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Abstract

This chapter explores the domain of generative artificial intelligence, focusing on its
transformative impact in producing network datasets. Our tutorial delves into Gener-
ative Adversarial Networks (GANs), initially pivotal in image and media synthesis but
now extended to computer networking, offering nuanced capabilities in generating syn-
thetic data and facilitating data-driven predictions, classifications, and experimentation.
This work discusses the utility of GANs in computer networks, specifically in generating
synthetic data while preserving privacy and enhancing dataset representativeness. The
tutorial section of this book chapter elucidates on generating synthetic time series data
using GANs, with practical applications ranging from telemetry data generation to cre-
ating synthetic Packet Capture (PCAP) files. Further contributions of this work include
exploring the use of synthetic data in training Reinforcement Learning (RL) agents for
resource optimization, highlighting the broader implications and emerging trends in ap-
plying generative AI in computer networks.

3.1. Introduction and Motivation
Generative artificial intelligence encompasses a suite of algorithms and models endowed
with the capacity to produce diverse forms of data, including images, videos, text, and as-
sorted digital media. In contemporary times, this paradigm has gained noteworthy traction
among individuals outside academic circles, attributed mainly to the advent of ChatGPT
[34], a prominent instance of a Large Language Model (LLM). This approach estab-
lishes a mechanism for comprehending and engendering human language expressions.
Moreover, it represents an evolutionary progression from conventional Language Mod-
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els, characterized by integrating substantial parameter magnitudes that yield exponential
enhancements in learning capabilities.

An additional category of generative models is represented by Generative Adver-
sarial Networks (GANs). Primarily introduced within the context of image synthesis,
GAN has garnered considerable attention due to its efficacy in capturing intricate and
high-dimensional data distributions. This ability is realized through two distinct Neural
Networks — an entity designated as the generator and another as the discriminator — that
engage in an interplay following the principles of game theory, as delineated in [15]. The
fundamental operational paradigm involves the generator network producing synthetic
data samples to deceive the discriminator. In parallel, the discriminator network under-
takes the role of a judge, assessing the similarity between real and generated/synthetic
data. The main objective is to generate a scenario wherein the discriminator’s capacity to
discern actual data from its synthetic counterparts is markedly diminished.

In this context, GAN has seen an extension of its application into the domain of
Computer Networks over recent years. Navidan et al. [38] have undertaken a classifica-
tion of GAN based on their specific application objectives. To illustrate, GANs can gen-
erate synthetic data to serve as inputs for distinct learning models. Alternatively, GANs
may allocate one of their constituent neural networks—the generator or the discrimina-
tor—toward data prediction or classification tasks, respectively.

The utilization of GANs in the context of Computer Networks is contingent upon
the specifics of the particular application. When employed as a synthetic data generator,
GANs work as a simulator. Within this context, the synthetic data produced emulates the
inherent distribution of the original dataset, thereby ensuring the preservation of privacy
considerations. Moreover, these networks prove instrumental in tasks such as dataset aug-
mentation and balancing, culminating in a dataset characterized by enhanced representa-
tional capacity. Consequently, the resultant model emerges as a conduit to share intricate
dynamics of real environments while obfuscating inherent complexities and maintaining
data quality integrity.

Within computer networks, the application of machine learning manifests across
distinct modalities: direct deployment within real setups, engagement within simulated
environments, or application of GANs to emulate specific environmental attributes. One
of the advantages of GAN is its ability to imitate and embody the inherent characteristics
of a given system, thereby creating a closer approximation to reality. This proficiency aug-
ments the efforts of both industrial practitioners and researchers, enabling the construction
of experimental frameworks guided toward the intelligent orchestration of resources. [16]
presents a group created in October 2023 by ATIS Alliance that aims to survey generative
AI/ML use cases across the network, demonstrating the importance of generative AI in
the context of Computer Networks.

This tutorial book chapter attempts to elucidate the fundamental principles of gen-
erating synthetic time series data using GANs. Furthermore, it will delve into the prac-
tical applications of GANs in generating telemetry data derived from a Programmable
Data Plane (PDP) and creating Packet Captures (PCAPs). This tutorial showcases the
diverse utility of synthetic data in various contexts, such as training an RL agent with the
objective of PDP resource optimization and generating realistic PCAPs.
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This chapter is structured as follows. Section 3.2 delves into the core concepts of
GANs, and Section 3.3 explores their applications in In-band Network Telemetry (INT)
and PDPs. Section 3.4 covers synthetic data generation’s theoretical and practical aspects,
including creating telemetry data and synthetic PCAP files. Section 3.5 discusses two use
cases where synthetic data can be applied. Finally, Section 3.6 summarizes key findings
and discusses emerging synthetic data generation trends and applications.

3.2. Fundamentals of Generative Adversarial Networks
This section provides a foundational overview of Generative Artificial Intelligence, intro-
ducing the core concepts and presenting a small literature survey. Section 3.2.1 delves
into the intricacies of GANs, elucidating their operational principles and demonstrating
their application in training RL agents. Section 3.2.2 covers the fundamental principles
of PCAP generation, outlining the methodologies and techniques employed in creating
synthetic network traffic data for analysis and testing purposes.

3.2.1. GANs and RL

Machine learning is commonly categorized into three paradigms: supervised, unsuper-
vised, and RL [48]. As an illustration, the well-established GAN predominantly pertains
to unsupervised learning. Within this framework are two competing modules: the gen-
erator and the discriminator. The first tries to produce synthetic data that mimics the
actual data distribution, while the second tries to distinguish between real and synthetic
data. The generator and the discriminator are trained in an adversarial manner until they
reach an equilibrium where the discriminator cannot tell the difference between real and
synthetic data (Figure 3.1).

Nevertheless, an alternative perspective emerges by considering the discrimina-
tor’s role as akin to that of a supervised learning module. This is evident in the discrimi-
nator’s utilization of actual data instances to ascertain the degree of resemblance between
the values generated by the generator and those originating from actual data sources.

GANs have found diverse applications within the ambit of Computer Networks.
Their utility spans data generation, system optimization, and data classification, as evi-
denced by existing literature [56]. The choice of the GAN variant depends on the specific
utilization context, which necessitates tailored selections to align with distinct objectives.
Although the predominant application of GAN has traditionally been within computer vi-
sion, notable strides have been taken towards their adaptation for time series network data.
Among the different GAN frameworks enlisted, including Vanilla GAN, Bidirectional
GAN (BIGAN), Conditional GAN (CGAN), InfoGAN, CycleGAN, Energy-based GAN
(EBGAN), and Least Square GAN (LSGAN), there is an inclination towards encompass-
ing time series data. Recent years have witnessed the ascendancy of specific GAN iter-
ations that have found prominence within the time series domain, including Conditional
Tabular GAN (CTGAN), DoppelGANger, and TimeGAN, which are specially tailored to
learn the intricacies of time series data [37].

The application of GAN for data generation yields versatile utility across diverse
scenarios. In this case, it can effectively address data imbalance concerns, serving to
rectify skewed datasets or serve as a mechanism to impute absent values. Its strength
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Figure 3.1: Adversarial training overview: The training pipeline is shown in figure (a),
and an illustration of the process is shown in figure (b). The GAN trains by updating the
discriminator function D (blue dashed line) and the generator function G simultaneously,
enabling D to differentiate real data samples from the distribution px (black dotted line)
from generated samples of pg (green solid line). The z axis represents the input noise, and
the x axis represents the real data domain. The arrows illustrate how mapping from z to x
imposes non-uniformity (pg) on transformed samples. Key steps include: (i) showing an
adversarial pair near convergence, (ii) illustrating the training of D to discriminate data
samples, (iii) after updates, D guides G to produce samples more akin to real data, and
(iv) with enough capacity and training steps, G and D might converge to a point where
neither can improve, as D cannot differentiate between px and pg. Adapted from [15].

extends to privacy preservation, enabling the obfuscation of individuals’ personally iden-
tifiable information. Presently, entities have emerged in the corporate landscape offering
services tailored to the treatment of sensitive data, facilitating the creation of synthetic
data generators that facilitate secure information exchange between organizations. In
certain instances, these data generators are pivotal in constructing novel datasets. Such
datasets subsequently find application within varying contexts, often in conjunction with
complementary machine learning methodologies, such as RL, as demonstrated by [24].

RL is fundamentally characterized as a machine learning paradigm wherein an au-
tonomous agent aims to optimize decision-making processes within an environment that
is not known to the agent. Central to the construct of an RL algorithm is the interplay be-
tween the agent and the environment (Figure 3.2). A set of states defines the environment,
while the agent is endowed with the capacity to execute actions upon this environment.
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The outcomes of these agent-initiated actions, in turn, produce either rewards or penalties
computed based on the observations derived from the environment. A positive environ-
mental alteration following an action elicits a reward, while a harmful impact triggers a
penalty. Thus, the overarching objective within RL is enhancing state-action pair opti-
mization through iterative trial-and-error exploration of the agent’s actions [47].

Environment

Agent

action
At

next state
St+1

reward
Rt+1

Figure 3.2: Agent-environment interaction. The diagram presented in this figure illus-
trates a sequential decision-making strategy called Markov Decision Process (MDP).
Within this framework, an agent continually interacts with the environment by taking
actions (A) at specific time steps (t) and observing subsequent states (St+1) resulting from
those actions. A reward value (Rt+1) is generated for each interaction to assess the action
effectiveness, which is expected to be maximized throughout the agent’s training process.
Adapted from [47].

Xiong et al. [49] extensively elucidates a plethora of applications of RL within the
purview of mobile networks. These applications encompass domains such as Network
Slicing, Power Control in Cellular Networks, Computation Offloading, Edge Caching,
and other segments of the mobile network architecture characterized by resource op-
timization challenges. The adeptness of RL finds resonance, particularly in scenarios
where the allocation and utilization of resources are paramount, ultimately culminating in
enhanced efficiency and performance across diverse facets of mobile networks [18].

GAN and RL used jointly remain relatively underexplored within the existing lit-
erature. A comprehensive exploration highlighting the advantages gleaned from the con-
fluence of these two methodologies is lacking. While RL has garnered substantial traction
across many domains, the prospect of its integration with GAN has yet to be examined.
Given RL’s robustness in optimizing decisions and GAN’s capacity to simulate intricate
data distributions, this intersection carries considerable potential. GANs can model and
generate realistic network traffic patterns, serving as training data for RL agents respon-
sible for testing and optimizing network configurations and policies.

However, an important issue must be considered when using RL in an actual setup
compared to a simulated scenario. Sim-to-real discrepancy is an important issue that must
be addressed in the context of mobile network research. The concept is defined as the gap
between simulation and real environments. It is not a particular problem in the field of
communication, as it can also be observed in other domains, such as computer vision,
natural language processing, robotic control, and autonomous driving [35]. The layered
construction of computer networks increases the difficulty of accurately simulating a real
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configuration, complicating the discrepancy between these approaches.

Qiang et al. [29] discussed an automatic online service configuration in network
slicing. The authors have proposed and implemented Atlas’s solution on an end-to-end
network prototype. The system aims to automate the network-slicing process to reduce the
Sim-to-Real discrepancy. To do that, they created a methodology divided into three stages,
from simulation to real network. The authors proposed using a new parameter-searching
method based on Bayesian optimization. Complementary to that work, our study aims to
show that it is possible to reduce the Sim-to-Real discrepancy using TimeGAN instead
of Bayesian optimization. So, we show the feasibility of this approach by training a RL
model and comparing its training using real and synthetic data.

The work presented by Hua et al. [24] introduces a strategy that merges deep RL
with distributional modeling to improve the allocation of resources like bandwidth among
various network slices. This technique elevates efficiency and service quality within net-
work slicing setups. By harnessing advanced methodologies from RL and distributional
modeling, this approach resolves the intricate issues of resource management within com-
plex network-slicing contexts. It’s worth noting that while the authors’ approach employs
a GAN to approximate the distribution of state-action values in an RL model, our method
primarily focuses on generating simulated environmental data to facilitate RL training.

Falahatraftar et al. [13] also proposes an approach for addressing network slicing
in heterogeneous vehicular networks using CGAN. The main idea involves partitioning
a network into multiple virtual networks to cater to different service requirements. The
authors suggest employing GANs to generate tailored network slices that match specific
vehicular communication needs. This approach aims to optimize resource allocation,
enhance communication quality, and enable efficient coexistence of various vehicular ap-
plications within the network. However, the authors trained the CGAN model using data
from a simulated scenario because of the lack of data sets from real environments.

The integration of GAN and RL techniques to estimate channel coefficients is in-
vestigated in [30]. Similar to prior research, the aim is to create synthetic data through
GAN and employ it to train RL algorithms, contributing to the refinement of the esti-
mation process. By leveraging GAN’s data generation capabilities and RL’s adaptable
learning, the proposed method enhances the precision of channel coefficient estimation.
This underscores the potential of machine learning paradigms for wireless communica-
tion applications. However, it’s important to note that the authors do not utilize a real
experimental setup or environment. Instead, they generate the dataset using Gaussian dis-
tributions for GAN training, omitting the use of real data. Obtaining actual network data
for these tasks poses significant challenges. First, network data may contain sensitive or
private information of the users or organizations, which raises ethical and legal issues for
sharing or publishing them. Second, network data may be scarce or outdated [41], espe-
cially for emerging or evolving network scenarios (e.g., 5G and beyond). Third, network
data may be biased/incomplete [10], which limits the generalization and robustness of the
network analysis models.
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3.2.2. PCAP Generation

Neural networks offer a powerful solution to the challenges of obtaining and utilizing
actual network data for analysis tasks. One of the primary advantages of employing neu-
ral networks in this context is their ability to learn complex patterns and relationships
from existing network traces, such as PCAPs (Packet Capture files), and augment exist-
ing datasets with synthetic packet traces. In this manner, network traces are augmented
without user privacy concerns – in addition to the possibility of teaching the model how
and/or where to generate anomalies.

