfnum 1 sfnum 0

f u n c t i o n :
hw_addr 0 2 : 4 3 : b8 : 2 f : 7 a : fb s t a t e a c t i v e o p s t a t e a t t a c h e d r o c e t r u e max_uc_macs 128

t r u s t o f f

Next, we will create, configure and deploy two Scalable Functions. For more
information, please refer to DOCA Scalable Function documentation12.

12https://docs.nvidia.com/doca/archive/doca-v2.2.0/
scalable-functions/index.html
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root@smartNIC : / # #Command s y n t a x
# / o p t / me l l anox / i p r o u t e 2 / s b i n / mlxdevm p o r t \
f u n c t i o n s e t p c i / < p c i _ a d d r e s s >/ < s f _ i n d e x > \
hw_addr <MAC a d d r e s s > t r u s t on s t a t e a c t i v e

root@smartNIC : / # / o p t / me l l anox / i p r o u t e 2 / s b i n / mlxdevm p o r t \
f u n c t i o n s e t p c i / 0 0 0 0 : 0 3 : 0 0 . 0 / 2 2 9 4 0 9 \
hw_addr 0 0 : 0 0 : 0 0 : 0 0 : 0 4 : 0 t r u s t on s t a t e a c t i v e

root@smartNIC : / # / o p t / me l l anox / i p r o u t e 2 / s b i n / mlxdevm p o r t \
f u n c t i o n s e t p c i / 0 0 0 0 : 0 3 : 0 0 . 0 / 2 9 4 9 4 4 \
hw_addr 0 0 : 0 0 : 0 0 : 0 0 : 0 5 : 0 t r u s t on s t a t e a c t i v e

We then verify if the just created SFs are correctly deployed using devlink
dev show command.

root@smartNIC : / # d e v l i n k dev show

Last, we need to connect the SFs’ interfaces to the OVS bridges. This will enable
communication between SFs, physical interfaces, and the host interface representators.

root@smartNIC : / # ovs − v s c t l add − p o r t ov sb r1 e n 3 f 1 p f 1 s f 0
root@smartNIC : / # ovs − v s c t l add − p o r t ov sb r2 e n 3 f 1 p f 1 s f 1
root@smartNIC : / # ovs − v s c t l show

In addition to that, we need to add flow entries to OVS (or to the eSwitch in the
BlueField) so that packets can move between the physical interface and SFs.

root@smartNIC : / # sudo ovs − o f c t l add − f low o vsb r1 i n _ p o r t =p0 , \
a c t i o n s = o u t p u t : e n 3 f 0 p f 0 s f 1

root@smartNIC : / # sudo ovs − o f c t l add − f low o vsb r2 \
i n _ p o r t = e n 3 f 1 p f 1 s f 1 , a c t i o n s = o u t p u t : p1

root@smartNIC : / # sudo ovs − o f c t l add − f low o vsb r2 i n _ p o r t =p1 , \
a c t i o n s = o u t p u t : e n 3 f 1 p f 1 s f 1

root@smartNIC : / # sudo ovs − o f c t l add − f low o vsb r1 \
i n _ p o r t = e n 3 f 0 p f 0 s f 1 , a c t i o n s = o u t p u t : p0

root@smartNIC : / # sudo ovs − o f c t l dump− f l o w s o vsb r1
root@smartNIC : / # sudo ovs − o f c t l dump− f l o w s o vsb r2

2.7.1.3. Programming the SmartNIC with DOCA

We will now go over a simple DOCA application that is based on the DOCA Flow library.
Our environment is now set up for the DOCA application. Our objective is to gain a
high-level understanding of the code so that we can deploy and debug it with ease. As
mentioned in Section 2.4, a DOCA Flow application is made up of pipes, where each pipe
can have matching and actions. We will start by discussing the main building block of the
sample code. You can find the complete code at our public repository13.

13https://github.com/smartness2030/sbrc24-minicurso-smartnic
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The first building block consists of a function that creates a DOCA Flow pipe. The
function creates a simple pipe that matches on IPv4 (src_ip, dst_ip, src_port,
dst_port). The function create_hairpin_pipe creates a hairpin pipe, which al-
lows traffic to ingress and egress through the same physical port. It initializes various data
structures such as struct doca_flow_match, struct doca_flow_actions,
and struct doca_flow_fwd, and configures the pipe settings in struct
doca_flow_pipe_cfg. Matching criteria are established for IPv4/TCP traffic with
wildcard IP addresses and port numbers. Forwarding rules are set to direct traffic to an-
other port. Finally, the function calls doca_flow_pipe_create to create the hairpin
pipe based on the configured settings and returns the result.

s t a t i c d o c a _ e r r o r _ t
c r e a t e _ h a i r p i n _ p i p e ( s t r u c t d o c a _ f l o w _ p o r t * p o r t , i n t p o r t _ i d ,

s t r u c t d o c a _ f l o w _ p i p e ** p i p e )
{

s t r u c t doca_f low_match match ;
s t r u c t d o c a _ f l o w _ a c t i o n s a c t i o n s , * a c t i o n s _ a r r [NB_ACTIONS_ARR ] ;
s t r u c t doca_f low_fwd fwd ;
s t r u c t d o c a _ f l o w _ p i p e _ c f g p i p e _ c f g ;

memset(&match , 0 , s i z e o f ( match ) ) ;
memset(& a c t i o n s , 0 , s i z e o f ( a c t i o n s ) ) ;
memset(&fwd , 0 , s i z e o f ( fwd ) ) ;
memset(& p i p e _ c f g , 0 , s i z e o f ( p i p e _ c f g ) ) ;

p i p e _ c f g . a t t r . name = " HAIRPIN_PIPE " ;
p i p e _ c f g . a t t r . t y p e = DOCA_FLOW_PIPE_BASIC ;
p i p e _ c f g . match = &match ;
a c t i o n s _ a r r [ 0 ] = &a c t i o n s ;
p i p e _ c f g . a c t i o n s = a c t i o n s _ a r r ;
p i p e _ c f g . a t t r . i s _ r o o t = t r u e ;
p i p e _ c f g . a t t r . n b _ a c t i o n s = NB_ACTIONS_ARR ;
p i p e _ c f g . p o r t = p o r t ;

