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O presente livro inclui dois capítulos escritos pelos autores dos 
minicursos selecionados e apresentados durante o XL Simpósio Brasileiro 
de Bancos de Dados (SBBD 2025), realizado de 29 de setembro a 2 de 
outubro de 2025. Os minicursos têm como objetivo apresentar temas 
relevantes relacionados à área de Banco de Dados e promover discussões 
sobre os fundamentos, tendências e desafios dos temas abordados. Cada 
minicurso tem quatro horas de duração e constitui uma excelente 
oportunidade de atualização para acadêmicos e profissionais que 
participam do evento. A qualidade desta edição é devida essencialmente 
aos autores e revisores dos trabalhos submetidos. Expressamos nossos 
agradecimentos pelas contribuições e discussões durante o SBBD 2025.  

Os capítulos abordam conteúdos relacionados a Modelos de Difusão 
para geração de dados e Agentes Generativos para acesso inteligente a 
dados. O comitê de programa de minicursos foi composto pelos professores 
Denio Duarte (UFFS), Felipe Timbó  (UFC), Geomar Schreiner (UFFS) e Iago 
Chaves (UFC), sob coordenação do primeiro.  

A qualidade dessa edição é devida essencialmente aos autores e 
revisores dos trabalhos submetidos. Expressamos nossos fortes 
agradecimentos pelas contribuições e discussões durante o SBBD 2025.  

Para mais informações sobre o SBBD 2025, visite 
https://sbbd.org.br/2025, o site desta edição do evento. 

  



 
 

 

 

This book includes two chapters written by the authors of the selected short 
courses presented during the 40th Brazilian Symposium on Databases (SBBD 
2025), held from September 29 to October 2, 2025. They aim to present 
relevant topics related to Databases. Moreover, they promote discussions 
on the topics' fundamentals, trends, and challenges. Each short course lasts 
four hours and is an excellent opportunity to update academics and 
professionals participating in the event. Each short course lasts four hours 
and is an excellent opportunity for academics and professionals 
participating in the event to update their knowledge. 

The chapters cover content related to Diffusion models and Generative 
agents. The short course program committee was composed of Denio 
Duarte (UFFS), Felipe Timbó  (UFC), Geomar Schreiner (UFFS) e Iago Chaves 
(UFC), under the coordination of the former. 

The richness of this issue can be mainly credited to the authors and 
reviewers. We greatly thank them for their insightful contributions and 
discussions during SBBD 2025. 

You can find more information about SBBD 2025, visiting the 
https://sbbd.org.br/2025  website of the event. 

 

 

Dênio Duarte  
(UFFS) 
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César Lincoln C. Mattos
Introduction to LLM-Based Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sbbd:02
31

Eduardo Bezerra



Chapter

1
Diffusion Models: An Accessible Introduction to
the State of the Art in Data Generation

Samir Braga Chaves, José Antônio Fernandes de Macêdo, Regis Pires Mag-
alhães, Vaux Sandino Diniz Gomes, César Lincoln Cavalcante Mattos

Abstract

Generative models have received significant attention in the artificial intelligence com-
munity and are expanding their reach beyond the technical sphere. Among the most recent
and promising approaches are Diffusion Models, which adopt an innovative generative
modeling strategy: they progressively add noise of varying intensities to the data—a tech-
nique inspired by stochastic dynamics and known as diffusion—and then learn to reverse
these perturbations. Starting from a pure noise sample, these models can generate new
images, text, videos, and various other types of data with remarkably high quality, out-
performing previous state-of-the-art methods in many of these tasks. This minicourse
provides a formal and accessible introduction to the foundations of diffusion models,
covering their underlying probabilistic principles—such as Kullback-Leibler divergence,
Langevin dynamics, and score matching—as well as visual intuitions to aid comprehen-
sion. Then, it presents an overview of the current state of the art in the field, including
conditioning techniques and latent diffusion models. Finally, the course discusses the
research opportunities and applications that this rapidly evolving area has to offer.

1.1. Introduction
Generative models are currently receiving significant attention within the artificial intelli-
gence community and expanding their impact beyond technical domains. They have en-
abled the creation of rich, personalized content—such as images, language, and music—
with applications ranging from generating realistic photographs and physics-consistent
animations to constructing digital worlds for gaming. Their main appeal lies in their abil-
ity to handle creative tasks, generate synthetic data, and open new scientific and artistic
frontiers.

Various architectures have been proposed for data generation, each with distinct
characteristics and modeling strategies. Among the most prominent are Diffusion Models
(DMs) [Sohl-Dickstein et al. 2015, Song and Ermon 2019, Ho et al. 2020], which have
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gained attention for their exceptional sample quality. These models generate data by
gradually adding random noise through a process called diffusion, and then learning to
reverse this corruption. By training a model to denoise, DMs can turn Gaussian noise
into realistic samples of images, text, or video [Dhariwal and Nichol 2021a, Gong et al.
2022, Luo et al. 2023]. Due to their solid theoretical foundations and empirical success,
DMs have joined the forefront of generative modeling.

Another widely known method is the Generative Adversarial Network (GAN)
[Goodfellow et al. 2014], which employs two neural networks (a generator and a discrim-
inator) in a competitive game to improve the quality of generated samples. Variational
Autoencoder (VAE) [Kingma and Welling 2022] is an important family that learns a la-
tent probabilistic representation of the data and uses it for generation. Normalizing Flows
[Dinh et al. 2015] also rely on latent spaces, but in contrast to VAEs, they use a sequence
of invertible transformations to map a simple distribution (e.g., Gaussian) into a complex
one that models the data.