Several papers have proposed GAN-based methods for generating different as-
pects of network traffic, such as packet headers, packet payloads, packet lengths, packet
inter-arrival times, flow features, and control-plane messages. To our knowledge, Ring et
al.[42] was the first to utilize GAN models to generate network traffic data. They lever-
aged two GAN variants, WGAN [3] and WGAN-GP [17]. PcapGAN [12] proposes a
method for generating realistic PCAP files that preserve the style and structure of real
PCAP files. The method uses a style-based GAN architecture that can control the style
of the generated packets at different levels of abstraction. The method can also gener-
ate packets with protocols, such as TCP, UDP, ICMP, ARP, and DNS. Shahid et al. [44]
combined an autoencoder with WGAN and WGAN-GP to generate IoT traffic so it could
detect rare attacks. The generated data had data distribution characteristics similar to real
data. However, the model had little improvement in detecting rare attacks due to dataset
imbalance. SIP-GAN [32] introduces a method for generating realistic SIP (Session Ini-
tiation Protocol) traffic that can be used for testing VoIP (Voice over IP) systems. The
method uses a conditional GAN architecture that can generate SIP messages with differ-
ent types, such as INVITE, ACK, BYE, CANCEL, and OPTIONS. The method can also
generate SIP messages with different attributes, such as call duration, caller ID, callee ID,
and session description. Similarly, proposes a new and generalized two-pass approach to
evaluating the quality of samples produced by the generator to produce a filtered, higher-
quality output data set.

NetShare [51] and Han et al. [20] leverage Wassertein GAN variations. The first
generates synthetic IP header traces that can be used for network analysis and anomaly
detection. The method uses a Wasserstein GAN with gradient penalty (WGAN-GP) ar-
chitecture to generate IP headers with realistic features, such as source IP address, desti-
nation IP address, protocol type, port number, and packet length. Also, it preserves the
statistical properties of the original traces, such as mean, variance, auto-correlation, and
cross-correlation. Han et al. [20] also leveraged synthetic packet payloads that can be used
for smart cybersecurity applications. The method uses a flow-based WGAN architecture
to generate packet payloads with different lengths and contents. The method also uses an
attention model based on byte embedding that can learn the correlations between different
bytes in the packet payloads. Similarly, Lee et al. [27] improved the identification accu-
racy of sparse assaults in network intrusion detection and developed a data augmentation
strategy based on the WGAN-GP model.

Soper et al. [45] introduced a two-pass approach that consists of two steps: (i)
generating synthetic network traffic data sets using existing methods; (ii) refining the syn-
thetic network traffic data sets using an error correction model based on recurrent neural
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networks (RNNs). The method can reduce errors between real and synthetic network traf-
fic data sets regarding statistical properties and classification performance. On the other
hand, Buhler et al. [8] generates live network traffic from code repositories. The method
uses a code analysis tool to extract network-related information from code files, such as
protocol type, port number, packet content, and packet frequency. The method can also
use a code execution engine to run the code files and generate live network traffic based
on the extracted information. Meng et al. [33] uses a Markov chain model to capture the
temporal and spatial patterns of control-plane traffic, such as the state transitions, the inter-
arrival times, and the location updates. The method can also use a GAN model to gener-
ate synthetic control-plane traffic based on the Markov chain model. Holland et al. [22]
introduce nPrint, a tool that generates a unified packet representation amenable to repre-
sentation learning and model training. They also integrate nPrint with automated machine
learning (AutoML), resulting in nPrintML. This public system eliminates feature extrac-
tion and model tuning for traffic analysis tasks. The paper evaluates nPrintML on eight
separate traffic analysis tasks and shows that it can achieve comparable or better perfor-
mance than state-of-the-art methods with minimal human intervention. More recently,
NetDiffusion [25] took a step forward and treated packets as images. It leverages the
nPrint [22] the fixed-length standardized packet representation to transform packets into
images that can be easily manipulated, considering the advent of generative models with
a customized diffusion model.

This section delved into the fundamental concepts of GANs, providing essential
insights into RL, and discussing the generation of PCAP files. Building upon this founda-
tion, Section 3.3 complements the discussion by integrating these concepts with network
programmability, examining how the principles outlined in this section apply to and en-
hance the domain of programmable networks.

3.3. In-band Network Telemetry and Programmable Data Planes
With the emergence of Software Defined Networking [31], the initial advances towards
network programmability were taken [21]. The separation of data and control planes has
brought about increased flexibility and new avenues of research in computer networks.

In this context, the OpenFlow protocol pioneered the provision of a network ab-
straction layer to the control element (Controller), thereby enabling the configuration and
manipulation of the network’s data plane through software programming. However, this
model lacked sufficient flexibility for adding new headers and defining new actions after
flow matching due to limitations imposed by the rigidity in the intelligence embedded in
the pipeline of ASIC processors [14].

Traditionally, the data plane has taken on the role of processing packets according
to the logic prescribed by the control plane. However, the game changes with the intro-
duction of data plane programmability, which facilitates the incorporation of intelligence
during packet processing at the hardware’s most proximate level without the necessity for
control plane intervention. Noteworthy examples of languages tailored for programming
the data plane in this context include P4 and NPL. Among these, P4 is a language that has
gained wide acceptance within scientific and industrial communities.

Beyond the evident flexibility, the response time of the data plane resides in the
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order of nanoseconds, while the control plane operates on a scale of seconds or millisec-
onds [21]. P4 code exhibits versatility across various architectures, each characterized by
unique match-action pipeline stages and packet processing attributes. These architectural
designs are fundamentally underpinned by an abstraction model, such as PISA (Protocol
Independent Switch Architecture), that facilitates mapping instructions and hardware-
specific features tailored to individual targets. The P4 language abstracts packet parsing
and processing by providing a generalized forwarding model.

Figure 3.3: PISA abstraction model. Adapted from [21].

As illustrated in Figure 3.3, the PISA architecture consists of three fundamen-
tal components: a programmable parser, a programmable match-action pipeline, and a
programmable deparser.

The programmable parser operates as a finite state machine that dictates the order
of header extraction from incoming network packets. Once the programmable parser has
exposed the headers and their associated fields, they can traverse multiple stages within
the match-action pipeline. In this context, tables are defined to effectively manage meta-
data, adhering to the logic established by the programmer. For instance, in IPv4 routing,
a table can be configured to perform matches against the destination address and execute
actions such as i) decrementing the TTL field, ii) adjusting physical addresses, and iii)
configuring the output port. The deparser represents the programmable component that
specifies the packet’s serialization, i.e., reassembly, for subsequent transmission.

In the context of programmable networking, the industry has recently adopted
support for the P4 language. Xilinx has introduced the NetFPGA SUME, an advanced
network card enabling P4 programming. Furthermore, industry leaders such as Intel and
Broadcom have launched dedicated processors, namely the Tofino and Trident4, which
are tailored explicitly for the programmable networking market.

A software-based switch version capable of executing P4 code is available for
educational purposes. The Bmv2 (Behavioral Model Version 2) 1 is an integral component
within the P4 ecosystem, designed as a tool for the study, testing, and analysis of solutions
directly within the data plane.

Each equipment category in the P4 ecosystem, commonly called a “target”, pos-
sesses a specific architecture. In the case of NetFPGA, the employed architecture is the

1https://github.com/p4lang/behavioral-model.
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Simple Sume Architecture, whereas Tofino utilizes the Tofino Native Architecture (TNA),
and the Bmv2 is rooted in the V1model architecture [21].

A comprehensive understanding of the architecture supported by the target is es-
sential for the programmer, as it delineates the implementation particulars of the various
stages. Furthermore, the availability of metadata for utilization depends on the specific
architecture. These metadata can be accessed and integrated into network monitoring sys-
tems. For instance, in the V1model architecture, metadata about switch interface buffers
can be retrieved and encapsulated within packets during forwarding. This technique is
elaborated in the INT specification [39], designed to facilitate metadata collection within
the data plane without necessitating control plane intervention or involvement.

These advancements in programmable data plane have enabled network devices
to report the network’s state autonomously, eliminating the need for direct control plane
intervention [4]. In this scenario, packets incorporate telemetry instructions within their
header fields, facilitating the fine-grained collection and recording of network data. The
telemetry instructions are defined in the INT data plane specification [39].

S1 S3

S2 S4

H1

H2

H3

H4

Metadata Metadata

Metadata Metadata

In-band Network Telemetry

Buffer

Buffer

Buffer

Buffer

Monitoring System

Figure 3.4: INT operation. INT metadata is
appended on the packets in each hop. In the
specific collection point, the monitoring sys-
tem receives INT metadata.

Figure 3.4 illustrates the operation
of INT within an arbitrary network. The
network comprises four hosts, namely H1,
H2, H3, and H4, along with four nodes
equipped with P4 and INT support, de-
noted as S1, S2, S3, and S4. Each
network node possesses a set of meta-
data, represented by orange (S1), magenta
(S2), green (S3), and blue (S4) rectan-
gles. This metadata contains information
specific to each node, such as Node ID,
Ingress Port, Egress Spec, Egress Port,
Ingress Global Timestamp, Egress Global
Timestamp, Enqueue Timestamp, En-
queue Queue Depth, Dequeue Timedelta,
and Dequeue Queue Depth, as specified in
the V1Model architecture.

Still, in Figure 3.4, two distinct flows are depicted: one represented by red packets
and the other by black packets. The red flow is required to adhere to the prescribed
network path f1=H1, S1, S3, S4, H4, while the black flow must traverse the designated
path f2=H1, S1, S2, H2.

At each network hop along these paths, the data plane of the network devices
employs telemetry instructions to facilitate the collection and inclusion of metadata within
the packets as they traverse each node. This process is iteratively performed throughout
the path, starting from the first node after the source and concluding at the last node before
reaching the destination. Upon reaching the destination node, the metadata is extracted
from the packet and relayed to the monitoring system. The original packet is then directed
to its final destination.
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One of the primary advantages of employing telemetry lies in the exceptional level
of granularity it offers. Every packet traversing the network carries pertinent information
directly to the monitoring system at the line rate. This level of granularity aligns with the
perspective presented in [19], wherein it is recognized that a substantial volume of data
can prove helpful for ML algorithms.

However, the dynamic nature of network traffic necessitates ongoing adjustments
to machine learning models. RL is employed to tackle this issue, enabling agents to
learn from variations in traffic characteristics through trial and error. A pivotal element
in this context is the convergence time, which indicates when the intelligent agent has
effectively learned a policy and started to implement it consistently. Regardless, abrupt
changes in traffic dynamics can extend the time required for convergence or, in severe
cases, cause the model to diverge. Using synthetically generated samples through GANs
is advantageous for accelerating training and improving convergence, as RL agents can
rapidly achieve the desired policy. Thus, Section 3.4 shows the challenges associated with
synthetic data generation, contextualizing the operational environment and bringing the
pertinent problems around it.

3.4. Synthetic Data Generation
This section outlines the dual-use cases of synthetic network data generation employed
within the scope of this tutorial. Section 3.4.1 explains the characterization of an en-
vironment, providing a comprehensive description of the problem and the methodology
adopted to address it. Furthermore, this section also expounds on the characterization of
the dataset and the mechanism proposed for selecting the best model. On the other hand,
Section 3.4.2 presents all the steps to generate PCAP traces with NetDiffusion and Net-
Share, the two main tools currently available for PCAP generation. First, the definition
of the packet generation problem is presented. Finally, the choices of each work are pre-
sented, justifying the main coding/interpretation choices of network packets and how they
deal with issues such as temporal (e.g., packet sequence) and spatial (e.g., packet fields)
dependencies.

3.4.1. Generation of Telemetry Data

3.4.1.1. Problem definition

The environment where the dataset was collected in the present tutorial is depicted in
Figure 3.5. In this setup, each infrastructure component is represented by an isolated
virtual machine interlinked through a P4 programmable data plane network. The CDN
was deployed to facilitate an MPEG-DASH service featuring live streaming of a soccer
game and a playlist housing the ten most frequently accessed YouTube videos. Load
management was executed using WAVE [2] 2, a versatile load generator that orchestrates
instances of an application over time. A network architecture is instantiated and consists
of three programmable switches where the INT telemetry is collected. Complementing
this infrastructure, a Video Client is integrated to provide video metrics. At the top of
this configuration, an RL agent operates within the network ecosystem, actively engag-

2https://github.com/ifpb/wave.
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ing to enhance the user experience by orchestrating alterations to queue sizes within the
switches. This RL agent’s central goal resides in optimizing resource utilization across
the switches, thereby elevating the overall efficiency of the network infrastructure.

SW 1 SW 2 SW 3

Video Quality Level

30 fps 24 fps 18 fps Control Plane 
Reinforcement Learning

Video Client Load Generator

MPEG-DASH Server

Figure 3.5: Real setup used for the evaluation composed by P4 BMv2 switches, a DASH
server and video clients.

The RL model works as a data plane optimizer within this study, orchestrating the
management of queue sizes across three distinct switches to enhance user experience. It
is important to observe that cooperation from network operators to facilitate experiments
of this nature is often challenging. In practice, the necessity arises to devise a mechanism
for training the optimizer, or RL agent, without a real setup. In this case, the GAN trained
on real data, serving as a simulator replacing the real setup, becomes pertinent. The
present work is based on a real setup to train the RL agent while concurrently storing a
dataset for employment in a GAN model. Moreover, after an on-the-fly training of the
RL model, an offline training of the RL model is executed using synthetic data generated
from the TimeGAN. This process facilitates a comparative assessment of the RL agent’s
generalization capacity across both scenarios: on-the-fly (real setup) and its simulated
counterpart realized through utilizing the GAN generator.

However, a pertinent question arises: Given the availability of datasets sourced
from operators, is the utilization of GAN to train Machine Learning models, including
RL methodologies, necessary? Why not exclusively rely upon the original dataset to train
such models?