/ * 5 t u p l e match * /
match . o u t e r . l 4 _ t y p e _ e x t = DOCA_FLOW_L4_TYPE_EXT_TCP ;
match . o u t e r . l 3 _ t y p e = DOCA_FLOW_L3_TYPE_IP4 ;
match . o u t e r . i p 4 . s r c _ i p = 0 x f f f f f f f f ;
match . o u t e r . i p 4 . d s t _ i p = 0 x f f f f f f f f ;
match . o u t e r . t c p . l 4 _ p o r t . s r c _ p o r t = 0 x f f f f ;
match . o u t e r . t c p . l 4 _ p o r t . d s t _ p o r t = 0 x f f f f ;

/ * f o r w a r d i n g t r a f f i c t o o t h e r p o r t * /
fwd . t y p e = DOCA_FLOW_FWD_PORT;
fwd . p o r t _ i d = p o r t _ i d ^ 1 ;

r e t u r n d o c a _ f l o w _ p i p e _ c r e a t e (& p i p e _ c f g , &fwd , NULL, p i p e ) ;
}

Another important building block of of sample application is the function that adds
pipe entries. Similarly to P4 (or OpenFlow), the function adds entries that are going to
be used to match against the information of incoming packets. In the following example,
we add a single entry having dst_ip = 8.8.8.8, src_ip = 1.2.3.4, dst_port
= 80, and src_port = 1234. The function add_hairpin_pipe_entry is used to
add an entry to a hairpin pipe in a networking context. It takes a struct doca_flow_pipe
representing the pipe and a struct doca_flow_port representing the port as pa-
rameters. Inside the function, it initializes several data structures including struct
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doca_flow_match and struct doca_flow_actions. It sets up matching cri-
teria for IPv4/TCP traffic with specific source and destination IP addresses and port num-
bers. The function then adds this entry to the pipe using doca_flow_pipe_add_entry.
Subsequently, it processes the added entry on the specified port using doca_flow_
entries_process and checks the processing status. This function processes entries
in the queue. The application must invoke this function to complete flow rule offloading
and to receive the flow rule’s operation status. If the entry is successfully processed, it
returns DOCA_SUCCESS, otherwise, it returns an appropriate error code.

s t a t i c d o c a _ e r r o r _ t
a d d _ h a i r p i n _ p i p e _ e n t r y ( s t r u c t d o c a _ f l o w _ p i p e * pipe , s t r u c t d o c a _ f l o w _ p o r t * p o r t )
{

s t r u c t doca_f low_match match ;
s t r u c t d o c a _ f l o w _ a c t i o n s a c t i o n s ;
s t r u c t d o c a _ f l o w _ p i p e _ e n t r y * e n t r y ;
s t r u c t e n t r i e s _ s t a t u s s t a t u s ;
d o c a _ e r r o r _ t r e s u l t ;
i n t n u m _ o f _ e n t r i e s = 1 ;

/ * example 5− t u p l e t o f o r w a r d * /
doca_be32_ t d s t _ i p _ a d d r = BE_IPV4_ADDR ( 8 , 8 , 8 , 8 ) ;
doca_be32_ t s r c _ i p _ a d d r = BE_IPV4_ADDR ( 1 , 2 , 3 , 4 ) ;
doca_be16_ t d s t _ p o r t = r t e _ c p u _ t o _ b e _ 1 6 ( 8 0 ) ;
doca_be16_ t s r c _ p o r t = r t e _ c p u _ t o _ b e _ 1 6 ( 1 2 3 4 ) ;

memset(& s t a t u s , 0 , s i z e o f ( s t a t u s ) ) ;
memset(&match , 0 , s i z e o f ( match ) ) ;
memset(& a c t i o n s , 0 , s i z e o f ( a c t i o n s ) ) ;

match . o u t e r . i p 4 . d s t _ i p = d s t _ i p _ a d d r ;
match . o u t e r . i p 4 . s r c _ i p = s r c _ i p _ a d d r ;
match . o u t e r . t c p . l 4 _ p o r t . d s t _ p o r t = d s t _ p o r t ;
match . o u t e r . t c p . l 4 _ p o r t . s r c _ p o r t = s r c _ p o r t ;

r e s u l t = d o c a _ f l o w _ p i p e _ a d d _ e n t r y ( 0 , p ipe , &match , &a c t i o n s , NULL, NULL,
0 , &s t a t u s , &e n t r y ) ;

i f ( r e s u l t != DOCA_SUCCESS)
r e t u r n r e s u l t ;

r e s u l t = d o c a _ f l o w _ e n t r i e s _ p r o c e s s ( p o r t , 0 , DEFAULT_TIMEOUT_US
, n u m _ o f _ e n t r i e s ) ;

i f ( r e s u l t != DOCA_SUCCESS)
r e t u r n r e s u l t ;

i f ( s t a t u s . n b _ p r o c e s s e d != n u m _ o f _ e n t r i e s | | s t a t u s . f a i l u r e )
r e t u r n DOCA_ERROR_BAD_STATE;

r e t u r n DOCA_SUCCESS;
}

Then, we initialize the DOCA Flow API function and call the previously defined
functions to create and populate DOCA pipes. In this example, we create a pipe for each
existing port. The flow_hairpin function orchestrates the configuration of hairpin
networking scenarios using the DOCA library. It initializes the necessary DOCA flow
resources and ports, then enters a loop where it iterates through each port, creating a
hairpin pipe and adding an entry to it. After each iteration, it waits for a brief period
for packets to arrive. This process continues indefinitely until manually stopped. Upon
completion, it properly stops the DOCA flow ports and releases the associated resources.
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# i n c l u d e < s t r i n g . h>
# i n c l u d e < u n i s t d . h>
# i n c l u d e < r t e _ b y t e o r d e r . h>
# i n c l u d e < d o c a _ l o g . h>
# i n c l u d e < doca_f low . h>
# i n c l u d e " flow_common . h "