Both VAEs and Normalizing Flows use latent spaces as compact representations
of data. VAEs associate each data point with a distribution in latent space, promoting di-
versity in generation, while Flows use deterministic mappings, enabling exact likelihood
computation and sharper outputs. Diffusion Models provide a complementary approach:
rather than relying on explicit encoder-decoder structures or invertible transformations,
they define a generative process by reversing stochastic noise corruption, offering flexi-
bility, robustness, and strong multimodal performance.

Despite their practical success, the variety of formulations and architectures in
diffusion models presents challenges for those seeking a clear and unified understanding.
This diversity hinders systematic comparison and model selection. Therefore, a compre-
hensive course is essential to consolidate existing knowledge, explain the mathematical
foundations, and provide practical examples to guide implementation.

Along this minicourse, we expect the reader to be familiar with a few basic con-
cepts. From probability and statistics, we expect a good notion of random variables,
probability density functions, conditional and marginal probabilities, Bayes’ Rule, and
the Gaussian distribution. From deep learning, we expect a basic understanding of neural
networks, how they are trained, and how they are used for inference. From calculus, the
expected background is the gradient operator and the notion of vector fields.

This document presents the background necessary to understand Diffusion Mod-
els. Section 1.2 covers mathematical foundations, including latent variable models and
variational inference. Section 1.3 introduces Diffusion Models, their forward and reverse
processes, and the noise-based generative intuition. Section 1.4 discusses score-based
models and Langevin dynamics. Section 1.5 describes common denoising architectures.
Section 1.6 outlines recent advances in performance and sampling efficiency. Section 1.7
surveys applications in domains such as image, video, and text generation, bioinformatics,
and tabular data. Finally, Section 1.8 summarizes key takeaways and future directions.
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1.1.1. Code and resources

The implementation code and supplementary materials for this minicourse are available
at the following repository: https://github.com/InsightLab/diffusion_models_

course. There, readers will find a collection of Jupyter notebooks containing both from-
scratch implementations and practical examples using the diffusers1 library developed
by Hugging Face. In addition to the main minicourse content, the repository also includes
curated references to external implementations, papers, and hands-on examples covering
a variety of use cases. This resource is intended to support further exploration, experi-
mentation, and application of Diffusion Models in real-world scenarios.

1.2. Background
1.2.1. Generative modeling

Generative models, such as Diffusion Models, assume that all data come from a joint
probability distribution of data p(x). The two main steps of generative modeling are esti-
mating that distribution and sampling from it. The first step consists of training a model
to maximize the expected log likelihood of p(x) or trying to minimize some divergence
metric between the real distribution of the data p(x) and the distribution pθ (x) learned
by the model, where θ corresponds to the model’s parameters. Alternatively, one could
also estimate some quantity related to the data distribution, such as the score function
∇ log p(x). The second step is to sample points from the learned distribution; we expect
these points to be similar to those from the original data distribution. Figure 1.1 illustrates
the overall idea of generative modeling.

Figure 1.1. Illustration of a generative modeling process. Real data samples are
used to estimate a data distribution pθ (x) through training. Once trained, the
model can generate new samples by sampling from pθ (x), ideally matching the
characteristics of the original data distribution p(x).

1.2.2. Latent variable models

Generative models often aim to describe complex data distributions by introducing addi-
tional variables that are not directly observed, called latent variables. Instead of modeling
the data distribution p(x) directly, we assume that the observed data x is generated from

1https://huggingface.co/docs/diffusers/index
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some unobserved latent representation z. The model defines two components: a prior dis-
tribution p(z), usually chosen to be simple (e.g., a standard Gaussian), and a likelihood
model p(x | z) that specifies how data is generated from its latent representation.

This modeling assumption leads to the following joint distribution p(x,z) = p(z) ·
p(x | z), and from it, we can derive the posterior:

p(z | x)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(x | z) ·

prior︷︸︸︷
p(z)

p(x)︸︷︷︸
evidence

. (1)

Here, the latent variable z captures the hidden structure or semantics that explain
the variability in the observed data x. The generation process is a two-step sampling
procedure: first sample z∼ p(z), then sample x∼ p(x | z). This framework is visualized
in Figure 1.2.

Figure 1.2. Graphical representation of a latent variable model. The top arrow
illustrates the generation process: latent variables z are sampled from a sim-
ple prior distribution p(z) and transformed into observed data x via the likeli-
hood p(x | z). The bottom arrow represents inference: given observed data x, the
model estimates the posterior distribution p(z | x), which describes plausible la-
tent causes for the observation.

A classic example of a latent variable model is Principal Component Analysis
(PCA). In PCA, each data point x is assumed to be generated by a low-dimensional la-
tent vector z, linearly mapped to the high-dimensional data space by a learned projection
matrix. While PCA uses linear transformations, modern approaches, such as Variational
Autoencoders, extend this framework to nonlinear mappings using neural networks. Fig-
ure 1.3 can be reinterpreted here to show how latent variables mediate between prior
assumptions and observed data.

One of the main computational challenges in latent variable models is the evalua-
tion of the marginal likelihood p(x), given by:

p(x) =
∫

p(x | z) p(z)dz,

which is often intractable in high-dimensional settings. To address this, various approx-
imation techniques are used, such as variational inference, which introduces a surrogate
distribution to estimate the posterior p(z | x).
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Figure 1.3. Posterior distribution p(z | x) (blue) as the result of combining the
prior p(z) (orange) with the likelihood p(x | z) (green) in a latent variable model.
The z-axis represents latent factors that explain the observed data x.