Collecting a dataset constitutes a prerequisite for training a GAN model, necessi-
tating data acquisition from operators or real setups. However, the inherent dataset may
exhibit characteristics such as imbalance, inadequacy, missing or erroneous values, and
static nature, preventing the feasibility of repeated experiments and statistical validation
as demonstrated in [40]. In contrast, a GAN model, once trained, offers the capacity to
generate balanced data devoid of inconsistencies or gaps. Moreover, it facilitates the gen-
eration of data volumes requisite for a diverse spectrum of experiments. Additionally,
GAN empowers the training of models on different datasets, facilitating the acquisition
of varied data distributions to cater to numerous scenarios. Besides, it is also important
to highlight the time taken to train an RL model using a synthetic dataset compared to
a real scenario. In the context of RL applications, GAN utilization assumes significance
in enabling the introduction of diversified scenarios for the agent to learn from, thereby
enhancing the agent’s capacity to adapt to broader conditions.

Consequently, this tutorial delineates a methodology wherein the efficacy of an
RL model is evaluated through its deployment in conjunction with data generated by a
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TimeGAN model. The TimeGAN is trained to use telemetry data from video applications
within the programmable data planes framework. The following exploration thereby of-
fers insights into the viability and performance of RL when trained with synthetic data
generated by TimeGAN.

3.4.1.2. Methodology

Broadly, the methodology adopted in this tutorial is encapsulated within Figure 3.6, and
its implementation can be defined through a delineation into four distinct steps:

1. Creation of a Real Setup and Data Collection: In this preliminary phase, the es-
tablishment of a tangible real setup is undertaken, as presented in Sec. 3.4.1.1.

2. Dataset Recording and TimeGAN Model Training: An ensemble of pertinent fea-
tures is stored within this stage. Among these features are switch telemetry metrics,
notably encompassing switch queue sizes and packet arrival times. Simultaneously,
video metrics, such as frames per second (FPS) and resolution, are captured. The
ascertained dataset comprises two distinct scenarios, characterized by dissimilar
queue sizes—32 and 64 packets—affording coverage of two operational settings.

3. Reinforcement Learning Training Utilizing Synthetic Data: After training the
TimeGAN model, the subsequent step encompasses training the RL algorithm through
synthetic data. Two discrete synthetic datasets were generated, each corresponding
to the two distinct queue sizes—32 and 64 packets. The specific dataset input pro-
vided to the RL algorithm is contingent upon the actions undertaken by the agent.
The agent is endowed with two distinct actions: either transitioning the queue size
from 32 to 64 packets or vice versa. So, when the agent executes an action to effect
a queue size alteration to 32 packets, the RL model is fed by synthetic data derived
from the corresponding scenario. Conversely, when the agent executes a queue size
modification to 64 packets, the RL model is furnished with synthetic data from the
scenario predicated upon that specific queue size.

4. Perfomance Evaluation of RL Models: This phase is designed to stage a com-
prehensive evaluation of the two RL training paradigms: one executed within the
confines of real setup and the other reliant on synthetic data engendered by the
TimeGAN model. The principal aim here is not to ascertain optimal configuration
parameters or enhanced performance for the RL model but to holistically gauge
the degree of similarity exhibited by the outcomes in both scenarios. In essence,
this evaluation seeks to determine whether the TimeGAN, as an alternative to real
setups, can viably replicate the results obtained through RL training, thereby val-
idating its potential to serve as a surrogate simulator without compromising the
efficacy of RL training.

The continuous line illustrates an online component wherein the RL model under-
goes real-time training (depicted in steps 1 and 3). Conversely, the GAN model undergoes
training in an offline manner, as depicted in step 2. Concluding the sequence, step 4 em-
bodies the comparative evaluation conducted between the RL model, trained dynamically
in the real setup, and synthetic data engendered by the TimeGAN algorithm.
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3.4.1.3. Dataset characterization

Switches
 (Data Plane) RLMPEG Dash 

Server

Real
Datasets

Time
GAN

TimeGAN model
(synthetic data)

Compare RL
Models

Actions

INT and Video 
Metrics

Actions

1

2 3

4

Online
Offline

Real Setup

States

States RL

Figure 3.6: Proposed Methodology

Our dataset, centered on the
Video Application within the Pro-
grammable Data Plane context,
comprises two distinct categories
of metrics: video metrics and
network metrics, each residing
in separate datasets. The video
metrics encompass FPS, bitrate,
and buffer size. In contrast,
the network metrics consist of
queue depth at packet queuing
(Enq Qdepth), packet queuing
duration in microseconds (Deq
Timedelta), and queue depth at
packet dequeuing (Deq Qdepth).

Our network configura-
tion employed BMv2 software switches with P4 code. We employed an out-of-band
approach involving specific ONT probes sent from the DASH server to the Video Client.
This approach eliminates the need to modify data packets for telemetry metadata. Teleme-
try metadata (32 bytes) was collected at each network node. Two experiments were con-
ducted to gather data from our real setup, as discussed in Section 3.4.1.1. The first ex-
periment used switches configured with 32-packet buffer size, while the second utilized
a 64-packet buffer size. Consequently, we obtained two datasets, each representing the
real setup under differing buffer size conditions. These datasets were merged based on
timestamps, with higher ‘Deq Timedelta’ samples filtered out to capture network behavior
under high-load conditions.

An essential characteristic of the telemetry values within our Programmable Data
Plane application is the non-stationary nature of all our features, as visually demonstrated
in Figure 3.7. This data distribution poses significant challenges in comparing real data
with synthetic data generated by GANs. We introduce a metric in Section 3.4.1.5 to
address this complexity. This metric serves as a tool in our model selection process,
aiding us in identifying the most suitable model capable of providing the closest feature
representation to the real dataset.

3.4.1.4. TimeGAN Training

TimeGAN is a generative model crafted to generate synthetic time series data. It intends to
replicate the statistical characteristics inherent to real-world time series datasets. Training
a TimeGAN model encompasses a series of critical steps.

To commence, we initiated the process with data preprocessing, addressing con-
cerns such as missing data imputation, outlier removal, and data normalization. The
configuration of hyperparameter values was also crucial since it plays a pivotal role in
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Figure 3.7: Real data plots for enq_qdepht1 and FPS features.

TimeGAN’s training regimen. The determination of sequence sizes or windows was a sig-
nificant consideration. These sizes are instrumental in the training, as they subdivide the
dataset into multiple snapshots, each designed to capture the temporal behaviors within
the time series.

Furthermore, other hyperparameters are variated, including sequence length, the
number of hidden dimensions, and batch size. Hyperparameter tuning is a recognized
challenge in machine learning training, with various strategies available, such as Grid
Search. In our tutorial, we adopted an empirical approach, wherein we iteratively ad-
justed hyperparameter values based on prior training experiences and our insights into
the parameters that exerted the most significant influence on the training process. After
completing the training processes, we learned that the loss values across the training itera-
tions exhibited a degree of similarity. Consequently, we recognized the need to develop a
model selection methodology, the details of which are expounded upon in Section 3.4.1.5.

3.4.1.5. Models Selection

Addressing the challenge inherent to GAN, specifically the evaluation of synthetic data
generated by these networks, is important. In [7] is underlined the absence of a consensus
regarding the appropriate means to assess the distributions produced by GAN models.
This issue is further compounded in the context of time series data, where the lack of
recent publications is evident compared to more conventional GAN models. Besides,
the characteristics of the dataset we collected are non-stationary. In contrast to station-
ary time series, non-stationary time series exhibit trends, seasonality, or other forms of
systematic changes that make their statistical properties, such as the mean, variance, and
autocovariance, vary with time. So, it is not possible to apply traditional tests such as
Kullback–Leibler (KL) divergence. For example, the synthetic data obtained from certain
trained models is constant values for some features, but real data has high variability. But,
if a traditional test is applied, the results of the KL test are better for distributions with
constant values, which is not desirable.

In our experimentation, we noted through empirical observations that certain GAN
models we trained have superior synthetic data for distinct features. Consequently, we
proposed a mechanism to select the most suitable model by analyzing each feature. To ad-
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dress this objective, we introduce a metric constructed through straightforward statistical
measures, encompassing quartiles and medians. The central concept revolves around con-
trasting the distribution disparities exhibited by real and generated synthetic data. Con-
sequently, a more favorable model for a given characteristic is indicated by a diminished
dissimilarity in data distribution between these two sources. The calculation of this met-
ric is depicted by Equation 1. To initiate this calculation, it is imperative to determine the
discrepancy magnitude between the third and first quartiles for both datasets: real (X) and
synthetic (y). This calculation furnishes the size of data dispersion divergence, facilitating
a comparison.

Subsequently, another calculation involves assessing the variation between the
sizes of these data dispersion, thereby gauging the difference between real and synthetic
data. However, determining the disparity in dispersion magnitude alone might be insuf-
ficient, as the dispersion might have similar sizes while maintaining a positional offset.
To address this, we calculate the difference in medians between the real and synthetic
datasets and incorporate this disparity alongside the variance in dispersion sizes. Thus, a
summation of these differences between quartiles and median for each feature is achieved
and stored in metric (M) for all models. So, a superior model is characterized by the min-
imal value of M, indicative of the least dispersion in data distribution between real and
synthetic data sources.

M =
n_ f eats

∑
n=1
|[Q3(Xn)−Q1(Xn)]− [Q3(yn)−Q1(yn)]|

+ |[med(Xn)−med(yn)]|
(1)

The algorithm presented in Algorithm 1 elucidates the procedure of selecting the
optimal model for individual features. The algorithm takes as its inputs arrays of models
about the two distinct scenarios expounded upon in Section 3.4.1.4, specifically those
delineated by switch queue sizes of 32 and 64 packets.

Algorithm 1 Optimal Model Selection
Input: models32,models64
Output: bestModel32,bestModel64

Initialisation :
1: modelsMetrics32← calculateMetricForEachFeature(models32)
2: modelsMetrics64← calculateMetricForEachFeature(models64)
3: for each model32, model64 in modelsMetric32 and modelsMetric64 do
4: models32Sum[model]← getSumFeaturesMetrics(model,modelsMetrics32)
5: models64Sum[model]← getSumFeaturesMetrics(model,modelsMetrics64)
6: end for
7: bestModel32← min(models32Sum)
8: bestModel64← min(models64Sum)
9: return bestModel32,bestModel64

As detailed earlier, the algorithm’s initial operation involves the computation of
the aforementioned metrics for each feature and all of the trained models. After this metric
computation, an iteration wherein the algorithm determines the summation of metrics for
each model is achieved. So, the minimum value of the sum of all features determines the
best model considering the models trained in our study.
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The algorithm culminates by providing two arrays, each comprising the features of
the best model. These arrays distinctly encapsulate the finest model under the respective
queue size scenarios, addressing the dual scenario of queue sizes - 32 and 64 packets.

An evaluation of the model selection outlined in this section is expounded upon in
Section 3.5.1.5. The primary objective is to provide a comprehensive analysis of the syn-
thetic data generated by TimeGAN and its applicability in training an RL agent through
an offline approach, contrasting it with an agent trained in an online format.

3.4.2. Generation of Synthetic Network Traces

This section discusses the NetDiffusion [25] and NetShare [51] problem definition and
methodology towards synthetic packet generation.

3.4.2.1. NetDiffusion: Problem Definition

The NetDiffusion’s authors proposed a two-fold strategy that leverages stable diffusion
techniques. First, they convert raw packet captures into image representations - i.e., with
nPrint [22]. This process allows them to use powerful image-based techniques for fur-
ther analysis. Then, they fine-tune a text-to-image diffusion model on these converted
packet capture images to let the model learn the patterns and relationships within network
traffic data. To ensure the generated packets resemble real network traffic, they employ
controlled techniques and domain knowledge-based heuristics to maintain fidelity to real-
world data and ensure semantic correctness.

3.4.2.2. NetDiffusion: Methodology

The aforementioned steps are broadly summarized in Figure 3.8. The approach is struc-
tured around three primary components:

1. Conversion of raw network traffic into image-based representations using nPrint.

2. Fine-tuning a Stable Diffusion model to enable controlled text-to-traffic generation
with high distributional similarity to real-world network traffic.

3. Domain knowledge-based post-processing heuristics for detailed modification of
generated network traffic to ensure high protocol rule compliance.

The authors represented the packets as images leveraging print representation and
noticed network traffic data exhibits high dimensionality. For instance, fields are abundant
between the IP and TCP headers alone (e.g., IP addresses, ports, sequence and acknowl-
edgment numbers, flags, etc.). In summary, nPrint has a bit-level representation that takes
accounting for all 3 potential header fields (even if not present in the original packet).
However, there are some limitations. While this ensures a uniform input structure for ML

3“All“ means all considered headers by the authors so far: IPv4, IPv6 (Fixed Header), TCP, UDP, ICMP,
Payloads.
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Figure 3.8: Generation Framework Overview. Source: the authors.

Figure 3.9: Synthetic Amazon network traffic outputs: (1) Using ControlNet, it detect
regions present in the original traffic and ensure protocol and header field value distribu-
tion conformance by generating within specified regions. (2) Applying a post-generation
heuristic to refine field details for protocol conformance. Source: The authors.

models, the attribute count per packet often exceeds a thousand. This high dimensionality
introduces computational bottlenecks for generative models.

To arrive at image representations of network traffic, the authors first encode
PCAPs using nPrint, which converts network traffic into standardized bits where each
bit corresponds to a packet header field bit, as shown in Figure 3.8. This binary represen-
tation is simple yet effective, where the presence or absence of a bit in the packet header
is denoted as 1 or 0, respectively, and a missing header bit is represented as -1. This en-
coding scheme ensures a standardized representation irrespective of the protocol in use.
The payload content is not encoded since it is often encrypted. However, the size of the
packet payloads can be inferred from other encoded header fields, such as the IP Total
Length fields.

A sequence of PCAPs is converted into a matrix, which is then interpreted as an
image. The colors green, red, and gray represent a set bit (1), an unset bit (0), and a vacant
bit (-1), respectively. This color-coding schema provides a visually intuitive representa-
tion of the network traffic. Due to the limitations in the generative models’ capability to
handle very high dimensional data, they grouped every 1024 packets. While necessary
for the current scope, this constraint could be revisited in future work to accommodate
larger groups of packets. Through this process, any network traffic in PCAP format is
transformed into an image with dimensions of 1088 pixels in width and 1024 pixels in
height, with each row of pixels representing a packet in the network traffic flow as shown
in Figure 3.9.