DOCA_LOG_REGISTER(FLOW_HAIRPIN ) ;

d o c a _ e r r o r _ t
f l o w _ h a i r p i n ( i n t nb_queues )
{

i n t i n c = 0 ;
i n t n b _ p o r t s = 2 ;
s t r u c t d o c a _ f l o w _ r e s o u r c e s r e s o u r c e = { 0 } ;
u i n t 3 2 _ t n r _ s h a r e d _ r e s o u r c e s [DOCA_FLOW_SHARED_RESOURCE_MAX] = { 0 } ;
s t r u c t d o c a _ f l o w _ p o r t * p o r t s [ n b _ p o r t s ] ;
s t r u c t d o c a _ f l o w _ p i p e * p i p e ;
d o c a _ e r r o r _ t r e s u l t ;
i n t p o r t _ i d ;

r e s u l t = i n i t _ d o c a _ f l o w ( nb_queues , " vnf , hws " , r e s o u r c e , n r _ s h a r e d _ r e s o u r c e s ) ;
i f ( r e s u l t != DOCA_SUCCESS) {

DOCA_LOG_ERR( " F a i l e d t o i n i t DOCA Flow : %s " ,
d o c a _ g e t _ e r r o r _ s t r i n g ( r e s u l t ) ) ;

r e t u r n r e s u l t ;
}

r e s u l t = i n i t _ d o c a _ f l o w _ p o r t s ( n b _ p o r t s , p o r t s , t r u e ) ;
i f ( r e s u l t != DOCA_SUCCESS) {

DOCA_LOG_ERR( " F a i l e d t o i n i t DOCA p o r t s : %s " ,
d o c a _ g e t _ e r r o r _ s t r i n g ( r e s u l t ) ) ;

d o c a _ f l o w _ d e s t r o y ( ) ;
r e t u r n r e s u l t ;

}

w h i l e ( 1 ) {
f o r ( p o r t _ i d = 0 ; p o r t _ i d < n b _ p o r t s ; p o r t _ i d ++) {

r e s u l t = c r e a t e _ h a i r p i n _ p i p e ( p o r t s [ p o r t _ i d ] , p o r t _ i d , &p i p e ) ;
i f ( r e s u l t != DOCA_SUCCESS) {

DOCA_LOG_ERR( " F a i l e d t o c r e a t e p i p e : %s " ,
d o c a _ g e t _ e r r o r _ s t r i n g ( r e s u l t ) ) ;

s t o p _ d o c a _ f l o w _ p o r t s ( n b _ p o r t s , p o r t s ) ;
d o c a _ f l o w _ d e s t r o y ( ) ;
r e t u r n r e s u l t ;

}

r e s u l t = a d d _ h a i r p i n _ p i p e _ e n t r y ( p ipe , p o r t s [ p o r t _ i d ] ) ;
i f ( r e s u l t != DOCA_SUCCESS) {

DOCA_LOG_ERR( " F a i l e d t o add e n t r y : %s " ,
d o c a _ g e t _ e r r o r _ s t r i n g ( r e s u l t ) ) ;

s t o p _ d o c a _ f l o w _ p o r t s ( n b _ p o r t s , p o r t s ) ;
d o c a _ f l o w _ d e s t r o y ( ) ;
r e t u r n r e s u l t ;

}
}

DOCA_LOG_INFO( " t s t 2 : %i " , i n c ) ;
DOCA_LOG_INFO( " Wait few s e c o n d s f o r p a c k e t s t o a r r i v e " ) ;
s l e e p ( 5 ) ;
}

s t o p _ d o c a _ f l o w _ p o r t s ( n b _ p o r t s , p o r t s ) ;
d o c a _ f l o w _ d e s t r o y ( ) ;
r e t u r n DOCA_SUCCESS;

}
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Overall, the function provides a streamlined approach to setting up and managing
hairpin configurations across multiple ports for networking tasks. The full code is avail-
able at our GitHub.14 Next, we compile and run the code. To compile, we must ensure
that DOCA is on the Linux path before running the code.

root@smartNIC : / # e x p o r t PKG_CONFIG_PATH = : / o p t / me l l anox / doca / \
l i b / aa rch64 − l i n u x gnu / p k g c o n f i g : / o p t / \
me l l anox / dpdk / l i b / aa rch64 − l i n u x −gnu / p k g c o n f i g \
\ : / o p t / me l l anox / f l e x i o / l i b / p k g c o n f i g

Then, we compile with Meson and execute the DOCA application.

root@smartNIC : / app # meson b u i l d
root@smartNIC : / app # cd b u i l d
root@smartNIC : / app / b u i l d # n i n j a
root@smartNIC : / app / b u i l d # . / d o c a _ f l o w _ h a i r p i n \

−a a u x i l i a r y : mlx5_core . s f . 4 , dv_f low_en =2 \
−a a u x i l i a r y : mlx5_core . s f . 5 , dv_f low_en =2 −− − l 60

Once we have done that, we can start sending packets to our DOCA applica-
tion. Figure 2.15(a) illustrates the TRex Traffic Generator15 sending TCP packets to the
BlueField-2 Soc. Observe that the BlueField-2 is handling almost 30Mpps (millions of
packet per second) in both directions. As the whole packet processing is offloaded using
the DOCA application discussed, we observe that the ARM cores in the SoC subsystem
are completely not used (see Figure 2.15(b).