In this generative framework, once the model has been trained, new data can be
generated by first sampling a latent code z from the prior p(z), and then generating the
corresponding data point x using the learned decoder p(x | z). This approach enables con-
trollable and interpretable generation, as the latent space can encode meaningful attributes
of the data.

1.2.3. Variational Inference

In the context of latent variable models, the posterior p(z | x) is typically intractable to
compute. To address this, one can use Variational Inference [Jordan et al. 1998, Wain-
wright and Jordan 2008] to approximate it with a surrogate distribution q(z | x). To quan-
tify how “close” this approximation is to the true posterior, we use the Kullback-Leibler
(KL) divergence: DKL(q(z | x) ∥ p(z | x)). This divergence is zero when the two distribu-
tions are identical and increases as they differ. The objective is thus to find the distribution
q that minimizes the KL divergence:

argmin
q

DKL(q(z | x) ∥ p(z | x)). (2)

One might question how it is possible to compute the divergence between an un-
known distribution p(z | x) and a distribution q(z | x) we are trying to optimize. This
is a valid concern. However, when we expand the KL divergence analytically, a useful
identity arises:

DKL(q(z | x) ∥ p(z | x)) = log p(x)−Eq(z|x)[log p(x | z)]−DKL(q(z | x) ∥ p(z))
︸ ︷︷ ︸

ELBO

(3)

= log p(x)−Eq(z|x)

[
log

p(x,z)
q(z | x)

]

︸ ︷︷ ︸
ELBO

. (4)

The right-hand side of Equation 3 consists of two components: the log evidence
log p(x), and a term known as the Evidence Lower Bound (ELBO). Since we are opti-
mizing with respect to q, the log evidence can be ignored, as it does not depend on q.
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The ELBO includes three expressions: the variational distribution q(z | x) that we aim to
optimize; the prior p(z) over the latent variables, which we can choose; and the likelihood
p(x | z), which defines the generative model and can also be optimized jointly. Equation 4
provides an alternative but equivalent form of the ELBO, which is particularly useful in
the context of diffusion models. With this, the new optimization objective becomes:

argmin
q
−ELBO(q) = argmax

q
ELBO(q). (5)

The acronym ELBO stands for Evidence Lower BOund, indicating that log p(x)≥ELBO(q),
as illustrated in Figure 1.4, which justifies the goal of maximizing it.

A common approach is to choose a parameterized model qθ (z | x) for inference
and another model pφ (x | z) for generation, where θ and φ denote the respective parame-
ters. A widely adopted choice is to model both distributions as Gaussians N (µ(·),Σ(·)),
where the functions µ(·) and Σ(·) are implemented as neural networks. Figure 1.5 il-
lustrates how a neural network can be used to implement the inference distribution as a
Gaussian. The objective in Equation 5 can then be used to optimize both the inference
and generative models, as is done in the training of Variational Autoencoders.

Figure 1.4. Illustration of the Evi-
dence Lower Bound (ELBO) as a
lower bound to the log-evidence
log p(x). Maximizing the ELBO
provides an approximation to the
true posterior.

Figure 1.5. Neural network imple-
mentation of the inference model
qθ (z | x) as a Gaussian distribu-
tion with learnable mean and vari-
ance.

1.2.4. History of Diffusion Models

The history of diffusion models begins with [Sohl-Dickstein et al. 2015], who proposed
the idea of using a diffusion process to transform a simple prior distribution into the
data distribution, where the transition kernel of this process is implemented using a neu-
ral network. This work establishes a connection between concepts from nonequilibrium
thermodynamics and generative modeling.

After a four-year gap without major follow-up work, [Song and Ermon 2019] in-
troduced a new approach to generative modeling: estimating the gradients (or score) of the
data distribution and using iterative stochastic procedures (Langevin dynamics) to sample
new data based on those estimated gradients. In this work, the authors employ denoising
score matching [Vincent 2011] to train a neural network to estimate the score function.
The method also leverages multiple noise scales to facilitate estimation—resulting in a
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strategy that, while starting from different motivations, ends up resembling the original
diffusion framework.

Shortly thereafter, [Ho et al. 2020] popularized modern diffusion-based genera-
tive models, demonstrating how a simple neural network can produce high-quality image
generations. This work introduced a loss function based on noise prediction, which out-
performed previous approaches. It also established connections between diffusion prob-
abilistic models, denoising score matching, and Langevin dynamics, and proposed op-
timizing a weighted variational bound that both improves sample quality and enhances
likelihood estimation.

Following that, [Song et al. 2021b] unified diffusion-based models with continuous-
time stochastic processes, enabling more flexible sampling strategies (e.g., Predictor-
Corrector samplers). The paper also derived a neural ordinary differential equation (ODE)
capable of generating samples from the same distribution as the reverse-time stochastic
differential equation (SDE), while also allowing for exact likelihood computation and
improved sampling efficiency.

Figure 1.6. Timeline of major foundational contributions to diffusion-based gen-
erative models.