42º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos - SBRC 2024

Livro-texto de Minicursos 107 ©2024 SBC — Soc. Bras. de Computação



After transforming the packets into their corresponding image representations, the
generative model is fine-tuned, specifically a diffusion model, to produce synthetic net-
work traffic. While the out-of-the-box stable diffusion model is undeniably potent, they
cannot directly use it to synthesize network traffic because it is designed to cover a broad
spectrum of patterns and intricacies, causing it to lack the depth needed in specific gen-
eration tasks. For instance, a Netflix Network Traffic prompt might yield a
generic image like a highway scene within a Netflix player. This is particularly evident
when the textual description provided has multiple potential visual interpretations, caus-
ing the model to produce images that may be blurry or off-target. The authors addressed
these limitations by fine-tuning Stable Diffusion on specific network datasets. They build
upon Stable Diffusion 1.5 [43] and fine-tune this model on our specific network datasets
as shown in Figure 3.8. To facilitate this fine-tuning, they employ Low-Rank Adaptation
(LoRa) [23], a training technique tailored to fine-tune diffusion models, particularly in
text-to-image diffusion models, swiftly. Its crux lies in enabling the diffusion model to
learn new concepts or styles effectively while maintaining a manageable model file size.
With LoRa, the resultant models are compact, balancing file size and training capability,
while adpating to new data. For each image, they craft a unique encoded text prompt
(e.g., pixelated network data, type-0) for Netflix traffic that succinctly de-
scribes its class type. The choice of their encoded prompt, though seemingly simplistic,
achieves two main objectives. It offers a specific vocabulary that reduces ambiguity and
ensures the model hones in on the nuances of the traffic. Subsequently, image-text pairs
are fed into the fine-tuning process, where the base stable diffusion model, augmented
with LoRa, learns to generate network traffic images conditioned on our prompts.

Upon fine-tuning the generation model, the next phase involves generating the de-
sired class of synthetic network traffic. This is achieved by supplying the appropriate text
prompts to the diffusion models to produce image representations of the traffic. Diffusion
models operate by simulating a reverse process from a simple noise distribution to the
data distribution, which enables them to capture and replicate the intricate patterns inher-
ent in real-world data. The noise is progressively reduced over several steps, allowing the
model to gradually refine the generated image until it closely resembles genuine network
traffic patterns. An example of synthetic network traffic is shown in the image represen-
tation for Amazon traffic in Figure 3.9. This prompt-based generation process facilitates
the creation of a synthetic nPrint-encoded network traffic dataset tailored to specific class
distribution requirements. For instance, to curate a dataset with a certain class distribu-
tion and size, one would provide the corresponding quantity of text prompts per class and
activate the generation process accordingly. Certain constraints are introduced during the
generation process to ensure the generated traffic closely aligns with the prevalent proto-
col and header field value distributions observed in real traffic. If, for instance, the actual
Amazon network traffic primarily consists of TCP packets, the generation process should
prioritize populating header fields associated with TCP packets.

Leveraging the controllable nature of diffusion models, they incorporate Control-
Net [55] into the generation process. ControlNet is a commonly used neural network
architecture that adds spatial conditioning controls to large, pre-trained text-to-image dif-
fusion models. It capitalizes on the robust encoding layers of these models, which are
pre-trained with vast datasets, to learn a diverse set of conditional controls. In their spe-
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cific use case of ControlNet, they leveraged M-LSD straight-line detection to find the
boundaries between fields that are supposed to be populated and those that are not, as
shown in Figure 3.9. Other edge detection methods, such as Canny edge detection, pro-
duce similar results. Such line or edge detection methods are effective because they align
with the inherent columnar consistency present in packet traces.

Utilizing the controlled diffusion model, the generated encoded network traffic
resembles the protocol and header field value distributions inherent in real-world data,
capturing every feature observed in real traffic. Despite the guidance provided by Control-
Net during the generation process, some network analysis and testing tasks often require
raw network traffic. Converting the synthetic encoded traffic back to raw formats, such
as PCAP, is not straightforward. This complexity arises from the multitude of detailed
transport and network layer protocol rules at both inter and intra-packet levels. Properly
formatted traffic must strictly adhere to these rules. While transport layer rules empha-
size end-to-end communication and reliability, network layer protocols focus on packet
routing and address assignment. Combined, these rules can be broadly divided into two
categories:

1. Inter-Packet Rules: These rules dictate the relationships and sequencing between
header fields within multiple packets in a network flow. For instance, packets need
to be sequenced properly in a typical TCP connection, starting with the handshake
process involving SYN and SYN-ACK flags. Data transfer integrity is ensured
by aligning sequence numbers and acknowledgment numbers. Misalignment or
incorrect sequencing can disrupt the connection or data transfer process.

2. Intra-Packet Rules: These pertain to the structure and contents within individual
packets. For example, many protocol headers have a checksum field computed
based on the packet’s contents to detect errors during transmission. The checksum
must be consistent with the packet’s payload. Additionally, certain fields within
a packet, such as port numbers in TCP and UDP headers, must adhere to specific
formatting and value constraints to ensure the packet’s validity and proper routing.

To maximize the encoded synthetic network traffic’s compliance with transport
and network layer protocol rules, they first discern a subset of critical header fields that
mandate strict adherence to their formatting rules, e.g., sequence and acknowledgment
numbers. In contrast, some fields can accommodate a degree of flexibility without com-
promising the integrity of the network traffic, such as TCP window size or TTL With the
critical fields identified, they develop a systematic way to calculate their correct values
based on other generated fields. This is achieved by constructing two dependency trees
— intra-packet header field dependencies and inter-packet dependencies. These trees are
built upon domain knowledge and are sourced from standard network protocol documen-
tation [6]. They present example protocol rules and the associated dependency trees for
TCP protocol in Figure 3.10. More comprehensive and detailed dependency trees can be
found in the open-sourced repository. 4 Given a generated encoded network traffic, they
begin the correction process by traversing the trees in an automated, bottom-up fashion.

4https://github.com/noise-lab/NetDiffusion_Generator
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Figure 3.10: Example TCP protocol rules/dependencies. Source: the authors.

Initially, they satisfy intra-packet dependencies, ensuring that individual packets are inter-
nally consistent. Subsequently, they address inter-packet dependencies, guaranteeing that
the packets in a flow relate correctly. Certain fields necessitate uniformity across packets
within the same network traffic trace—like IP addresses and ports. Others require specific
initialization values, such as IP identification and TCP acknowledgment numbers. They
employ a majority voting system to determine the most appropriate values for these fields
by selecting the most frequently appearing value within the generated traffic. Another
notable challenge is timestamp assignment for individual packets, given its intricate time
series dependencies. This post-processing ensures that the encoded synthetic traffic can
be seamlessly converted into raw network traffic formats (like PCAP) and subsequently
be utilized for a range of non-ML tasks.

3.4.2.3. NetShare: Problem Definition

In this work, the authors explored the feasibility of ML-based synthetic packet-header
(e.g., PCAP) and flow-header (e.g., Netflow) trace generation using Generative Adversar-
ial Networks or GANs. They implement an end-to-end system, NetShare, and build a web
service prototype 5 to help solve the following practical challenges in existing approaches:

• Prior techniques: (especially those based on tabular data GANs, which dominate
the synthetic header generation literature) are unable to capture key correlations
across header fields and header fields that have large ranges of values.

• Scalability-fidelity tradeoff: Existing techniques require significant GPU hours to
train even moderately-sized traces (e.g., millions of records). Simple tabular GANs
take a few hours to train but suffer in fidelity, while more complex time series GANs
can take an order of magnitude more time.

• Privacy-fidelity tradeoffs: GANs are not well explored in the context of network
header traces. Preliminary work suggests that differentially-private learning ap-
proaches are likely to yield poor fidelity for networking datasets [28].

5Available through https://www.pcapshare.com
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In designing NetShare, the authors tackle these key challenges with a careful data-
driven understanding of the limitations of canonical GAN-based approaches. NetShare
combines the following key ideas to address the above issues:

• Reformulation as flow time series generation: Instead of treating header traces from
each measurement epoch as an independent tabular dataset (i.e., rows of packet-
s/flows with headers), they recast the problem for learning synthetic models for a
merged flow-level trace across epochs. This reformulation allows us to capture intra
and inter-epoch correlations natively.

• Improving scalability via fine-tuning : They identify opportunities to optimize learn-
ing time by using ideas of model fine-tuning and data-parallel learning from the ML
literature [53]. Doing so naively may fail to capture dependencies across parallel
instances, so they develop heuristics to preserve such correlations.

• Practical privacy reformulations: They adopt recent advances in differentially-
private model training [54] and combine a small amount of public data with private
data to improve privacy fidelity tradeoffs. To the best of our knowledge, this is the
first application and empirical demonstration of header trace generation.

3.4.2.4. NetShare: Methodology

NetShare 6 is an end-to-end system leveraging a tabular representation distributed among
different GANs with temporal and confinement dependencies. According to the authors,
the existing approaches treat each packet or flow record independently and ignore intra-
and inter-measurement epoch correlations. To systematically capture these cross-record
correlations, they reformulate the header generation problem as a time series generation
problem rather than a tabular generation problem, as shown in Figure 3.11. Specifi-
cally, they merge data from measurement epochs into one giant trace to capture inter-
measurement epoch correlations. Given this giant trace, they split it into a set of flows.
D f low based on five-tuples to explicitly capture flow-level metrics (e.g., flow size/dura-
tion). Each sample in D f low has a five-tuple as metadata and a record (or “measurement
data”) corresponding to a sequence of packets for PCAP data and flow records for Net-
Flow data. Specifically, for PCAP data, each sequence element (packet) includes a raw
timestamp, packet size, and other IP header fields.

6The code is open-sourced at https://github.com/netsharecmu/NetShare.
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Figure 3.11: Multiple epochs Di merged into a giant trace D, splitting the trace into flows
D f low, and using time series GAN. Source: the authors.

Reformulating the problem as a time-series generation brings much better head-
er/temporal correlations but increases the total CPU time. One opportunity to improve
scalability is via parallelism. However, naively dividing the giant trace into chunks and
parallelized training across chunks poses two limitations. First, they incur the risk of
losing correlations across chunks 7 e.g., flow size distribution for flows that span multi-
ple chunks. Second, while the wall clock time decreases, the total CPU hours consumed
remain unchanged.

These limitations can be avoided as shown in Fig 3.12. First, they borrow the
idea of fine-tuning from the ML literature, i.e., they use a pre-trained model as a “warm
start” to seed training for future models [54]. Specifically, they use the first chunk as
the “seed” chunk to give a warm start, and subsequent chunks are fine-tuned using the
model trained from the first chunk. This permits parallel training across chunks. One
concern remains regarding the cross-chunk correlations; fine-tuning alone cannot preserve
these. To this end, they append “flow tags” to each flow header to capture the inter-chunk
correlation. Specifically, they annotate each flow header with a 0-1 flag denoting whether
it starts in “this” chunk. They append a 0-1 vector after the flag with a length equal to
the total number of chunks, with each bit indicating whether the flow header appears in
that specific chunk. When splitting the giant trace D f low flow into chunks, there are two
natural choices: split by fixed time interval or by number of packets per chunk. Splitting
by a fixed number of packets per chunk may impact differential privacy guarantees, as
any single packet could change the final trained model in an unbounded way: removing
any packet could change the packet assignment of all the following trunks. Thus, they
split by fixed time intervals rather than a fixed number of packets. They left the choice of
M (number of chunks) as a configurable tradeoff; a higher M would give fewer total CPU
hours while increasing the learning complexity across chunks. In their case, M = 10 was

7These chunks are logically independent of the measurement epochs in the original dataset; chunks are
merely a construct for parallelization training.
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chosen for each dataset with 1 million records.

Figure 3.12: They split D f low into M evenly time-spaced chunks with explicit “flow tags”
to capture cross-chunk correlations. They use the first chunk as a pre-trained model for
parallel training of later chunks. Source: the authors.

Prior attempts to train DP synthetic network data models using deep generative
models have utilized DP-SGD, which modifies stochastic gradient descent (SGD) by clip-
ping each gradient and adding Gaussian noise [1]. For a fixed amount of added noise, the
more rounds of DP-SGD they run, the greater the cost in the privacy budget. In NetShare,
they exploit the observation that one can reduce the number of rounds of DP-SGD needed
to achieve a fixed fidelity level by pre-training NetShare on a related public dataset; then,
they take the learned parameters from the public dataset and fine-tune them using DP-
SGD over the private dataset. In doing so, they reduce the required number of iterations of
DP-SGD. This insight has been explored in related work from the DP community [5, 26],
but it has not been utilized in the networking domain to the best of our knowledge. They
also use public data to improve our privacy-fidelity tradeoff due to our IP2Vec encoding.
Specifically, they train our IP2Vec mapping on a public dataset with many port/protocol
pairs, which helps us learn an embedding without affecting their DP budget.

Finally, they use a time series GAN to model this data. While autoregressive
models [50] also use a time series approach, they are less effective for learning implicit
distributions (e.g., flow length [28]) and achieve worse fidelity. Specifically, they build
on an open-source tool called DoppelGANger [28]. Note, however, that natively using a
time-series GAN like DoppelGANger would run into the same issues as the tabular GANs,
as each flow or packet record will be a time-series record of length 1 and will miss the
key cross-record effects. Furthermore, they will also encounter other challenges regarding
encoding, scalability, and privacy. The baselines struggle to learn the distribution of fields
with large support accurately. Hence, instead of training a GAN on the original data
representation, they use domain knowledge to transform certain fields (especially those
with large support) into a more tractable format for GANs. For fields with numerical
semantics like packets/bytes per flow with a large support, they use log transformation,
i.e., log(1+x), to effectively reduce the range. This simple yet effective technique helps
NetShare better distribute large-support fields than baselines.
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Figure 3.13: NetShare: end-to-end overview. Source: the authors.

3.4.2.5. NetShare: End-to-end view

Combining the key insights above, our end-to-end design is summarized in Figure 3.13.
Pre-processing: Merge data from different measurement epochs Di into one giant trace
D with a flow-based split as D f low. Encode header fields based on domain knowledge and
fidelity-scalability-privacy tradeoffs.