2.7.2. Hands-on with Nvidia Connectx SmartNIC offload capabilities

In this example, we will showcase the offload capabilities of the Nvidia Connectx Smart-
NIC. We will compare the performance of a software router with and without offloads. To
implement the software router, we will use Vector Packet Processing (VPP) [Barach et al. 2018],
a high-performance network stack that supports different data planes (Linux, RDMA,
and DPDK). VPP can be used as vSwitches, vRouters, Gateways, Firewalls, and Load-
Balancers. The reference traffic generator from DPDK, Pktgen-DPDK, will be used to
stress test VPP. It can generate 100Gbps using a single CPU core. We will conduct the
tests using Nvidia Connectx-6 SmartNIC, which is available on testbeds like FABRIC and
RNP Testbed Service16 to facilitate replication of this example.

2.7.2.1. Setting up the VPP SmartNIC

To begin with, you need to recognize the ConnectX SmartNIC network interfaces and
take note of their name, PCI address, and MAC address. To list all network interfaces,
including the necessary details, you can use the following show command. However, only
rows 3 and 4 will be utilized, which correspond to ConnectX-6 physical interfaces.

14https://github.com/smartness2030/sbrc24-minicurso-smartnic
15https://trex-tgn.cisco.com/
16https://www.rnp.br/en/research-development/testbeds
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(a) TRex Traffic Generator when running sample application on
BlueField-2.

(b) BlueField-2 SoC CPU usage using htop command in Linux.

Figure 2.15. Running sample application on BlueField-2 SoC.

ubuntu@vpp −node : ~ $ sudo lshw − c l a s s ne twork − b u s i n f o

Bus i n f o Device C l a s s D e s c r i p t i o n
=======================================================
pci@0000 : 0 3 : 0 0 . 0 ne twork V i r t i o ne twork d e v i c e
v i r t i o @ 1 enp3s0 ne twork E t h e r n e t i n t e r f a c e
pci@0000 : 0 7 : 0 0 . 0 enp7s0np0 ne twork MT28908 Family [ ConnectX −6]
pci@0000 : 0 8 : 0 0 . 0 enp8s0np0 ne twork MT28908 Family [ ConnectX −6]
pci@0000 : 0 9 : 0 0 . 0 enp9s0 ne twork MT28908 Family

The first column of the output displays the PCI address, which is used for both
VPP_IF#_PCI and VPP_IF#_NAME. VPP_IF#_NAME is used as the interface name
on VPP when using the DPDK backend. The second column represents the interface
name on Linux, which is denoted by VPP_IF#.
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ubuntu@vpp −node : ~ $ VPP_IF1_PCI = 0 7 : 0 0 . 0
ubuntu@vpp −node : ~ $ VPP_IF1_NAME=" H u n d r e d G i g a b i t E t h e r n e t 7 / 0 / 0 "
ubuntu@vpp −node : ~ $ VPP_IF1=enp7s0np0
ubuntu@vpp −node : ~ $ VPP_IF2=enp8s0np0
ubuntu@vpp −node : ~ $ VPP_IF2_NAME=" H u n d r e d G i g a b i t E t h e r n e t 8 / 0 / 0 "
ubuntu@vpp −node : ~ $ VPP_IF2_PCI = 0 8 : 0 0 . 0

As an initial baseline, we will run VPP without any offload, using only the Linux
networking stack. To increase performance, we need to configure the IP address on both
interfaces and set the MTU to 9000.

ubuntu@vpp −node : ~ $ sudo i f c o n f i g $VPP_IF1 mtu 9000
ubuntu@vpp −node : ~ $ sudo i f c o n f i g $VPP_IF1 1 9 2 . 1 6 8 . 0 . 2 / 2 4
ubuntu@vpp −node : ~ $ sudo i f c o n f i g $VPP_IF2 mtu 9000
ubuntu@vpp −node : ~ $ sudo i f c o n f i g $VPP_IF2 1 9 2 . 1 6 8 . 1 . 2 / 2 4

Enabling IP Forwarding is necessary to route packets through different interfaces.
If using a firewall on your Linux host, consider adding the following rules using nft or
iptables.

ubuntu@vpp −node : ~ $ sudo s y s c t l −w n e t . i pv4 . i p _ f o r w a r d =1

# n f t r u l e s
ubuntu@vpp −node : ~ $ sudo n f t i n s e r t r u l e i p f i l t e r \

FORWARD i i f n a m e $VPP_IF1 oi fname $VPP_IF2 \
c o u n t e r a c c e p t

ubuntu@vpp −node : ~ $ sudo n f t i n s e r t r u l e i p f i l t e r \
FORWARD i i f n a m e $VPP_IF2 oi fname $VPP_IF1 \
c o u n t e r a c c e p t

# i p t a b l e s r u l e s
ubuntu@vpp −node : ~ $ sudo i p t a b l e s −A FORWARD − i $VPP_IF1 \

−o $VPP_IF2 − j ACCEPT
ubuntu@vpp −node : ~ $ sudo i p t a b l e s −A FORWARD − i $VPP_IF2 \

−o $VPP_IF1 − j ACCEPT

For this example, we will be using Version 24.02 of VPP. To deploy and run it,
you can use the docker compose file provided in the vpp folder of the GitHub repository.
Initially, VPP will run with a custom configuration file called startup-nodpdk.conf
which disables DPDK and enables the use of other datapaths.

. . .
p l u g i n s {

## Enab le a l l p l u g i n s by d e f a u l t and t h e n s e l e c t i v e l y d i s a b l e s p e c i f i c p l u g i n s
p l u g i n d p d k _ p l u g i n . so { d i s a b l e }

}
. . .