These four works constitute the foundation of the field of diffusion generative
models. Figure 1.6 presents a timeline summarizing it. Since then, many other papers
have focused on improving different components of the generative framework, including
faster sampling [Song et al. 2021a, Lu et al. 2022, Lu et al. 2023], better conditioning
[Dhariwal and Nichol 2021b, Ho and Salimans 2021, Chung et al. 2025, Tang et al.
2025], applications to inverse problems [Chung et al. 2022, Aali et al. 2023, Chung et al.
2023], and latent diffusion models [Rombach et al. 2021]. The volume of recent work in
this area is extensive. A comprehensive review of these methods and their applications—
ranging from computer vision, natural language processing, and time series modeling to
interdisciplinary scientific domains—can be found in [Yang et al. 2024].

1.3. Denoising Diffusion Probabilistic Models
In this section, we present a formulation of diffusion models based on the work of [Ho
et al. 2020], which frames diffusion models as latent variable models and employs vari-
ational inference to derive their objective function. The core idea is to progressively add
noise to data (e.g., images, audio, or text) until it is transformed into pure random noise.
This final state corresponds to an isotropic Gaussian distribution, where the variance is
equal in all directions. The model aims to learn how to reverse this noising process. The

Tópicos em Gerenciamento de Dados e Informações: Minicursos do SBBD 2025

38



forward and reverse stages are illustrated in Figure 1.7. By sampling from the Gaus-
sian prior and applying the learned reverse process, generating new data that resembles
samples from the original distribution is possible.

This section focuses on the key steps and formulas, omitting most derivations to
emphasize the underlying motivation and how the core processes are formulated. A more
complete treatment can be found in the original paper [Ho et al. 2020] and in books such
as [Prince 2023, Bishop and Bishop 2024, Murphy 2022].

Figure 1.7. Illustration of the forward (noising) and reverse (denoising) diffusion
processes used in DDPMs, starting from a data sample and ending in Gaussian
noise, and vice versa. Image reproduced from the [Prince 2023].

1.3.1. Forward diffusion process

The forward diffusion process refers to the first stage of the diffusion model framework. In
this step, noise is progressively added to the data until it becomes indistinguishable from
pure random noise. The result is an isotropic Gaussian distribution with the same variance
in all directions and zero covariance, implying that all dimensions are uncorrelated and
statistically independent.

Let us define a series of discrete time steps t = 1,2, . . . ,T , and let x∼ p(x) denote
a sample drawn from the data distribution. For instance, x may be an original image from
the training dataset. We introduce T latent variables z1,z2, . . . ,zT , where zT ∼N (0,I).

The noise is added through a Markov chain of diffusion steps, where each noisy
version zt depends only on the previous step zt−1. As a reminder, smaller values of t
correspond to earlier steps in the process (i.e., less noise), and as t → T , the distribution
approaches an isotropic Gaussian. Figure 1.8 illustrates how this process unfolds for a
simple 2D data distribution.

Figure 1.8. Illustration of the forward diffusion process on a 2D data distribu-
tion. The images were taken from an interactive visualization tool available at
https://alechelbling.com/Diffusion-Explorer.
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Then, let us define q(zt | zt−1) as a Gaussian distribution function conditioned
on the zt−1 version of our image, which outputs the noisier zt version. We also define
βt ∈ (0,1) as the variance schedule controlling the amount of noise added at time step t.
We define the transition at each step as a conditional Gaussian distribution:

q(zt | zt−1) =N (zt |
√

1−βtzt−1,βtI), (6)

where the mean
√

1−βtzt−1 is just a scaled version of the previous step zt−1 and the
variance is βt . The complete forward process is described as a sequence of conditional
Gaussian distributions:

q(z1:T | x) = q(z1 | x)
T

∏
t=2

q(zt | zt−1). (7)

1.3.1.1. One step forward process

One key concept in the forward process is that we can directly find zt given x without
iterating over all intermediate time steps. This is only possible because the linear combi-
nation of independent Gaussian variables is also a Gaussian. Let us define αt = 1−βt , the
cumulative product of α1:t as ᾱt = ∏t

i=1 αi and present the reparametrization trick bellow
formula:

N (µ,σ2) = µ +σ · ε , where ε ∼N (0,1). (8)

Then, we can write Equation 6 at some t as:

zt =
√

ᾱtx+
√

1− ᾱtε t , ε t ∼N (0,I). (9)

Finally, we can rewrite the equation in the original form:

q(zt | x) =N (zt |
√

ᾱtx,(1− ᾱt)I). (10)

Note that, to get to any time step t, we only need the original sample image x and the
cumulative noise. Figure 1.9 shows how q(zt | x) evolves over time.

Figure 1.9. Variance evolution in the forward process as a function of time step t.
As t increases, the distribution transitions from the original data to pure noise.
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1.3.1.2. Noise schedule

In diffusion models, choosing the noise schedule {βt}T
t=1—which controls the variance

added at each diffusion step—is a crucial design decision. The noise schedule directly
influences the quality of training and sampling, as it determines how quickly the data
distribution is destroyed in the forward process and how effectively the model can learn
to reverse that process. Recall that each forward transition is modeled as: q(zt | zt−1) =
N (zt |

√
1−βtzt−1,βtI) and the cumulative noise over time is encoded in ᾱt = ∏t

i=1(1−
βi).

A well-designed noise schedule adds small amounts of noise in early steps—
preserving data structure and enabling meaningful denoising—and progressively increases
it until the input becomes an isotropic Gaussian. The linear schedule, used in the original
DDPM formulation [Ho et al. 2020], linearly increases βt from a small to a large value,
offering a simple and effective strategy. An alternative is the cosine schedule, proposed in
[Nichol and Dhariwal 2021], which defines the cumulative noise ᾱt via a cosine-shaped
curve. This concentrates noise addition toward the end of the process, improving percep-
tual quality and training stability.