Training: Evenly slice flow traces into M fixed-time chunks with explicit flow tags added.
Train a time series GAN for each chunk; they use DoppelGANger [28]. If differentially-
private (DP) is not required, use the model from the first chunk as the pre-trained model to
improve scalability-fidelity tradeoff. If DP training is desired, use the model pre-trained
on public data to fine-tune DP-SGD.

Post-processing: After generating Di
′ f low, they map transformed fields back to their nat-

ural representations (e.g., map IP2Vec embeddings to <port, protocol> via nearest-
neighbor search). Then, they generate derived fields (e.g., checksum) 8. Finally, they
convert to PCAP/NetFlow dataset by merging packets/NetFlow records according to the
raw timestamp (for PCAP) or raw flow start time (for NetFlow).

3.5. Use Cases for Synthetic Data Application
This section presents the practical application of the two use cases outlined in Section 3.1.
We aim to demonstrate the methodologies, code snippets, and tools for creating synthetic
datasets. Specifically, Section 3.5.1 explores the generation of telemetry data for INT
and DASH protocols, detailing the process and techniques involved. Conversely, Sec-
tion 3.5.2.1 focuses on creating PCAP files, elucidating the procedure using the NetDif-
fusion Tool.

8They make an explicit design choice to exclude such derived fields, which are likely intractable to learn
automatically. As such, they use a two-step generation mechanism: (1) use NetShare to generate the native
fields (e.g., IP/port/timestamp) and (2) compute the checksum based on that to ensure the correctness of
packets. Additionally, they did not consider the option field in the IP header, which is rarely used (and they
do not observe the appearance of the IP option field in all three PCAP-related datasets).
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3.5.1. Generation of Telemetry Data

This section guides training, generating, evaluating, and applying synthetic telemetry data
for training an RL agent. It’s important to note that this chapter does not cover the initial
phase of our methodology, which involves data collection in a real-world environment.
Our primary focus here is on the synthesis of data. The entire project for this tutorial can
be accessed and cloned from the Github repository 9. We have used in all of our scripts
the YData Synthetic API10, to conduct and perform the training and data generation.

The creation, training, and evaluation of synthetic data are heavily influenced by
the number of models you aim to develop, each featuring a unique set of hyperparameters.
To streamline this process, we provide a configuration file (params.py), which defines
essential parameters for our workflow. In this tutorial, we introduce a variable called
amount_of_models that influences the setting of hyper-parameter values, including:

• seq_len (sequence length): This parameter delineates the temporal window’s
extent for each sequence during the training phase, meaning the count of time
chunks (or lines) encapsulated within each sequence.

• hidden_dim (hidden dimensions): It specifies the count of units or neurons
present within each hidden layer of the network, thus shaping the model’s capacity
to learn and represent data complexities.

• batch_size: This hyperparameter defines the quantum of temporal sequences
(or the number of data examples/lines) that are congregated into a singular batch
for training, affecting both the computational efficiency and the learning dynamics
of the model.

• train_steps: It denotes the aggregate count of training iterations, quantifying
the extent of the model’s exposure to the training data, influencing its learning tra-
jectory and convergence behavior.

The variable amount_of_models is factored to set the upper limits for the
i, j, and k variables in the scripts’ nested triple-loop structure. The fatNum method
in ModelUtility class is designed to compute these maximum values. For instance,
with three models, the maximum limits for i, j, and k are set to 1, 1, and 3, respectively.
With nine models, these limits are adjusted to 1, 3, and 3, respectively.

So, the workflow for synthetic data generation is systematically outlined across
several sections. Section 3.5.1.1 describes the environment configuration. Section 3.5.1.2
details the data preprocessing steps, Section 3.5.1.3 focuses on the training process, Sec-
tion 3.5.1.4 describes the synthetic data generation, and Section 3.5.1.5 examines the eval-
uation of the generated synthetic data. Each section is dedicated to a specific workflow
phase, ensuring an understanding of the entire synthetic data generation process.

9https://github.com/thiagocaproni/tutorial_timegan
10https://github.com/ydataai/ydata-synthetic.
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3.5.1.1. Dependencies and Environment Settings

Python 3.9.16 is necessary to execute the code. An environment manager like Anaconda,
which includes the conda package manager, can be used to set up a dedicated environment
with all the required dependencies. Installing Anaconda in your user directory ensures it
does not conflict with the existing system Python installation. The dependencies are listed
in the environment.yml file.

To create and configure the environment, execute the command provided in Code
3.1 within the repository directory, where environment.yml file is located. This will
establish a separate environment and install the necessary dependencies. To begin using
this environment, activate it by executing the command “conda activate”.

Code 3.1: Environment Settings
1 conda env create
2 conda activate ydata

3.5.1.2. Data preprocessing

The DataPre class (defined in preprocess_data.py) is a component in our data
preprocessing pipeline, designed specifically for preparing time series data for synthetic
data generation. In this part, we will delve into each method provided by this class and
explain how they contribute to the preprocessing of the dataset. Before we start utiliz-
ing it, we need to import the necessary Python libraries that our class depends upon, as
demonstrated in the script in the repository.

The transformTimeStamp method of DataPre, shown in Code 3.2, is used
for standardizing the timestamp format across our datasets. This method converts times-
tamps from milliseconds to seconds and sets them as the DataFrame’s index, a common
prerequisite for time series analysis.

Code 3.2: Transforming Timestamps
1 def transformTimeStamp(self, df):
2 df[’timestamp’] = df[’timestamp’] / 1000
3 df[’timestamp’] = df[’timestamp’].astype(int)
4 df.set_index(’timestamp’, inplace=True)

In turn, Code 3.3 presents the loadDataSet method, which is responsible for
loading and combining multiple data sets into a single DataFrame. This method ensures
that data from different sources can be aligned and analyzed based on timestamps.

Code 3.3: Loading and Merging Datasets
1 def loadDataSet(self, path_int, path_dash):
2 df_int = pd.read_csv(path_int, sep=’,’)
3 df_dash = pd.read_csv(path_dash, sep=’;’)
4 self.transformTimeStamp(df_dash)
5 df_int = df_int.loc[df_int.groupby(’timestamp’)[’deq_timedelta1’].idxmax()]
6 df_int.set_index(’timestamp’, inplace=True)
7 self.dataset = pd.merge(df_int, df_dash, left_index=True, right_index=True).

reset_index()
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The hotEncodemethod (Code 3.4) applies one-hot encoding to categorical vari-
ables in the dataset, transforming them into a format that machine learning algorithms can
more effectively utilize.

Code 3.4: One-Hot Encoding of Categorical Variables
1 def hotEncode(self):
2 self.encoder = OneHotEncoder(handle_unknown=’ignore’)
3 encoder_df = pd.DataFrame(self.encoder.fit_transform(self.dataset[[’Resolution’]]).

toarray())
4 self.dataset = self.dataset.join(encoder_df).copy()
5 self.dataset.drop(’Resolution’, axis=1, inplace=True)

Finally, the preProcessData method orchestrates the overall preprocessing
workflow, covering the imputation of missing values, encoding, and optional data shuf-
fling.

Code 3.5: Preprocessing the Dataset
1 def preProcessData(self, num_cols, cat_cols, random):
2 for i in num_cols:
3 self.dataset[i].fillna(self.dataset[i].mean(), inplace=True)
4 if len(cat_cols) > 0:
5 self.hotEncode()
6 self.processed_data = self.dataset[num_cols + cat_cols].copy()
7 if random:
8 idx = np.random.permutation(self.processed_data.index)
9 self.processed_data = self.processed_data.reindex(idx)

The DataPre class serves as a tool for preparing time series data for synthetic
data generation, encompassing a variety of preprocessing tasks to ensure data quality and
compatibility for model training, which is discussed in Section 3.5.1.3.

3.5.1.3. TimeGAN Training

In practice, the scripts timegan32.py and timegan64.py perform data preprocess-
ing and train a TimeGAN model for the synthetic generation of time series data. In this
section, we show the code step by step, explaining each method’s purpose and how they
collectively form a pipeline for generating synthetic data. As in Section 3.5.1.2, we start
by importing (see the script in the repository) the necessary Python modules and libraries
and adjusting the system path to include our utility scripts.

The loadDp method, presented in Code 3.6, orchestrates the data loading and
preprocessing, leveraging the DataPre class for various preprocessing tasks.

Code 3.6: Loading and preprocessing data
1 def loadDp(random, outliers):
2 dp = DataPre()
3 dp.loadDataSet(path_int=’../../datasets/log_INT_TD-32_100.csv’,
4 path_dash=’../../datasets/dash_TD-32_100.csv’)
5 dp.preProcessData(params.num_cols, cat_cols=params.cat_cols, random=random)
6 dp.removeSameValueAttributes()
7 if not outliers:
8 dp.removeOutliers()
9 return dp
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The train function, as shown in Code Listing 3.7, produces the setup and exe-
cution of the TimeGAN model’s training process. This method utilizes the preprocessed
data alongside the TimeGAN instance, which is constructed using the YData API, to train
the model effectively.

Code 3.7: Training a model
1 def train(dp, seq_len, n_seq, hidden_dim, noise_dim, dim, batch_size, model, train_steps

):
2 learning_rate = 5e-4
3 gan_args = ModelParameters(batch_size=batch_size, lr=learning_rate, noise_dim=

noise_dim, layers_dim=dim)
4 processed_data = real_data_loading(dp.processed_data.values, seq_len=seq_len)
5 synth = TimeGAN(model_parameters=gan_args, hidden_dim=hidden_dim, seq_len=seq_len,

n_seq=n_seq, gamma=1)
6 synth.train(processed_data, train_steps=train_steps)
7 synth.save(model)

The scripts timegan32.py and timegan64.py initiate the data preprocess-
ing and model training processes, iterating over various hyperparameter configurations
to optimize model performance. In Code 3.8, we illustrate a portion common to both
scripts, focusing on the model training procedure. This code part demonstrates a triple-
nested loop structure, where each iteration level adjusts specific hyperparameters critical
to the training dynamics. As previously discussed, this adjustment of hyperparameters is
important for refining the model’s ability to effectively generate realistic synthetic time
series data.

Code 3.8: Executing the training process
1 dp = loadDp(random=False, outliers=False)
2 iMax, jMax, kMax = ModelUtility.fatNum(params.amount_of_models)
3 print("Number of models", params.amount_of_models, ’iMax:’, iMax, ’jMax:’, jMax, ’kMax:’

, kMax)
4 print("Num GPUs Available: ", len(tf.config.list_physical_devices(’GPU’)))
5 try:
6 with tf.device(’/device:GPU:0’):
7 for i in range(iMax):
8 for j in range(jMax):
9 for k in range(kMax):

10 train(dp, ...)
11 except RuntimeError as e:
12 print(e)

So, this Section explored the complete loading, preprocessing, and training of
a TimeGAN model for synthetic time series data generation. The workflow cohesively
integrates data handling and machine learning training, preparing the data and training
the model with varying configurations to generate high-quality synthetic time series.

3.5.1.4. Telemetry Data Generation

This section outlines the process for creating synthetic time series data with TimeGAN.
It includes steps for loading and preprocessing real datasets and performing statistical
analysis. These activities form the basis for assessing the quality of the synthetic data,
which will be further explored in the evaluation script detailed in Section 3.5.1.5. The
synthetic data generation is carried out using the script generate_synth_data.py
available in our Git repository.
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The first thing to do is import the required libraries and modules (see the reposi-
tory). Adjust the system path to include directories where additional modules like DataPre
(discussed in Section 3.5.1.2) and ModelUtility are located.

The loadSynthData method, presented in Code 3.9, is designed to generate
synthetic data based on previously trained TimeGAN models. It loads the models and
generates a specified number of synthetic data windows. This method generates synthetic
data based on models trained in the timegan32.py and timegan64.py scripts. The object
returned when generating synthetic data is a three-dimensional object ([i][j][k]),
where the variable i controls the number of windows generated and defined by the vari-
able seq_len (explained in the training script). In turn, the variable j controls the index
of the lines in each window, and the variable k controls the columns. In other words,
several time windows are returned. Therefore, it is necessary to define the number of
windows to generate in the loadSynthData method.

Code 3.9: Loading and creating synthetic data
1 def loadSynthData(model32, model64, number_of_windows):
2 # Load TimeGAN models for 32-bit and 64-bit data
3 synth_32 = TimeGAN.load(model32)
4 synth_data_32 = synth_32.sample(number_of_windows)
5 synth_64 = TimeGAN.load(model64)
6 synth_data_64 = synth_64.sample(number_of_windows)
7 # Post-process synthetic data (e.g., binarizing a portion of the data, which was hot

encoded)
8 synth_data_32[:,:,13:17][synth_data_32[:,:,13:17] >= 0.5] = 1
9 synth_data_32[:,:,13:17][synth_data_32[:,:,13:17] < 0.5] = 0

10 synth_data_64[:,:,13:17][synth_data_64[:,:,13:17] >= 0.5] = 1
11 synth_data_64[:,:,13:17][synth_data_64[:,:,13:17] < 0.5] = 0
12 return synth_data_32, synth_data_64

The loadRealData function is responsible for loading and preprocessing the
real datasets for subsequent comparison with synthetic data.

Code 3.10: Reading real data
1 def loadRealData(dsint32, dsint64, dsdash32, dsdash64, num_cols, cat_cols, sample_size,

randon, outliers):
2 # Instantiate DataPre for each dataset and process
3 dp32 = DataPre()
4 dp32.loadDataSet(path_int=dsint32, path_dash=dsdash32)
5 dp32.preProcessData(num_cols, cat_cols=cat_cols, random=randon)
6 if not outliers:
7 dp32.removeOutliers()
8 real_data_32 = dp32.processed_data
9 real_data_32 = real_data_32[0:sample_size].copy()

10 real_data_32 = real_data_32.values
11 # Repeat for 64-bit data
12 dp64 = DataPre()
13 dp64.loadDataSet(path_int=dsint64, path_dash=dsdash64)
14 dp64.preProcessData(num_cols, cat_cols=cat_cols, random=randon)
15 if not outliers:
16 dp64.removeOutliers()
17 real_data_64 = dp64.processed_data
18 real_data_64 = real_data_64[0:sample_size].copy()
19 real_data_64 = real_data_64.values
20 return real_data_32, real_data_64

Calculate statistical metrics such as quartiles and median to assess the quality
of the synthetic data, as demonstrated in Code 3.11. It is important to highlight that
the genStatisctics method returns a dictionary for a given set of real and synthetic
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models comprising lists of column statistics (features). Each list contains statistical values
in positions 0, 1, 2, and 3, corresponding to real data from 32-bit real, 32-bit synthetic,
64-bit real, and 64-bit synthetic, respectively, presenting percentiles and medians.