Start VPP container in the background using docker compose up with “-d” flag
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ubuntu@vpp −node : ~ $ d oc ke r compose up −d

To simplify running vppctl from within the container, create an alias using the
command line. This tool is used to configure VPP, including the interfaces and IP ad-
dresses, based on the variables set earlier in this section. If you want to use native Linux
interfaces on VPP without any additional offload, you can specify the host-interface
type.

ubuntu@vpp −node : ~ $ a l i a s v p p c t l =" d oc ke r compose exec vpp v p p c t l "
ubuntu@vpp −node : ~ $ v p p c t l c r e a t e hos t − i n t e r f a c e name $VPP_IF1
ubuntu@vpp −node : ~ $ v p p c t l s e t i n t i p a d d r e s s hos t −$VPP_IF1 \

1 9 2 . 1 6 8 . 0 . 2 / 2 4
ubuntu@vpp −node : ~ $ v p p c t l s e t i n t e r f a c e s t a t e hos t −$VPP_IF1 up
ubuntu@vpp −node : ~ $ v p p c t l c r e a t e hos t − i n t e r f a c e name $VPP_IF2
ubuntu@vpp −node : ~ $ v p p c t l s e t i n t i p a d d r e s s hos t −$VPP_IF2 \

1 9 2 . 1 6 8 . 1 . 2 / 2 4
ubuntu@vpp −node : ~ $ v p p c t l s e t i n t e r f a c e s t a t e hos t −$VPP_IF2 up

Use the following command to confirm that the interface name, IP address, and
state are as intended.

ubuntu@vpp −node : ~ $ v p p c t l show i n t e r f a c e a d d r e s s

hos t −enp7s0np0 ( up ) :
L3 1 9 2 . 1 6 8 . 0 . 2 / 2 4

hos t −enp8s0np0 ( up ) :
L3 1 9 2 . 1 6 8 . 1 . 2 / 2 4

l o c a l 0 ( dn ) :

In the following section, VPP_IF1 MAC address needs to be configured on Pktgen-
DPDK, so take note of it using the ip link command and referring to the value just
after link/ether, which in the following example is 10:70:fd:e5:cd:60.

ubuntu@vpp −node : ~ $ i p l i n k show $VPP_IF1

3 : enp7s0np0 : <BROADCAST, MULTICAST, UP ,LOWER_UP> mtu 9000 q d i s c mq s t a t e UP mode \
DEFAULT group d e f a u l t q l e n 1000

l i n k / e t h e r 1 0 : 7 0 : fd : e5 : cd : 6 0 brd f f : f f : f f : f f : f f : f f

2.7.2.2. Setting up the Pktgen-DPDK SmartNIC

DPDK applications use large blocks of contiguous memory called hugepages. These
blocks can be either 2MB or 1GB in size. For instance, to run Pktgen-DPDK, we need to
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allocate 2048 blocks of 2MB in size.

ubuntu@pktgen −node : ~ $ echo 2048 | sudo t e e / s y s / k e r n e l /mm/ hugepages / \
hugepages −2048kB / n r _ h u g e p a g e s

Next, we have to create a container that has Pktgen-DPDK 24.03.1 and DPDK
24.03 by utilizing the Dockerfile in the pktgen-dpdk folder of the GitHub repository.
We can leverage Docker Compose to build the Pktgen-DPDK container.

ubuntu@pktgen −node : ~ $ do ck e r compose b u i l d

Pktgen-DPDK is an interactive application. To enable it to refresh the screen and
display real-time information, we use the docker-compose run command. We also
need to provide Pktgen-DPDK with the PCI address of the interfaces and the CPU cores
that we intend to use.

ubuntu@pktgen −node : ~ $ do ck e r compose run −−rm pktgen −dpdk \
pk tg en −a 0 8 : 0 0 . 0 −a 0 9 : 0 0 . 0 − l 0−4 \
−n 3 −− −m " [ 1 : 3 ] . 0 , [ 2 : 4 ] . 1 " − j

Afterward, Pktgen-DPDK will provide a prompt where we can set the parameters
of the traffic we want to generate. In this example, we will set the protocol to UDP, the
packet size to 9000, and the destination MAC address to VPP_IF1 MAC address noted
at the end of section 2.8.2.1. The command start 0 initiates the packet generation on
port 0 using the provided profile. Additionally, enable 1 process will allow port 1
to reply to ARP requests, which are necessary to establish end-to-end communication.

Pktgen : / > s e t 0 p r o t o udp
Pktgen : / > s e t 0 s i z e 9000
Pktgen : / > s e t 0 d s t mac 1 0 : 7 0 : fd : e5 : cd : 6 0
Pk tgen : / > s t a r t 0
Pk tgen : / > e n a b l e 1 p r o c e s s

Pktgen-DPDK will start updating the statistics on the top of the page, where we
can track the transmitted rate (TX) on port 0 and the receive rate on port 1 (RX) on line
6 (MBits/s Rx/Tx). In the following example, Pktgen-DPDK is transmitting 98.4 Gbps
(100753 Mbps / 1024) and receiving only 17 Gbps (17468 Mbps / 1024) using the Linux
datapath.
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P o r t s 0−1 of 2 <Main Page > C o p y r i g h t ( c ) <2010 −2023 > , I n t e l C o r p o r a t i o n
P o r t : F l a g s : 0 : P−−−−−− S i n g l e 1 : P−−I −−− S i n g l e

Link S t a t e : <UP−100000 −FD> <UP−100000 −FD>
−−− T o t a l Rate −−−
P k t s / s Rx : 0 242191
242191

Tx : 1396864 0
1396864
MBits / s Rx / Tx : 0 /100753 17468/0
17468/100753
. . .

It is important to keep Pktgen running because we will use it to verify the through-
put of the SmartNIC using offloads with RDMA and DPDK.