Figure 1.10. Comparison between linear and cosine noise schedules in diffusion
models. The left plot shows the values of βt over time; the right plot shows the
cumulative product ᾱt , which determines how quickly the signal is destroyed.

Figure 1.10 compares linear and cosine schedules in terms of βt and the cumula-
tive product ᾱt over time. While most diffusion models use predefined noise schedules,
other approaches explore learning the noise schedule directly from data. For example,
[Kingma et al. 2021] proposes a variational framework where the parameters of the for-
ward process, including the variance schedule, are optimized jointly with the generative
model. In summary, the choice of noise schedule affects the learning dynamics during
training and plays a key role in how smoothly the model can reverse the diffusion trajec-
tory during sampling.
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Figure 1.11. Gaussian kernel used in the reverse diffusion process to model pθ (zt−1 | zt).

1.3.2. Reverse diffusion process

In the reverse diffusion process, the goal is to sample from the distribution q(zt−1 | zt),
given that we know how to sample from the forward distribution q(zt | zt−1). This makes
it possible to recover a sample x∼ q(x) from the original data distribution, starting from
a pure noise input zT ∼N (0,I).

A natural first attempt is to apply Bayes’ theorem:

q(zt−1 | zt) =
q(zt | zt−1)q(zt−1)

q(zt)
. (11)

However, as discussed in Section 1.2.2, the marginal distribution q(zt) is intractable. To
address this, we use variational inference and introduce a surrogate model that approxi-
mates the target distribution:

q(z1:T ,x) = q(x)q(z1 | x)
T

∏
t=2

q(zt | zt−1) (12)

with the surrogate defined as:

pθ (z1:T ,x) = p(zT )pθ (x | z1)
T

∏
t=2

pθ (zt−1 | zt), (13)

where the reverse transitions are modeled as Gaussian distributions:

pθ (zt−1 | zt) =N (zt−1 | µθ (zt , t),Σθ (zt , t)). (14)

Here, θ represents the learnable parameters. The functions µθ and Σθ can be
implemented as neural networks, as illustrated in Figure 1.11. However, as we will see,
this formulation can be simplified so that a neural network does not need to model the full
Gaussian parameters directly.

We now use the KL divergence to measure the similarity between the true and
surrogate distributions, resulting in the following optimization problem:

θ̂ := argmin
θ

DKL(q(x,z1:T ) ∥ pθ (x,z1:T )). (15)

From Equations 4 and 5, this leads to the maximization of the Evidence Lower
Bound (ELBO):

θ̂ = argmax
θ

Eq(x,z1:T )

[
log

pθ (x,z1:T )

q(z1:T | x)

]

︸ ︷︷ ︸
ELBO

. (16)
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This ELBO resembles Section 1.2.3, but now with T latent variables. After deriva-
tion, the resulting objective becomes:

θ̂ = argmax
θ

Eq(x,z1) [pθ (x | z1)]︸ ︷︷ ︸
L0

+
T

∑
t=2

Eq(x,zt) [DKL (q(zt−1 | zt ,x) ∥ pθ (zt−1 | zt))]︸ ︷︷ ︸
L1,L2,...,LT−1

. (17)

We can now use this objective to optimize the parameters θ of the reverse Gaussian
distribution from Equation 14. The KL divergence between two multivariate Gaussians
admits a closed-form solution, and each Lt term from Equation 17 becomes:

Lt = DKL (q(zt−1 | zt ,x) ∥ pθ (zt−1 | zt)) (18)

= DKL(N (zt−1 | µ̃(zt ,x), β̃tI) ∥ N (zt−1 | µθ (zt , t),Σθ (zt , t))), (19)

where

µ̃ t(zt ,x) =
1√
αt

(
zt−

1−αt√
1− ᾱt

ε t

)
, β̃t =

1− ᾱt−1

1− ᾱt
·βt , (20)

and ε t comes from the Equation 9. The equalities of Equation 20 come from the definition
of the Gaussian density function, assuming the covariance matrix is diagonal β̃tI.

Algorithm 1 Algorithm for training a denoising diffusion probabilistic model, originally
described in [Bishop and Bishop 2024].

1: Input: Training data D = {xn}, Noise schedule {β1, . . . ,βT}
2: Output: Network parameters θ
3: for t ∈ {1, . . . ,T} do
4: αt ←∏t

τ=1(1−βτ) ▷ Calculate alphas from betas
5: end for
6: repeat
7: x∼D ▷ Sample a data point
8: t ∼ {1, . . . ,T} ▷ Sample a point along the Markov chain
9: ε ∼N (ε | 0,I) ▷ Sample a noise vector

10: zt ←
√

αtx+
√

1−αt ε ▷ Evaluate noisy latent variable
11: L(θ)←∥εθ (zt , t)− ε∥2 ▷ Compute loss term
12: Take optimizer step
13: until converged
14: return θ

We must learn a neural network to approximate the conditioned probability dis-
tributions in the reverse diffusion. We would like to train µθ to predict µ̃ t =

1√
αt

(
zt −

1−αt√
1−ᾱt

ε t

)
. Because zt is available as input at training time, we can reparameterize the

Gaussian noise term instead to make it predict ε t from the input zt at time step t:

µθ (zt , t) =
1√
αt

(
zt−

1−αt√
1− ᾱt

εθ (zt , t)
)
. (21)
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Given that, Lt becomes:

Lt(θ) = Ex,ε

[ 1
2∥Σθ (zt , t)∥2

2
∥µ̃ t(zt ,x)−µθ (zt , t)∥2

]
(22)

= Ex,ε

[ 1
2∥Σθ (zt , t)∥2

2

∥∥∥ 1√
αt

(
zt−

1−αt√
1− ᾱt

ε t

)
− 1√

αt

(
zt−

1−αt√
1− ᾱt

εθ (zt , t)
)∥∥∥

2]

(23)

= Ex,ε

[ (1−αt)
2

2αt(1− ᾱt)∥Σθ (zt , t)∥2
2
∥εt− εθ (zt , t)∥2

]
. (24)

Empirically, [Ho et al. 2020] found that training works better when the weighting
term is removed, leading to the simplified loss:

Lsimple
t (θ) = Ex,εt

[
∥ε t− εθ (zt , t)∥2

]
(25)

= Ex,εt

[
∥ε t− εθ (

√
ᾱtx+

√
1− ᾱtε t , t)∥2

]
. (26)

Thus, the final complete objective is:

L(θ) := Et∼[1,T ],x,εt

[
∥ε t− εθ (

√
ᾱtx+

√
1− ᾱtε t , t)∥2

]
. (27)

Figure 1.12. Simplified training objective used in DDPM, where the network εθ
learns to predict the added noise ε t given zt and t.

This final training objective from Equation 25 is illustrated in Figure 1.12. Algo-
rithm 1 brings the steps to train the diffusion model using this loss, while Algorithm 2
shows how to generate new data using the trained model εθ .

With the DDPM objective established, the next sections explore an alternative
formulation (score-based models), practical implementations, and improvements to the
base model.

1.4. Diffusion Models as score-based models
Diffusion models belong to the broader class of score-based generative models. The term
score comes from the (Stein) score function [Cox and Hinkley 1974] that is the gradient
of the log probability density function ∇ log p(x). The score function is a vector field
pointing to places with higher data density. Estimating this function is helpful due to
methods such as stochastic gradient Langevin dynamics, which is a Markov Chain Monte
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Algorithm 2 Algorithm for sampling from a denoising diffusion probabilistic model,
originally described in [Bishop and Bishop 2024].

1: Input: Trained denoising network εθ (z, t), Noise schedule {β1, . . . ,βT}
2: Output: Sample vector x in data space
3: zT ∼N (z | 0,I) ▷ Sample from final latent space
4: for t ∈ {T, . . . ,2} do
5: αt ←∏t

τ=1(1−βτ) ▷ Calculate alpha

6: µθ (zt , t)← 1√
1−βt

(
zt− βt√

1−αt
εθ (zt , t)

)
▷ Evaluate network output

7: ε ∼N (ε | 0,I) ▷ Sample a noise vector
8: zt−1← µθ (zt , t)+

√
βt ε ▷ Add scaled noise

9: end for
10: x← 1√

1−β1

(
z1− β1√

1−α1
εθ (z1, t)

)
▷ Final denoising step

11: return x

Figure 1.13. A vector field representing the score function and contours repre-
senting the density function of a mixture of two Gaussians. Source: https://yang-
song.net/blog/2021/score.

Carlo (MCMC) procedure that can sample from a distribution p(x) using only its score
function. Figure 1.13 shows a representation of both score and density functions.

To estimate the score, a series of techniques called Score Matching is used. We
can train a model to do so by minimizing the Fisher divergence between the model and
the score of the data distribution, defined as:

Ep(x)[∥∇x log p(x)− sθ (x)∥2
2]. (28)

The Fisher divergence compares the squared distance between the ground-truth
data score and the score-based model. Directly computing this divergence, however, is
infeasible because it requires access to the unknown data score ∇x log p(x). That is the
reason we need score-matching. Many works have proposed different strategies to per-
form this score estimation [Hyvärinen 2005, Vincent 2011, Song et al. 2019], but here we
will focus on the denoising score matching.

1.4.1. Denoising score matching

Denoising score matching [Vincent 2011] is a practical variation of the original score
matching technique. The core idea is simple: instead of estimating the score of the orig-
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inal data distribution directly (something often challenging), we first corrupt the data by
adding a known amount of noise. Formally, we define a noise distribution q(z | x) that
perturbs the original data point x into a noisy version z.

By applying score matching to this noisy distribution q(z), we aim to train a model
sθ (z) that estimates the score of q(z). The objective function turns out to be equivalent to
minimizing the difference between the predicted score and the score of the noise distribu-
tion itself:

1
2
Eq(z|x)pdata(x)

[
∥sθ (z)−∇z logq(z | x)∥2

2

]
. (29)

Intuitively, this means the model learns to “denoise” z by estimating in which direction the
noise moved it from its original clean version x. The optimal solution sθ∗ to this objective
satisfies sθ∗(z) = ∇z logq(z) almost everywhere, as proved in [Vincent 2011]. Moreover,
when the noise level is small, the perturbed distribution q(z) closely approximates the true
data distribution pdata(x), so their gradients are also close ∇z logq(z)≈ ∇x log pdata(x).