Code 3.11: Statistical methods
1 def getStatistics(data):
2 # Compute and return percentiles and median
3 median = np.median(data)
4 percentile_25 = np.percentile(data, 25)
5 percentile_75 = np.percentile(data, 75)
6 return [percentile_25, median, percentile_75]
7

8 def genStatisctics(real_32, synth_32, real_64, synth_64, sample_size, num_cols):
9 # Generate statistics for each column in the dataset

10 statistics = {}
11 for col in num_cols:
12 statistics[col] = [getStatistics(real_32[:, col][:sample_size]),
13 getStatistics(synth_32[:, col][:sample_size]),
14 getStatistics(real_64[:, col][:sample_size]),
15 getStatistics(synth_64[:, col][:sample_size])]
16 return statistics

So, the Code 3.12 is defined to convert the three-dimensional synthetic data ob-
jects into a two-dimensional dataset, flattening the windows into rows and columns.

Code 3.12: Creating dataset in two dimensions
1 def createDataSet(seq_len, data):
2 lines = int(params.synth_sample_size / seq_len)
3 dataset = np.zeros(lines * seq_len * params.merged_columns_len).reshape(lines *

seq_len, params.merged_columns_len)
4 for i in range(lines):
5 for j in range(seq_len):
6 dataset[i * seq_len + j] = data[i][j][:]
7 return dataset

Code 3.13, especially in get_allfeatures_metrics, presents the metric
generation based on Equation 1, which is derived from the discrepancy in the interquartile
ranges between each feature of the real and synthetic data. Additionally, the variance in
the medians of these features is incorporated into this computation. Consequently, an
object named ’metrics’ is instantiated, encapsulating the results of this equation across all
models and their corresponding characteristics. Subsequently, these metrics are used in
the evaluation script to determine the optimal model. It should be emphasized that the
total of the metrics for all features of a given model, denoted by the variable M in the
equation, is calculated in the analyze_data_models.ipynb script in the method
getFeaturesBestMetricsOfModels. This method identifies the best and worst
models from the trained models.

Code 3.13: Method of creating metrics
1 def getMetrics(statistic_data):
2 # Calculate discrepancy metrics for 32 and 64-bit data
3 metric32 = abs(statistic_data[0][2] - statistic_data[0][0]) - abs(statistic_data

[1][2] - statistic_data[1][0]) + abs(statistic_data[0][1] - statistic_data[1][1])
4 metric64 = abs(statistic_data[2][2] - statistic_data[2][0]) - abs(statistic_data

[3][2] - statistic_data[3][0]) + abs(statistic_data[2][1] - statistic_data[3][1])
5 return metric32, metric64
6

7 def get_allfeatures_metrics(metrics, model_index, statistic_data):
8 # Aggregate metrics for each feature across all models
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9 for col in params.num_cols:
10 metrics[0][model_index][col], metrics[1][model_index][col] = getMetrics(

statistic_data[col])

As detailed in Section 3.5.1.3 on the training script, the generation script employs
a triple-nested loop to process all trained models, generating data and computing statis-
tical metrics for each one. To maintain clarity in this document, we have opted not to
include this specific code segment. For those interested in examining the full code, it is
accessible in our Git repository.

This section methodically illustrated the process of generating synthetic time se-
ries data with TimeGAN. It covers everything from preparing real datasets and generating
synthetic data to conducting statistical analyses to evaluate the synthetic data’s quality.
Section 3.5.1.5 delves into the script responsible for identifying the optimal model from
all the trained models.

3.5.1.5. Model Selection

This section assesses synthetic time series data generated by TimeGAN, focusing on iden-
tifying the best and worst-performing models through statistical analysis. The Python
notebook script, analyze_data_models.ipynb, available in our repository, con-
tains the code for model selection. The initial step involves importing necessary Python
libraries and setting up the environment.

So, The getFeaturesBestMetricsOfModels method in the script (Code
3.14) evaluates synthetic data generated by different models to identify the best and worst-
performing models based on their statistical metrics. The method aims to compare the
synthetic data generated by different models with the real data, identifying which models
produce the most and least similar models to the real data based on the aggregated metrics.
It starts by calling sumFeatureMetricsOfModels to get the aggregate metrics for
each model. These metrics represent the total summation of the synthetic data from the
real data across all features. Two lists are returned: sum32 and sum64, respectively,
representing the summed metrics for 32-bit and 64-bit model data. The function then
identifies the best models (i.e., those with the lowest sum value in their metrics, indicating
the least deviation from the real data) for both 32-bit and 64-bit data. It uses np.argmin
to find the index of the lowest value in sum32 and sum64, indicating the best models.
The getModelNameByIndex method (see our git) retrieves the model name based on
this index, and the model’s synthetic data is accessed using this name.

Similarly, it identifies the worst models (those with the highest sum value in their
metrics, indicating the greatest deviation from the real data) for both 32-bit and 64-bit
data. It uses np.argmax to find the highest value index in sum32 and sum64 and
retrieves the corresponding model’s name and data. Finally, the function returns the syn-
thetic data for the best and worst models for 32-bit and 64-bit buffer sizes.

Code 3.14: Evaluating the best and word models
1 def sumFeatureMetricsOfModels(models, data_metrics):
2 # Initialize arrays to store sum of metrics for each model
3 sum32 = np.zeros(len(models))
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4 sum64 = np.zeros(len(models))
5 # Sum the metrics for each feature in 32 and 64-bit models
6 for i in range(len(models)):
7 sum32[i] = sum(data_metrics[0,i,:])
8 sum64[i] = sum(data_metrics[1,i,:])
9 return sum32, sum64

10

11 def getFeaturesBestMetricsOfModels(models, metrics):
12 sum32, sum64 = sumFeatureMetricsOfModels(models, metrics)
13 index = np.argmin(sum32)
14 model = getModelNameByIndex(index)
15 best_32 = models.get(model)[0]
16 index = np.argmin(sum64)
17 model = getModelNameByIndex(index)
18 best_64 = models.get(model)[0]
19 index = np.argmax(sum32)
20 model = getModelNameByIndex(index)
21 worst_32 = models.get(model)[0]
22 index = np.argmax(sum64)
23 model = getModelNameByIndex(index)
24 worst_64 = models.get(model)[0]
25 return best_32, worst_32, best_64, worst_64

The subsequent portion of the script, following the method to select the best and
worst models, is focused on producing graphical representations to facilitate the anal-
ysis of the models. This includes generating box plots, violin plots, cumulative dis-
tribution function (CDF) plots, and correlation matrices. These visualizations are inte-
gral in understanding the performance nuances of the models identified by the selection
method, highlighting the differences in data distribution, variability, and correlation pat-
terns between the synthetic data generated by the best and worst models. Additionally,
the script enables the exportation of the best model’s dataset in a CSV format through
createSaveDataSetModel method. This dataset can then be imported into the
scripts designed for training the RL agent.

Also, it is important to be clear that in [52], various methods are outlined for
assessing the quality of data produced by a TimeGAN model. These evaluation techniques
include visualization tools like t-SNE and PCA, alongside regression models to analyze
samples generated by TimeGAN models. The visualization method, however, necessitates
human involvement for subjective assessment, making it challenging to determine the
most appropriate model definitively. Conversely, the regression-based evaluation strategy
was found to be less effective in our context due to the non-stationary nature of our data,
complicating the task of developing a reliable regressor.

Despite these obstacles, we implemented a basic RNN via the Keras framework
for regression analysis to compare real and synthetic data. Utilizing the Adam optimizer
and Mean Absolute Error (MAE) as the loss metric, the RNN was configured to forecast
the final entry in a sequence from its preceding elements. Nonetheless, the outcomes
for both the real and synthetic datasets were unsatisfactory. The code for this regression
model is accessible in our Git repository.

Due to the aforementioned issues, our approach to model selection was primarily
grounded in statistical analysis. Moreover, we pursued an alternative method for evaluat-
ing our synthetic data by developing an RL agent, trained using both real and synthetic
datasets, to evaluate its performance in each scenario, as detailed in Section 3.5.1.6.
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3.5.1.6. Applying synthetic data to an RL agent

This section will present the implementation details regarding the queue management
problem in video streaming applications described in section 3.4.1.1. We will start by
describing how to model the agent-environment interaction illustrated in Figure 3.2. We
will briefly explain how the agent learns, and lastly, we will show how to use the agent
and environment classes in an application context.

In a video streaming application scenario, the Environment class will receive
the synthetic INT metadata, execute an action, and calculate a reward value for such an
action (Code 3.15). We modeled the agent-environment interaction by considering the
DASH Server video streaming chunk size as a time step. Thus, the agent should take
action to increase or decrease the switch’s queue size every 4 seconds.

Code 3.15: Take action method from the Environment class
1 def take_action(self, action, intState, dashState):
2 self.current_state = intState
3 self.received_intStates.append(intState)
4 self.received_dashStates.append(dashState)
5 self.actions_history.append(action)
6 self.fps_history.append(dashState[FOURTH_SECOND][FPS_INDEX])
7

8 if action == BUFFER_SIZE_64:
9 self.buffer_size.append(64)

10 elif action == BUFFER_SIZE_32:
11 self.buffer_size.append(32)
12

13 if len(self.received_intStates) == 2:
14 # state observed when the action was taken
15 self.current_state = self.received_intStates[0]
16 # resulting state after the taken action
17 self.next_state = self.received_intStates[-1]
18 # dash state when the action was taken
19 current_dash = self.received_dashStates[0]
20 # dash state after the taken action
21 next_dash = self.received_dashStates[-1]
22 self.calculate_reward(current_dash[FOURTH_SECOND][BUFFER_INDEX], next_dash[

FOURTH_SECOND][BUFFER_INDEX], next_dash[FOURTH_SECOND][FPS_INDEX])
23 self.received_intStates = []
24 self.received_dashStates = []
25

26 return self.current_state, self.next_state, self.reward, self.done, {}

In this sense, it should be noted that to induce the agent to learn how to orchestrate
the switches queue sizes in a way to enhance the application Quality of Service (QoS),
the reward score cannot be calculated immediately after the action taken in the current
state, since the consequence of such an action would only be noticeable in the next state
[11]. This phenomenon occurs because both TCP and the Adaptive Bitrate Streaming
(ABR) algorithm have control mechanisms to alleviate the congestion on the network
[46]. Hence, the reward calculation should be delayed until the next state observation.
The implementation of this strategy can be observed in the conditional clause depicted in
line 13 of Code 3.15.

In this context, the agent is rewarded for improving the video streaming QoS,
characterized by FPS and the Local Buffer Occupancy (LBO). These metrics have an
intrinsic correlation, such that as the LBO increases, there is a tendency for the FPS
to increase as well. However, such a correlation is not always straightforward due to
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the complex dynamics between network congestion and video streaming. Therefore, to
calculate a reward (Rt+1) for a specific action (At), we can first evaluate whether the LBO
from the next state (LBOt+1) improved in comparison to the LBO observed when the
action was executed (LBOt) [11].

Then, a reward score is assigned considering the effects of this action on both
LBO and FPS (FPSt+1) next states. In this sense, the agent should receive a maximum
reward whenever the action taken leads to the maximization of LBOt+1, and is penalized
in an inversely proportional manner if the video streaming present stalls (Code 3.16). This
approach ensures that the agent’s reward is conditioned by its ability to optimize both LBO
and FPS, reducing the video streaming tradeoffs in dynamic network conditions [11].
Hence, when developing your agent, you should carefully design the reward function
to reflect your application’s intrinsic characteristics. This is important since the reward
function affects the agent’s learning capacity as much as the model hyperparameters.

Code 3.16: Calculate reward method from the Environment class
1 def calculate_reward(self, buffer_action_step, buffer_reward_step, fps_reward_step):
2 # Check whether the LBO improved after the action taken
3 if buffer_reward_step > buffer_action_step:
4 if buffer_reward_step > 30:
5 self.reward = 2
6 # Check the next state’s FPS and assign a reward score accordingly
7 elif buffer_reward_step < 30:
8 if fps_reward_step == 30:
9 self.reward = 1

10 elif fps_reward_step == 24:
11 self.reward = .5
12 else:
13 self.reward = .1
14 # Checking whether the LBO retarded after the action taken
15 if buffer_reward_step < buffer_action_step:
16 if buffer_reward_step > 30:
17 self.reward = 2
18 # Check the next state’s FPS and assign a reward score accordingly
19 elif buffer_reward_step < 30:
20 if fps_reward_step == 30:
21 self.reward = 1
22 elif fps_reward_step == 24:
23 self.reward = .5
24 else:
25 self.reward = -2
26 # Append the calculated reward to the reward history
27 self.reward_history.append(self.reward)

The agent in question is a Deep Q-Network (DQN) [36] designed with the Multi-
Layer Perceptron (MLP) architecture, comprising an input layer with units for each INT
feature, 2 hidden layers with 24 Rectified Linear Units (ReLU) each, and an output layer
with 2 units - one for each action the agent could take (increase queue size to 64 or
decrease it to 32). We trained an agent on the real setup throughout the video transmission
to evaluate the feasibility of employing TimeGAN as a network traffic simulator for video
applications. Afterward, we trained a second agent using only the synthetic data generated
by TimeGAN. We followed the same methodology in both contexts. Still, in the latter
one, instead of using the real setup, we fed the agent with the synthetic INT metadata
corresponding to the action taken, thus simulating the real network behavior.