2.7.2.3. Setting up the VPP SmartNIC with RDMA offload

VPP provides a driver for RDMA (Remote Direct Memory Access) devices17, which uses
RDMA APIs (Application Programming Interfaces) that are available on Nvidia Con-
nectX SmartNICS. This driver helps to offload Ethernet packets. To use it, you need to
restart the VPP container to clean up the configurations and configure the RDMA inter-
faces.

d oc ke r compose r e s t a r t

In this example, RDMA type interfaces are created to use the RDMA device driver.
Physical interfaces are referenced using the VPP_IF# variable defined earlier. You can
use the following command to confirm that the interface name, IP address, and state are
as intended.

ubuntu@vpp −node : ~ $ a l i a s v p p c t l =" d oc ke r compose exec vpp v p p c t l "
ubuntu@vpp −node : ~ $ v p p c t l c r e a t e i n t e r f a c e rdma hos t − i f $VPP_IF1 name rdma −0
ubuntu@vpp −node : ~ $ v p p c t l s e t i n t i p a d d r e s s rdma −0 1 9 2 . 1 6 8 . 0 . 2 / 2 4
ubuntu@vpp −node : ~ $ v p p c t l s e t i n t e r f a c e s t a t e rdma −0 up
ubuntu@vpp −node : ~ $ v p p c t l c r e a t e i n t e r f a c e rdma hos t − i f $VPP_IF2 name rdma −1
ubuntu@vpp −node : ~ $ v p p c t l s e t i n t i p a d d r e s s rdma −1 1 9 2 . 1 6 8 . 1 . 2 / 2 4
ubuntu@vpp −node : ~ $ v p p c t l s e t i n t e r f a c e s t a t e rdma −1 up

Again, use the following command to confirm that the interface name, IP address,
and state are as intended.

ubuntu@vpp −node : ~ $ v p p c t l show i n t e r f a c e a d d r e s s

17https://fd.io/docs/vpp/master/developer/devicedrivers/rdma.html
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l o c a l 0 ( dn ) :
rdma −0 ( up ) :

L3 1 9 2 . 1 6 8 . 0 . 2 / 2 4
rdma −1 ( up ) :

L3 1 9 2 . 1 6 8 . 1 . 2 / 2 4

Once you have confirmed that everything is correctly set up, go back to Pktgen-
DPDK and verify that the receiving rate has increased by a factor of approximately 2.6
times to 44 Gbps (45348 Mbps / 1024).

| P o r t s 0−1 of 2 <Main Page > C o p y r i g h t ( c ) <2010 −2023 > , I n t e l C o r p o r a t i o n
P o r t : F l a g s : 0 : P−−−−−− S i n g l e 1 : P−−I −−− S i n g l e

Link S t a t e : <UP−100000 −FD> <UP−100000 −FD>
−−− T o t a l Rate −−−
P k t s / s Rx : 0 628729
628729

Tx : 1385728 0
1385728
MBits / s Rx / Tx : 0 /99949 45348/0
45348/99949

2.7.2.4. Setting up the VPP SmartNIC with DPDK offload

In this section, we will be using DPDK to accelerate VPP. As previously mentioned, we
need to allocate hugepages to use DPDK.

ubuntu@vpp −node : ~ $ echo 2048 |
sudo t e e / p r oc / s y s / vm / n r _ h u g e p a g e s

To begin with, stop the VPP container and run it by explicitly setting the compose-yaml
file using “-f”. This will enable VPP’s default configuration file and initialize it with the
DPDK plugin.

ubuntu@vpp −node : ~ $ d oc ke r compose down
ubuntu@vpp −node : ~ $ d oc ke r compose − f compose . yaml up −d

VPP will automatically detect and create interfaces that are compatible with the
DPDK plugin. You can verify this by using the following command.

ubuntu@vpp −node : ~ $ a l i a s v p p c t l =" d oc ke r compose exec vpp v p p c t l "
ubuntu@vpp −node : ~ $ v p p c t l show i n t e r f a c e
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Name Idx S t a t e MTU
H u n d r e d G i g a b i t E t h e r n e t 7 / 0 / 0 1 down 9 0 0 0 / 0 / 0 / 0
H u n d r e d G i g a b i t E t h e r n e t 8 / 0 / 0 2 down 9 0 0 0 / 0 / 0 / 0
H u n d r e d G i g a b i t E t h e r n e t 9 / 0 / 0 / 4 0 9 6 3 down 9 0 0 0 / 0 / 0 / 0
l o c a l 0 0 down 0 / 0 / 0 / 0

Next, configure the IP address and interface state by using the VPP_IF#_NAME
variable that was set before.

ubuntu@vpp −node : ~ $ a l i a s v p p c t l =" d oc ke r compose exec vpp v p p c t l "
ubuntu@vpp −node : ~ $ v p p c t l s e t i n t i p a d d r e s s $VPP_IF1_NAME 1 9 2 . 1 6 8 . 0 . 2 / 2 4
ubuntu@vpp −node : ~ $ v p p c t l s e t i n t e r f a c e s t a t e $VPP_IF1_NAME up
ubuntu@vpp −node : ~ $ v p p c t l s e t i n t i p a d d r e s s $VPP_IF2_NAME 1 9 2 . 1 6 8 . 1 . 2 / 2 4
ubuntu@vpp −node : ~ $ v p p c t l s e t i n t e r f a c e s t a t e $VPP_IF2_NAME up

Finally, return to Pktgen-DPDK and check if the receiving rate has increased by
approximately 5.8 times compared to the original test, to 99.2 Gbps (101543 Mbps /
1024).

0−1 of 2 <Main Page > C o p y r i g h t ( c ) <2010 −2023 > , I n t e l C o r p o r a t i o n
P o r t : F l a g s : 0 : P−−−−−− S i n g l e 1 : P−−I −−− S i n g l e

Link S t a t e : <UP−100000 −FD> <UP−100000 −FD>
−−− T o t a l Rate −−−
P k t s / s Rx : 0 1407830
1407830

Tx : 1408000 0
1408000
MBits / s Rx / Tx : 0 /101556 101543/0
101543/101556
. . .

2.7.3. Hands-on with Netronome Agilio CX

This tutorial provides a basic introduction to P4 programming on Netronome SmartNICs
Agilio CX 2x10Gb. Here, you will find all the steps for installing and setting up the
development environment, as well as presenting, implementing, and running a simple P4
program on a Netronome SmartNIC. The goal is to provide a quick learning curve by
covering only the essential topics up to the implementation of the first program. To get
complete step-by-step instructions, please refer to our public repository.