A common choice for the noise distribution is a simple Gaussian centered at the
original data point q(z | x) =N (z | x,σ2I), for which we can compute the score analyti-
cally:

∇z logq(z | x) =−z−x
σ2 . (30)

Plugging this into the objective, we obtain the final denoising score matching loss for a
fixed noise level σ :

1
2
Ex,z∼N (x,σ2I)

[∥∥∥∥sθ (z,σ)+
z−x
σ2

∥∥∥∥
2

2

]
. (31)

In this formulation, the model learns to predict the direction and intensity of the noise that
was added, which effectively teaches it the gradient of the log-density of the data through
supervised learning on noisy inputs.

1.4.2. Sampling with Langevin dynamics

Langevin dynamics (LD) provides a way to generate samples from a probability distribu-
tion p(x) using only its score function, ∇x log p(x). The idea is to start from a random
point x̃0 drawn from some simple prior distribution π(x), and then iteratively refine it us-
ing both the score function and added noise. Given a fixed step size α > 0, the Langevin
update rule is:

x̃i = x̃i−1 +
α
2

∇x log p(x̃i−1)+
√

α ω i, i = 0,1, · · · ,K, (32)

where ω t ∼N (0, I) is Gaussian noise. Intuitively, each update step moves the sample in
the direction where the data density p(x) increases (guided by the score), while adding a
small amount of random noise to explore the space. Figure 1.14 shows a visualization of
Langevin dynamics sampling.

Suppose we apply this update many times (i.e., letting K→∞) and use a tiny step
size (α→ 0). In that case, the final sample x̃K will converge to an actual sample from p(x),
under certain mathematical conditions. When α is small and K is large, this procedure can
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Figure 1.14. Visualization of Langevin dynamics sampling. Left: The true data
density is shown as a heatmap, with yellow indicating higher probability. The
orange trajectory represents a single sample path generated using LD. Right:
The empirical density obtained from multiple samples, showing that the sampling
process successfully approximates the true data distribution.

Figure 1.15. Effect of the manifold hypothesis. Left: SSM fails on unperturbed
CIFAR-10. Right: Adding Gaussian noise N (0,0.0001) enables convergence by
giving full support over RD.

produce high-quality approximate samples even without applying a Metropolis-Hastings
correction step, which is sometimes needed to ensure exactness.

An important observation is that the update rule above only depends on the score
function ∇x log p(x). This means that to sample from the true data distribution pdata(x),
we can first train a neural network score estimator sθ (x) to approximate this gradient.
Once trained, we can use sθ (x) in place of the true score in Langevin dynamics to generate
samples that follow pdata(x). This sampling strategy is a key component of the approach
known as score-based generative modeling.

1.4.3. Limitations of score matching and Langevin dynamics

While score-based generative modeling provides an elegant framework for sampling from
complex distributions, it faces challenges when data lies on low-dimensional structures or
in sparse regions.

Score undefinedness. Real-world data often lies on lower-dimensional struc-
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tures in a high-dimensional space (the Manifold Hypothesis [Fefferman et al. 2013]),
making the score ∇x log pdata(x) undefined off the manifold. Score matching requires full
support over RD, which is rarely satisfied. A common solution is to add slight Gaussian
noise to the data, ensuring tractability (Figure 1.15).

Figure 1.16. Score estimation in a Gaussian mixture. Left: Ground-truth scores.
Right: Estimated scores. Accuracy is high only near the dense modes.

Low-density regions. Score matching minimizes a squared error weighted by
pdata(x), so errors in low-density areas contribute little:

Ep(x)[∥∇x log p(x)− sθ (x)∥2
2] =

∫
p(x)∥ · ∥2 dx.

As a result, the model may fail to learn accurate scores in these regions, which can affect
global structure (Figure 1.16).

Mode balancing failure in LD. Langevin Dynamics struggles with multimodal
distributions, especially when modes are separated by low-density regions. For pdata =
π p1+(1−π)p2 with disjoint supports, the score is locally accurate but contains no infor-
mation about π . LD cannot recover mixture proportions and requires tiny steps to bridge
modes. Standard LD fails under these conditions, unlike annealed variants (Figure 1.17).

Figure 1.17. Langevin Dynamics vs. Annealed LD. LD fails to reflect correct mode
proportions.
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1.4.4. Multiple noise scales

One challenge in the presented strategy is choosing the right noise level for perturbing the
data. Large noise values help cover low-density regions but overly distort the data, while
small noise preserves details but fails to provide coverage in sparse areas.

To address this, we perturb the data with multiple noise scales simultaneously.
Let {σ1,σ2, . . . ,σT} be an increasing sequence of standard deviations, and define the
perturbed distributions as q(zt | x) =N (zt | x,σ2

t I). Sampling from q(zt | x) is straight-
forward: draw x∼ pdata and add Gaussian noise σtε with ε ∼N (0, I).

We then train a score network sθ (x,σ) to estimate the score ∇zt logq(zt | x) for all
noise levels σt , using denoising score matching:

Lt(θ) =
1
2
Ex,zt∼N (x,σ2

t I)

[∥∥∥∥sθ (zt ,σt)+
zt−x

σ2
t

∥∥∥∥
2

2

]
.

The full loss combines all scales with a weighting function w(σ):

L(θ) = 1
2
Et∼[1,T ],x,zt∼N (x,σ2

t I)

[
w(σt) ·

∥∥∥∥sθ (zt ,σt)+
zt−x

σ2
t

∥∥∥∥
2

2

]
. (33)

Empirically, it is observed that ∥sθ (x,σ)∥2 ∝ 1/σ , suggesting w(σ) = σ2 balances the
magnitude across scales.