During the agent training, the actions to increase or decrease the switch’s queue
size are executed in accordance with the ε-greedy strategy, in which the agent starts ex-
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ploring the environment by selecting random actions from the action space and exponen-
tially decreases the probability to take such actions (ε) throughout the training steps to
exploit the maximizing reward actions. Nonetheless, it should be noted that there must be
a balance between exploration and exploitation to enable the agent to learn how to map
actions to states continually. A well-adopted strategy is to start ε with 1.0 and exponen-
tially decrease it to 0.01. Hence, we allow the agent to exploit its existing knowledge and
explore new actions by intermittently choosing a random action from the action space
[47]. Code 3.17 describes the exploration-exploitation strategy implementation.

Code 3.17: Epsilon-greedy policy method from the Agent class
1 def epsilon_greedy_policy(self, state):
2 self.total_steps += 1
3 # Is the probability of selecting a random action less than or equal to epsilon?
4 if np.random.rand() <= self.epsilon:
5 # If so, select a random action (exploration)
6 return np.random.choice(self.num_actions)
7 # Otherwise, select the action with the highest Q-value (exploitation)
8 # Normalize the input state representation
9 normalized_states = preprocessing.normalize(state)

10 # Predict Q-values using the online network
11 q = self.online_network.predict(normalized_states)
12 # Return the action matching the highest Q-value
13 return np.argmax(q, axis=1).squeeze()

In this context, we linearly decreased ε over a span of 250 time steps in order to
favor exploration. Equation 2 formalizes the ε linear decay rate (Dlinear) algorithm, which
represents the ratio between the difference in starting (εs) and ending (εe) ε values, and
the number of decay steps (T ). Then, the probability of selecting random actions was
exponentially reduced by a rate of 0.99 to a minimal value (0.01) in order to advance
exploitation over exploration. Lines ranging from 9 to 15 of Code 3.18 describe the
epsilon decay strategy implementation.

Dlinear = (εs− εe)/T (2)

Code 3.18: Memorize transition method from the Agent class
1 def memorize_transition(self, s, a, r, s_prime, not_done):
2 # Check whether the episode has terminated
3 if not_done == 0:
4 # If the episode has terminated, update episode-related attributes
5 self.episode_reward += r
6 self.episode_length += 1
7 # Otherwise, update the exploration rate based on training progress
8 else:
9 if self.train:

10 if self.episodes < self.epsilon_decay_steps:
11 # Decrease epsilon linearly
12 self.epsilon -= self.epsilon_decay
13 else:
14 # Decrease epsilon exponentially
15 self.epsilon *= self.epsilon_exponential_decay
16 # Update the episode counter
17 self.episodes += 1
18 # Update the reward history
19 self.rewards_history.append(self.episode_reward)
20 # Update the episode length
21 self.steps_per_episode.append(self.episode_length)
22 # Reset episode-specific attributes
23 self.episode_reward, self.episode_length = 0, 0

42º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos - SBRC 2024

Livro-texto de Minicursos 125 ©2024 SBC — Soc. Bras. de Computação



24 # Store the transition in the experience replay buffer
25 self.experience.append((s, a, r, s_prime, not_done))

The experiences resultant from agent-environment interactions are represented by
a tuple of the current state, the action taken, the reward score, and the next state (s, a,
r, and s_prime in Code 3.18). Once the agent parameters update condition is met, the
DQN’s online network is trained every time a new experience is stored in the experience
replay memory buffer (lines ranging from 7 to 39 of Code 3.19). Conversely, the target
network weights are updated at each τ step (line 49 from Code 3.19). For more informa-
tion regarding the DQN training flow and the motivations supporting this methodology,
please refer to the work by [36], since such content is beyond the scope of the current
tutorial.

Code 3.19: Experience replay method from the Agent class
1 def experience_replay(self):
2 # If the experience replay does not meet the minimum requirement, no update occurs
3 if self.minimum_experience_memory > len(self.experience):
4 return
5 # Sample a minibatch of transitions from the experience replay buffer
6 minibatch = map(np.array, zip(*sample(self.experience, self.batch_size)))
7 states, actions, rewards, next_states, not_done = minibatch
8 # Normalize the states and next states
9 normalized_states = preprocessing.normalize(states)

10 normalized_next_states = preprocessing.normalize(next_states)
11 # Compute Q-values for next states using the online network
12 next_q_values = self.online_network.predict_on_batch(normalized_next_states)
13 # Select the best actions for next states
14 best_actions = tf.argmax(next_q_values, axis=1)
15 # Compute target Q-values using the target network
16 next_q_values_target = self.target_network.predict_on_batch(normalized_next_states)
17 # Gather target Q-values from the best actions considering the batch size
18 target_q_values = tf.gather_nd(next_q_values_target,
19 tf.stack((self.idx, tf.cast(best_actions, tf.int32)),
20 axis=1))
21 # Computes target Q-values based on the Bellman equation
22 targets = rewards + not_done * self.gamma * target_q_values
23 # Record the mean Q-value for monitoring
24 self.q_values.append(np.mean(targets))
25 # Predict the Q-values for the sampled batch of transitions
26 q_values = self.online_network.predict_on_batch(normalized_states)
27 # Update the Q-values for the sampled actions
28 q_values[self.idx, actions] = targets
29 # Train the online network using the updated Q-values
30 loss = self.online_network.train_on_batch(x=normalized_states, y=q_values)
31 self.losses.append(loss)
32 # Update the target network weights periodically
33 if self.total_steps % self.tau == 0:
34 self.update_target()

With that, we covered the first two objectives of this section: describing how to
model an agent-environment interaction following the MDP strategy (Figure 3.2) and
explaining how such an agent can learn to make assertive decisions in the context of
queue management for video streaming applications. Now, we will describe how to
employ the aforementioned methods. Thus, this use case is based on 3 Python scripts:
receiveMetricsGan.py, which acts as our main script, by reading the INT meta-
data and controlling the agent training pipeline; environmentGan.py, which contains
the functions to take actions and calculate their respective reward scores; and agent.py,
which defines all components of the DQN workflow.
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Hence, to apply the synthetic data generated by TimeGAN to train an RL-based
agent, you should follow the following steps:

• Read INT metadata regarding the 32-bit and 64-bit queue sizes from their respective
CSV files. In this step, you should instantiate a thread for each function in order to
be able to read the data from both files simultaneously.

• Join the data obtained in the previous step into a global dictionary, this will enable
us to change the data source in accordance with the agent actions, thus simulating
the real setup’s network behavior.

• Send data to the RL Environment. In this step, you should first verify whether the
agent has taken actions and retrieve a data frame from the global dictionary based
on the action taken or the switch’s initial queue size. Then, you will need to slice
this data frame and get the columns related to INT and DASH, and subsequently
convert them to numpy arrays. This method will enable us to use these features as
input for the DQN. As mentioned throughout this section, the INT metadata will be
used by the agent for action-taking, while the DASH metrics will be employed in
the agent’s reward calculation.

The aforementioned steps should be repeated throughout the video streaming,
which is the length of the synthetic data files. All code mentioned throughout this section
is well documented and will be available in a GitHub repository11.

3.5.2. Generation of Synthetic Network Traces

3.5.2.1. NetDiffusion

In this section, we will present a step-by-step guide12 for synthetic traffic generation with
a third-party tool namely NetDiffusion [25]. NetDiffusion is a state-of-the-art open-
source tool for the community to generate traffic considering different applications. It
leverages a controlled variant of a Stable Diffusion [43] model to generate synthetic net-
work traffic that boasts high fidelity and adheres to protocol specifications. First of all,
access your machine with GPU support, performing a port-forwarding on port 7860 and
clone the kohya_ss_fork and sd_webui_fork. Then, activate the Python 3.10.13
virtual environment in kohya_ss
_fork folder as follows:

Code 3.20: NetDiffusion: Clone the mandatory git forks
1 # SSH to Linux server via designated port (see following for example)
2 ssh -L 7860:LocalHost:7860 username@server_address
3 # Clone the repository
4 git clone git@github.com:noise-lab/NetDiffusion_Generator.git
5 # Navigate to the project directory
6 cd NetDiffusion_Generator
7 # Access the ‘fine_tune‘ folder
8 cd fine_tune
9 # Remove the empty ‘kohya_ss_fork @ 8a39d4d‘ and clone it as follows

10 git clone https://github.com/Chasexj/kohya_ss_fork.git

11https://github.com/thiagocaproni/tutorial_timegan/tree/master/code
12NetDiffusion tutorial: https://hackmd.io/@goes-ariel/rkVlaxTR6
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11 # Clone ‘sd-webui-fork @ 2533cf8‘ (also inside ‘fine_tune‘ folder)
12 git clone https://github.com/Chasexj/stable-diffusion-webui-fork.git
13 cd <NetDiffusion main folder>/fine_tune/kohya_ss_fork/
14 source venv/bin/activate

So, We must ensure the variable LD_LIBRARY_PATH is correctly exported. Oth-
erwise, a mandatory library, namely bitsandbytes, for CUDA custom functions - in par-
ticular 8-bit optimizers, matrix multiplication (LLM.int8()), and 8 & 4-bit quantization
functions, will not work. First, we need to ensure what CUDA version is necessary for
the virtual Python environment. To do that, just follow the steps in code 3.21:

Code 3.21: NetDiffusion: Checking Python’s virtual environment CUDA version needed
1 #### Checking CUDA version ####
2 (venv) (base) thiago@ifsuldeminas-Z390-M-GAMING:~/git_ariel/NetDiffusion_Generator/

fine_tune/kohya_ss_fork$ python
3 Python 3.10.13 (main, Aug 25 2023, 13:20:03) [GCC 9.4.0] on linux
4 Type "help", "copyright", "credits" or "license" for more information.
5 >>> import torch
6 >>> torch.version.cuda
7 ’11.8’
8 >>> exit()
9 (venv) (base) thiago@ifsuldeminas-Z390-M-GAMING:~/git_ariel/NetDiffusion_Generator/

fine_tune/kohya_ss_fork$
10 #### Find libcudart.so library ####
11 (venv) (base) thiago@ifsuldeminas-Z390-M-GAMING:~/git_ariel/NetDiffusion_Generator/

fine_tune/kohya_ss_fork$ find / -name libcudart.so 2>/dev/null
12 ... (omitted) ...
13 /home/thiago/anaconda3/envs/ydata/lib/libcudart.so
14 /home/thiago/anaconda3/pkgs/cuda-cudart-dev-12.1.105-0/lib/libcudart.so
15 /home/thiago/anaconda3/pkgs/cudatoolkit-11.3.1-h2bc3f7f_2/lib/libcudart.so
16 /home/thiago/anaconda3/pkgs/cudatoolkit-11.8.0-h6a678d5_0/lib/libcudart.so
17 ... (omitted) ...
18 (venv) (base) thiago@ifsuldeminas-Z390-M-GAMING:~/git_ariel/NetDiffusion_Generator/

fine_tune/kohya_ss_fork$
19 #### Set the correct one (in this case, CUDA 11.8) ####
20 (venv) (base) thiago@ifsuldeminas-Z390-M-GAMING:~/git_ariel/NetDiffusion_Generator/

fine_tune/kohya_ss_fork$ export LD_LIBRARY_PATH=/home/thiago/anaconda3/pkgs/
cudatoolkit-11.8.0-h6a678d5_0/lib

At lines 3-9, we verify the demanded version of CUDA for the Python’s en-
vironment. Following, lines 13-22 depict the output of the existing CUDA versions
and its respective libcudart.so libraries. In this case, we correctly set and export
LD_LIBRARY_PATH (line 26).

Code 3.22: NetDiffusion: Checking whether bitsandbytes is running correctly
1 (venv) (base) thiago@ifsuldeminas-Z390-M-GAMING:~/git_ariel/NetDiffusion_Generator/

fine_tune/kohya_ss_fork$ python -m bitsandbytes
2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
3 ++++++++++++++++++ BUG REPORT INFORMATION ++++++++++++++++++
4 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
5

6 +++++++++++++++++++ ANACONDA CUDA PATHS ++++++++++++++++++++
7 /home/thiago/anaconda3/lib/libicudata.so
8 /home/thiago/anaconda3/envs/ydata/lib/python3.9/site-packages/torch/lib/

libtorch_cuda_linalg.so
9 ... (ommited) ...

10

11 ++++++++++++++++++ /usr/local CUDA PATHS +++++++++++++++++++
12 /usr/local/lib/python3.8/dist-packages/torch/lib/libc10_cuda.so
13 /usr/local/lib/python3.8/dist-packages/torch/lib/libtorch_cuda_linalg.so
14 /usr/local/lib/python3.8/dist-packages/torch/lib/libtorch_cuda.so
15
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16 +++++++++++++++ WORKING DIRECTORY CUDA PATHS +++++++++++++++
17 /home/thiago/git_ariel/NetDiffusion_Generator/fine_tune/kohya_ss_fork/venv/lib/python3

.10/site-packages/onnxruntime/capi/libonnxruntime_providers_cuda.so
18 /home/thiago/git_ariel/NetDiffusion_Generator/fine_tune/kohya_ss_fork/venv/lib/python3

.10/site-packages/torch/lib/libtorch_cuda_linalg.so
19 /home/thiago/git_ariel/NetDiffusion_Generator/fine_tune/kohya_ss_fork/venv/lib/python3

.10/site-packages/torch/lib/libtorch_cuda.so
20 ... (ommited) ...
21 ++++++++++++++++++ LD_LIBRARY CUDA PATHS +++++++++++++++++++
22 /home/thiago/anaconda3/pkgs/cudatoolkit-11.8.0-h6a678d5_0/lib CUDA PATHS
23 /home/thiago/anaconda3/pkgs/cudatoolkit-11.8.0-h6a678d5_0/lib/libcudart.so
24

25 ++++++++++++++++++++++++++ OTHER +++++++++++++++++++++++++++
26 COMPILED_WITH_CUDA = True
27 COMPUTE_CAPABILITIES_PER_GPU = [’7.5’]
28 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29 ++++++++++++++++++++++ DEBUG INFO END ++++++++++++++++++++++
30 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
31

32 Running a quick check that:
33 + library is importable
34 + CUDA function is callable
35

36 WARNING: Please be sure to sanitize sensible info from any such env vars!
37

38 SUCCESS!
39 Installation was successful!

In code block 3.22, we run the bitsandbytes module (line 2) and achieved the
desired output (lines 66-74) where the import of the library is correct and the module
is set. Otherwise, the output of this execution would indicate the need to export the
LD_LIBRARY_PA
TH variable again.