2.7.3.1. Installation and Environment Setup

To install the necessary drivers and modules and configure the environment, follow the
instructions below, as root:

sm ar tne s s@hos t # cd ~ /
sm ar tne s s@hos t # g i t c l o n e h t t p s : / / g i t h u b . com / \

guimvmatos / SBRC24NetronomeTutor ia l . g i t
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After this, access the Agilio-P4-SmartNIC directory and follow the tutorial in-
structions to install the required drivers and modules. By following these steps, you will
be ready to start developing and running your P4 programs on Netronome SmartNIC. In
the installation directory, you will find a lot of Netronome related documents, that can be
useful in case you want to deep into this technology.

2.7.3.2. Details about Netronome architecture

The Netronome SmartNIC uses single-root input/output virtualization (SRIOV), which
enables virtual functions (VFs) to be created from a physical function (PF). The VFs thus
share the resources of a PF, while VFs remain isolated from each other. The isolated VFs
are typically assigned to virtual machines (VMs) on the host. This way, the VFs allow
the VMs to directly access the PCI device, bypassing the host kernel. In this tutorial,
we have two physical (p0, p1) and four virtual interfaces (Vf0.0 to Vf0.3). We will
work with a P4 program that implements simple IPv6 forwarding, which can be found at
IPv6Forwarding.

2.7.3.3. Deployment

Here we will show how to deploy, configure, and debug your programs on Netronome
SmartNICs. We are taking into consideration that you already clone this repository and
that your environment is configured. Once you have your Netronome configured on your
machine, you need to locate the src/p4-16 folder inside the Agilio-P4-SmartNIC
directory. To get started, ensure you are inside the p4-16 folder, and then create a folder
called SimpleIPv6. After that, copy the contents of the IPv6Forwarding folder
into the folder you just created:

sm ar tne s s@hos t # cd / r o o t / SBRC24NetronomeTutor ia l / A g i l i o −P4−SmartNIC / s r c / p4 −16
sm ar tne s s@hos t # mkdir S imple IPv6 \&\& cd Simple IPv6 /
sm ar tne s s@hos t # cp . . / . . / . . / . . / IPv6Forward ing / * . /

For P4 programming using Netronome, these files are all that is needed. The
ipv6_forwarding.p4 file represents our program itself. The user_config.json
is the file that will populate the control plane tables. As this tutorial is for those who are
already familiar with the P4 programming language, we will not go into details. However,
a very common issue for those who are starting to program using Netronome SmartNICs
is how to perform interface assignments in the control plane table. When we are working
with Netronome SmartNICs, we have physical and virtual interfaces, and you can con-
figure this setting by editing /lib/systemd/system/nfp-sdk6-rte.service.
Locate and change the following line.

Envi ronment =NUM_VFS=4
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With this configuration, you will have 4 virtual interfaces called VFs. And they
can be instantiated in the control plane tables as v0.0, v0.1, v0.2, and v0.3. If
you want to use the physical interfaces, you should refer to them as p0 and p1. In
the user_config.json file, we can find examples of how to populate the control
plane tables using the aforementioned nomenclature. Now that we have copied the two
necessary files, we should call the compiler passing the P4 file as a parameter to create
firmware. Then, we will deploy the firmware to the board, and finally, we will populate
the control plane tables. To do this, execute the following commands:

sm ar tne s s@hos t # sudo . / o p t / ne t ronome / p4 / b i n / n f p 4 b u i l d
−− nfp4c \ p4 \ _ v e r s i o n 16
−−no−debug − i n f o −p o u t −o f i r m w a r e . nffw
− l l i t h i u m −4 ipv6 \ _ f o r w a r d . p4

sm ar tne s s@hos t # sudo . / o p t / ne t ronome / p4 / b i n / r t e c l i de s ign − l o a d
− f f i r m w a r e . nffw −p o u t / p i f \ _ d e s i g n . j s o n

sm ar tne s s@hos t # sudo / o p t / ne t ronome / p4 / b i n / r t e c l i \
c o n f i g − r e l o a d −c u s e r \ _ c o n f i g . j s o n

If you encounter issues with initializing the service or deploying the program,
you can find the logs in /var/log/nfp-sdk6-rte.log and better understand what
is happening. If you want, you can check the configured rules about the control plane
configuration.

sm ar tne s s@hos t # sudo . / o p t / ne t ronome / p4 / b i n / r t e c l i t a b l e s
− i 0 l i s t − r u l e s

Now that your board is properly configured, to run the test programs, open more
two shells, navigate to /Agilio-P4-SmartNIC/src/p4-16/SimpleIPv6 direc-
tory, and in the first shell, run the command python3 receive.py. The program will
execute and wait for any packet received on interface v0.3. After that, in the second ter-
minal, run python3 send_pkt.py. A packet will be sent on interface v0.0 destined
for v0.3. If the execution of the programs was successful, congratulations! You have
completed this tutorial, and the program is ready for the next step. If you are interested in
delving deeper and performing more advanced functions, please refer to our public repos-
itory. There, you will also find a tutorial for deploying a more advanced program, using
SRv6 to connect traffic from multiple virtual machines.
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2.8. Challenges and Future Trends
Standartization of SmartNICs. Despite existing efforts towards defining a common NIC
architecture [(PNA) 2023] and programming framework such as P4 language, we are still
far from having standard programming interfaces fully available in all SmartNICs. As
we have seen in previous sections, there are multiple ways to program SmartNICs. The
lack of proper programming standards across multiple SmartNIC vendors hinders the
wide adoption of network offloaded solutions and suffers from interoperability hazards
amongst hardware platforms.