To generate synthetic application data, we must convert application PCAPs/traces
(e.g., Youtube, Skype) or the default provided Netflix traces into the nPrint [22] format,
a standardized packet representation for Machine Learning model learning. To do that, we
should store raw PCAPs used for fine-tuning into NetDiffusion_Generator/data
/fine_tune_pcapswith the application/service labels as the filenames (e.g., netfli
x_01.pcap).

Code 3.23: NetDiffusion: Changing Caption
1 # For example, ’pixelated network data, type-0’ refers to NetFlix pcap,
2 # Adjust the script based on fine-tuning task.
3 cd NetDiffusion_Generator/fine_tune && python3 caption_changing.py test_task/image/20

_network

Code 3.24: NetDiffusion: Import Data
1 # Navigate to preprocessing dir
2 cd data_preprocessing/
3 # Run preprocessing conversions
4 python3 pcap_to_img.py
5 # Navigate to fine-tune dir and the khoya subdir for task creation
6 # (replace the number in 20_network with the average number of pcaps per traffic type

used for fine-tuning)
7 cd ../fine_tune/kohya_ss_fork/model_training/
8 mkdir -p example_task/{image/20_network,log,model}
9 # Leverage Stable Diffusion WebUI for initial caption creation

10 cd ../../sd-webui-fork/stable-diffusion-webui/
11 # Lunch WebUI
12 bash webui.sh
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The code section 3.24 summarizes to convert the nPrint data into an image repre-
sentation (lines 2-5). Then, we create placeholder folders that will be used later. Also,
we access a GUI (line 15) with the Python virtual environment and configure the fine-
tuning parameters to train the model, as shown in the enumerated steps below. But first,
we cannot forget the need to create a corresponding text file (e.g., “netflix_01.txt”) with a
customized traffic label for the preprocessed data (e.g., “netflix_01.png”).

1. Open the WebUI via the ssh port on the preferred browser, example address: http:
//localhost:7860/

2. Under Extras/Batch From Directory, enter the absolute path for /NetDiffusion_Gene
rator/data/preprocessed_fine_tune_imgs and /NetDiffusion_Generator/fine_tune/k
ohya_ss_fork/model_training/test_task/image/20_network as the input/output direc-
tories.

3. Under Extras/batch_from_directory, set the ‘scale to‘ parameter to width = 816
and height = 768 for resource-friendly fine-tuning (adjust based on resource avail-
ability).

4. Enable the caption parameter under extras/batch_from_directory and click gene
rate.

5. Terminate webui.sh

If you already run the setup.sh file inside kohya_ss_fork folder, do the fol-
lowing steps in code section 3.25 and check the installed requirements:

Code 3.25: NetDiffusion: Fine-tuning
1 # Navigate to fine-tuning directory
2 cd kohya_ss_fork
3 # Set up accelerate environment (gpu and fp16 recommended)
4 accelerate config
5 # Check the installed requirements with pip
6 pip list
7 # Fine-tune interface initialization
8 bash gui.sh

1. Open the fine-tuning interface via the ssh port on the preferred browser, example
address: http://localhost:7860/

2. Under LoRA/Training, load the configuration file via the absolute path for /NetDiffu
sion_Generator/fine_tune/LoraLowVRAMSettings.json

3. Under LoRA/Training/Folders, enter the absolute paths for /NetDiffusion_Generato
r/fine_tune/kohya_ss_fork/model_training/test_task/image, /NetDiffusion_Generat
or/fine_tune/kohya_ss_fork/model_training/test_task/model, and /NetDiffusion_Ge
nerator/fine_tune/kohya_ss_fork/model_training/test_task/log for the Image/Outpu
t/Logging folders respectively, and adjust the model name if needed.

4. Under LoRA/Training/Parameters/Basic, adjust the Max Resolution (Figure 3.15)
to match the resolution from data preprocessing, e.g., 816,768 (i.e., width, height).
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Figure 3.15: NetDiffusion GUI: fine-tuning max resolution

5. Click on Start Training to begin the fine-tuning. Adjust the fine-tuning parame-
ters as needed due to different generation tasks that may have different parameter
requirements to yield better synthetic data quality.

6. After the “model saved” message (check the terminal), close the server (Ctrl + C).

Figure 3.14 shows the GUI to configure the model paths and parameters. By
default, the LoraLowVRAMSettings.json file, contains Windows-based file paths
for Image/Output/Logging files. However, we can manually configure the correct absolute
paths and the Max Resolution in this file and load it again.

Figure 3.14: NetDiffusion GUI: fine-tuning folder paths.

In the previous steps we generated a file in the model folder provided (i.e., fine-
tune/kohya_ss_fork/model_training/test_task/model). The default filename is Addams.s
afetensors. If not, replace “Addams” in the first step in the code block 3.26 by the
correct name:

Code 3.26: NetDiffusion: Generation Step
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1 # Copy the fine-tuned LoRA model (adjust path namings as needed) to Stable Diffusion
WebUI

2 cp model_training/test_task/model/Addams.safetensors ../sd-webui-fork/stable-diffusion-
webui/models/Lora/

3 # Navigate to the generation directory
4 cd ../sd-webui-fork/stable-diffusion-webui/
5 # Initialize Stable Diffusion WebUI
6 bash webui.sh

1. Open the WebUI via the ssh port on the preferred browser, example address: http:
//localhost:7860/

2. Install ControlNet extension for the WebUI and restart the WebUI: https://
github.com/Mikubill/sd-webui-controlnet (see Figure 3.16). Go
to Extensions/ and place the URL in the appropriate field to install it.

3. To generate an image representation of a network trace, enter the corresponding
caption prompt with the LoRA model extension under txt2img section. For example
pixelated network data, type-0 <lora:Addams:1> for Netflix data.

4. Adjust the generation resolution to match the resolution from data preprocessing,
e.g., 816,768.

5. Adjust the seed to match the seed used in fine-tuning, default is 1234.

6. Enable Hires.fix to scale to 1088, 1024, upscaling the image (see Figure 3.18).

7. From training data, sample a real PCAP image (that belongs to the same category as
the desired synthetic traffic) as input to the ControlNet interface, and set the Control
Type (we recommend canny) - see Figure 3.17.

8. Click on Generate to complete the generation. Note that extensive adjustments
on the generation and ControlNet parameters may be needed to yield the best gen-
eration result as the generation tasks and training data differ from each other.

Figure 3.16: NetDiffusion: Installing ControlNet extension.

Remembering that the model name (with .safetensors extension) follows
the same rule as in the previous steps. You can train different models with different
names, but you must inform which one you are using in the prompt. For instance, con-
sider we have a model with 3 applications (types 0 to 2), and we want to generate an
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Figure 3.17: NetDiffusion: Configuring Canny filter parameters on ControlNet extension.

image representing a set of packets with the second class of applications. Then, we
could set the prompt input as: pixelated network data, type-1 <lora:
my_model:1>. To enable ControlNet, we must download it13 and place it into stable-
diffusion-webui/extensions-webui-controlnet/models

At this point, we already have a generated image. However, the generated im-
age itself is not enough, as depicted in Figure 3.19, to reproduce a “replayable” PCAP
(e.g., tcpreplay), since there is no guarantee the inter- and intra-packet dependencies
are already being satisfied. In this case, the authors provided a set of post-heuristic
scripts to convert the image back to nprint format and generate the final PCAP. First,
we need to place the generated images into the correct folder - i.e., under /NetDiffu-
sion_Generator/data/generated_imgs – and navigate to the /NetDiffusion_Genera
tor/post-generation/ folder and run the post-generation scripts.

Figure 3.20 shows the execution of the post-heuristic processing. These steps
complete the post-generation pipeline with the final nprints and PCAPs stored in /NetDif-
fusion_Generator/data/replayable_generated_nprints and /NetDiffusion_Generator/data/
replayable_generated_pcaps, respectively.

To test the generated PCAPs, we can try to resend them through the local interface:

13Canny model (“.pth” file)
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Figure 3.18: NetDiffusion: Upscaling the image to be generated.

Code 3.27: NetDiffusion: Post-Generation Heuristic Correction
1 # Install tcpreplay
2 sudo apt update
3 sudo apt install tcpreplay
4 # Grab the local interface’s name
5 ip a
6 # Navidate to the generated PCAPs folder
7 cd NetDiffusion_Generator/data/replayable_generated_pcaps
8 # Run tcpreplay with a generated PCAP file
9 sudo tcpreplay --loop=0 --verbose -i eno1 00000-1234.pcap

Figure 3.19: Generated image (without post-processing).
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Figure 3.20: Running the post-processing heuristics.

3.5.2.2. NetShare

Similarly to NetDiffusion, NetShare [51] is a recent work exploring the feasibility of
using GANs to automatically learn generative models to generate synthetic packet- and
flow header traces for network-ing tasks (e.g., telemetry anomaly detection, provision-
ing). However, they do not use image representation or nPrint; rather, they use a tabular
representation distributed among different GANs with temporal and confinement depen-
dencies. The input packet/flow trace is split into a set of flows based on their 5-tuples, and
each of these flows is further split into N chunks based on the time duration of the flow.
NetShare divides each flow into 10 chunks. The packet/flow fields of these chunks are
encoded using continuous and categorical encoding functions, and these ecoded chunks
are fed into NetShare’s DoppleGANger time series GANs, a specific variant of time se-
ries GANs that work well with time series data. Once trained, these models are used to
generate synthetic (encoded) chunks, which are decoded and assembled into a full trace
by sorting all the packets/flows by their timestamps

The work is well documented in terms of reproducibility. However, a direct way to
convert the CSV output of key packet fields to PCAP and verify the usability of network
packets with statistical similarities to real data to increase data availability in network
experiments is not publicly available.

To install it, you may follow the step-guide installation tutorial on the official
repository14 or follow the next steps. First, we install the libpcap-dev library in
the system - assuming we are on Ubuntu/Debian. Then, we create a Conda Python 3.9
virtual environment (line 6) and activate it (line 9). We then clone and install NetShare’s
dependencies (lines 12-13) and SDMetrics to help us plot and show the statistics after
running the model (lines 16-17).

Code 3.28: NetShare: Setup Install
1 # Install libpcap depdency (Optional) - On Debian-based systems
2 sudo apt install libpcap-dev
3 # Assume Anaconda is installed
4 # Create virtual environment if not exists
5 conda create --name NetShare python=3.9
6 # Activate virtual env
7 conda activate NetShare
8 # Install NetShare package

14NetShare GitHub Documentation: https://github.com/netsharecmu/NetShare
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9 git clone https://github.com/netsharecmu/NetShare.git
10 pip3 install -e NetShare/
11 # Install SDMetrics package
12 git clone https://github.com/netsharecmu/SDMetrics_timeseries
13 pip3 install -e SDMetrics_timeseries/

Figure 3.21: NetShare: Running the example - PCAP generation mode.

To run the example code with PCAP generation15, go to NetShare/examples/
pcap and run driver.py. As shown in Figure 3.21, NetShare opens a local connec-
tion with a GUI, where the results are visualized. There are several metrics (Figure 3.22)
comparing how statistically similar the data is in various fields of the packet (e.g., source
IP, destination IP).

(a) NetShare: Real vs Synthetic Source IP. (b) NetShare: Real vs Synthetic Destiny IP.

Figure 3.22: NetShare: Some of the statistical results.

The results presented in Figure 3.22 are based on a sample CAIDA PCAP with
only 76 KB and do not represent the full potential of this work. The authors do provide
a link to download the datasets16 analyzed in the full paper for replicability. Although the
code was available, the approach scales with compute resources, and the original models
in the paper were trained on a 200 CPU + 200 GB Memory cluster, which are resources
that neither we nor the authors have available at hand.

15NetShare also supports NetFlow data as input
16NetShare full-paper datasets: https://drive.google.com/drive/folders/

1FOl1VMr0tXhzKEOupxnJE9YQ2GwfX2FD?usp=sharing
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Figure 3.23: NetShare: CSV results.

Finally, the results shown in Fig. 3.23 demonstrate that the output is a CSV file, not
PCAP, as expected. It is unclear whether any script from the authors has not been publicly
available to convert the packet fields into CSV format. However, tools like PCAP Gener-
ator [9] can be used to convert the CSV, as long as each column is correctly formatted.

3.6. Conclusions and future perspectives
This tutorial book chapter has explored the multifaceted role of GANs in the context of
Computer Networks, underscoring their potential to simulate complex network environ-
ments and generate synthetic data. Through analysis and practical applications, it has
been shown how GANs can be employed to create realistic network data, aiding in train-
ing RL algorithms and enhancing network management operations.

We discussed the evolution of generative models, focusing on GANs and their
application in producing high-fidelity synthetic network traffic, including PCAP files. We
showcased GANs’ ability to model and generate data that nearly mimics real network
traffic, highlighting their significance in data augmentation, privacy preservation, and the
development of robust network management solutions.

The tutorial contribution of this book chapter provided a hands-on approach to
understanding the generation of synthetic time series data using GANs and its subsequent
application in network telemetry within PDPs. The discussions and examples illustrated
the practicality of GANs in creating synthetic datasets that can be leveraged for training
ML models, particularly in environments where obtaining real, labeled datasets is chal-
lenging or privacy-sensitive.

Emerging trends in the field indicate a growing integration of generative AI mod-
els like GANs with network management and optimization tasks. Continuous advance-
ment in this area promises innovative solutions to advance network systems’ capabilities
in handling dynamic, complex, and resource-intensive tasks.

In conclusion, this chapter’s exploration of GANs is a step toward understanding
impact opportunities in the field of Computer Networks. Multiple challenges are open
for research and development of synthetic data generation, network simulation, and the
holistic integration of AI in network management, aiming to achieve more intelligent,
autonomous, and efficient network systems.
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