Variable Performance. Packet processing performance in SmartNIC is subject to signif-
icant variation across programs, traffic types, and table entries – and, therefore, line-speed
processing is not an automatic guarantee. There are two reasons for that. As discussed,
SmartNICs usually follow a processing model where a packet is assigned to a particular
processing engine in a run-to-completion manner. Second, existing P4 compilers focus on
switch ASICs, where resource constraints are the first-order concern, and performance is
guaranteed as long as the packed program fits inside the device. [Xing et al. 2023] argue
that P4 compilers need to be revised in order to consider SmartNIC architecture nature. A
few studies have been done to understand the performance of SmartNICs offloaded pro-
grams (e.g., [Viegas et al. 2021, Katsikas et al. 2021]). However, programmers still need
to know hardware platform details to extract the most out of the offloaded program. In this
context, automatic performance estimation of SmartNIC code would help programmers
reduce the time developing/testing applications.

Limited Resource Orchestration. SmartNIC can run different offloaded codes from dif-
ferent applications/tenants. That can be achieved using SoC cores, or specialized-ASIC
processing units. Despite a few related studies [Saquetti et al. 2020], little has yet been
done to provide a unified resource orchestration layer for SmartNICs, allowing to run
multiple isolated applications on top of the same platform. NVIDIA BlueField, for in-
stance, allows running multiple DOCA applications in the SoC. However, there is little
support to isolate them with current virtualization techniques. Others vendors, such as
Netronome, do not provide any support for isolation, or resource orchestration. There-
fore, as SmartNICs follow a run-to-completion model, an application can interfere with
the performance of others running on the same card.

Limited Programmability. Each architecture provides a set of programmable primitives
and constraints. For instance, Netronome provided limited coherent access to external
memory and a lack of a complex arithmetic logic unit. These constraints lead to some
workarounds, like employing fixed-point representations of real numbers. These methods
can constrain the accuracy of the computing performed in the data plane. In turn, FPGA-
based SmartNICs can provide rich hardware primitives as far as the hardware description
can be synthesized. In addition to the aforementioned limited programmability, debug-
ging/troubleshooting them also requires additional efforts from programmers.

Application offloading. SmartNICs and hardware accelerations enable a plethora of sys-
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tem optimizations. However, it is still not clear which application to offload and, more
importantly, which parts of the application to offload. In part, this is due to the exist-
ing hardware limitations (e.g., not all applications benefit from running in a SmartNIC),
and the diversity of existing hardware architectures and programming tools. Defining a
methodology or a guideline is crucial to ensure an optimal matching between the appli-
cation’s needs and networking accelerators. Taking a packet processing application, it
is hard to grasp which part (if any) is supposed to be offloaded, and more importantly
to which acceleration technology: hardware SmartNIC, or DPDK, or XDP/eBPF, or a
combination of them. For example, [Xing et al. 2023] proposes to use Profile-Guided
Optimization to tailor P4 code to the underlying SmartNIC hardware enabling better per-
formance optimizations by leveraging knowledge about the input. Despite this effort, we
still need better development tools (e.g., specific compilers) to automatically support net-
work technology developers.

Opportunities with Compute eXpress Link (CXL). The Compute Express Link (CXL)
is an open industry-standard interconnect between processors and devices such as ac-
celerators, memory buffers, smart network interfaces, persistent memory, and solid-state
drives. Since its first release in 2019, CXL has evolved through three generations. CXL
offers coherency and memory semantics with bandwidth that scales with PCIe capacity
while achieving significantly lower latency than PCIe [Li et al. 2023]. In short, CXL
focus on tackling the following challenges: (i) coherent access to system and device
memory; (ii) memory scalability; (iii) inefficient usage of CPU/memory due to stranded
resources; and (iv) fine-grained data sharing in distributed systems. Non-coherent ac-
cesses work well for streaming I/O operations such as storage access. In the context of
networking accelerators (e.g., FPGAs or SoCs), entire data structures are moved from
system memory to the accelerator for specific functions before being moved back to the
main memory and software mechanisms are used to avoid simultaneous accesses between
CPUs and accelerators. The usage of CXL will enable a multitude of optimizations con-
cerning packet processing both in hardware and software. That will demand efficient
hardware-software co-design to explore the full potential of CXL.

2.9. Closing Remarks
The emergence of programmable network data plane technologies, particularly Smart-
NICs, has drastically changed the way network operations and management are handled.
By deploying custom networking solutions directly within network devices, operators can
have more control and make per-packet forwarding decisions at incredibly high speeds.

The growing interest from both academic and industrial sectors in SmartNICs
highlights their potential to revolutionize network performance and efficiency. Leading
companies such as Nvidia, Netronome, Intel, AMD, and Xilinx are competing to offer
hardware solutions that can offload complex networking tasks from host CPUs. This
enhances packet processing capabilities while lowering overall ownership costs.

The evolution of NICs into SmartNICs represents a journey towards greater pro-
grammability and specialization, driven by the escalating demands of modern networking
environments. However, realizing the full potential of SmartNICs requires grappling with

42º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos - SBRC 2024

Livro-texto de Minicursos 84 ©2024 SBC — Soc. Bras. de Computação



challenges related to programming, debugging, and operating these devices efficiently.
Furthermore, understanding the intricacies of SmartNIC architectures and their program-
ming ecosystems is essential for designing and deploying cutting-edge in-network so-
lutions. This chapter provides foundational insights into SmartNIC design principles,
hardware architectures, programming languages, and performance considerations. Addi-
tionally, it offers a hands-on tutorial featuring state-of-the-art SmartNICs, enabling prac-
titioners to delve deeper into the practical aspects of leveraging this transformative tech-
nology.

As SmartNICs continue to evolve and permeate various networking domains, their
impact on network performance, scalability, and innovation is poised to be profound.
By embracing and mastering SmartNIC technologies, network practitioners can unlock
new possibilities for delivering tailored, efficient, innovative, and evolvable networking
solutions.
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