Figure 1.18. Score estimation at multiple noise levels. For each noise scale σt ,
a score network sθ (x,σt) is trained to approximate the score ∇zt logq(zt | x) of the
corresponding noisy distribution. The top row shows the perturbed data distri-
butions for increasing noise levels σ1 < σ2 < σ3, and the bottom row shows the
estimated scores overlaid on the data density.

This training setup defines the Noise Conditional Score Network (NCSN), a model
that can estimate the score of perturbed data distributions across multiple noise levels.
Figure 1.18 shows a visualization comparing the different noise scales and the estimated
score for each scale.

As shown by [Kingma and Gao 2023], the noise prediction loss from Equation 27
is equivalent to the score matching objective when w(σt) = σ2

t .
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1.4.4.1. Annealed Langevin dynamics for sampling

Algorithm 3 Annealed Langevin Dynamics (adapted from [Song et al. 2021b])
1: Input: Noise levels {σt}T

t=1, step size parameter α , number of steps K
2: Output: Sample vector x from the target distribution
3: Initialize z̃0 ∼N (0,I) ▷ Initial Gaussian noise
4: for t ∈ {1, . . . ,T} do
5: εt ← α ·σ2

t /σ2
T ▷ Compute adaptive step size

6: for i ∈ {1, . . . ,K} do
7: ω i ∼N (0,I) ▷ Sample Gaussian noise
8: z̃i← z̃i−1 +

εt
2 sθ (z̃i−1,σt)+

√
εt ω i ▷ Langevin update step

9: end for
10: z̃0← z̃K ▷ Prepare for next noise scale
11: end for
12: x← z̃K
13: return x

Once trained, the NCSN can generate data samples via annealed Langevin dy-
namics. This method applies Langevin sampling iteratively, starting from a high noise
level σT and gradually reducing it down to σ1. The complete procedure is presented in
Algorithm 3. This annealing procedure allows the model to explore the space broadly and
then refine details at lower noise levels, overcoming the limitations of standard Langevin
dynamics in low-density or disconnected regions.

1.5. Denoising neural network architecture
The denoising neural network is the core component of diffusion models. It learns to
reverse the corruption process by estimating the noise added to the data at a given noise
level. This model is trained using pairs of noisy inputs and corresponding targets, and is
used during sampling to progressively reconstruct clean data from noise.

The efficacy of a diffusion model is critically dependent on the capacity of its
neural network to accurately predict the noise component ε from a noisy input zt at a given
timestep t. This network, denoted as εθ (zt , t) or sθ (zt ,σt), serves as the parameterized
function approximator that learns to reverse the forward diffusion process. While various
architectures could theoretically be employed, the de facto standard, established by [Ho
et al. 2020] and since refined, is a time-conditional U-Net architecture. This choice is
motivated by the U-Net’s proven success in image-to-image translation tasks, its inherent
multi-scale processing, and its ability to preserve high-fidelity spatial information.

1.5.1. The U-Net backbone

The foundational architecture is the U-Net, originally proposed by [Ronneberger et al.
2015] for biomedical image segmentation. Its design consists of two main paths: a con-
tracting (or encoder) path and an expansive (or decoder) path, forming a characteristic
“U” shape (see Figure 1.19).

The contracting path follows a typical convolutional network structure. It consists
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Figure 1.19. The illustration of the original U-Net architecture. The U-shape is
clearly visible with a contracting path on the left and an expansive path on the
right. Arrows indicate skip connections from the encoder blocks to the decoder
blocks. Source: [Ronneberger et al. 2015].

of repeated blocks of standard operations, typically two 3x3 convolutions, each followed
by a normalization layer and a non-linear activation function. After each block, a down-
sampling operation halves the spatial dimensions of the feature maps while doubling the
number of feature channels. This process allows the network to capture contextual infor-
mation at progressively coarser spatial resolutions.

The expansive path is a mirror image of the contracting path. It systematically
upsamples the feature maps, typically using a transposed convolution or an upsample-
then-convolve operation. A crucial innovation of the U-Net is the use of skip connections,
which concatenate the feature maps from the corresponding level in the contracting path
with the upsampled feature maps in the expansive path. These connections provide the
decoder with high-resolution spatial information from the early layers, which is vital for
precise localization and the reconstruction of fine-grained details that would otherwise be
lost during downsampling. The final layer maps the feature channels to the desired output
size—in this case, the predicted noise map εθ .

1.5.2. Architectural enhancements for diffusion

The standard U-Net is adapted and enhanced with several critical components to meet the
specific demands of the diffusion process. These enhancements are key to the remarkable
performance of modern generative models.

Timestep conditioning. The network’s prediction must depend on the timestep
t, as the noise to be estimated varies with it. Simply feeding t as an integer is ineffective.
Inspired by Transformer positional encodings [Vaswani et al. 2017], a sinusoidal em-
bedding transforms t into a high-dimensional vector, which is processed by a small MLP
and added to the feature maps at each residual block. This lets the network modulate its
behavior across the hierarchy according to the noise level.

Attention mechanisms. Convolutions are effective for local patterns but have

Tópicos em Gerenciamento de Dados e Informações: Minicursos do SBBD 2025

51



Figure 1.20. Overview of the Stable Diffusion architecture. A denoising UNet
operates in latent space, guided by cross-attention over conditioning inputs such
as text or image features. The process starts from Gaussian noise and iteratively
reconstructs a latent representation, which is decoded into pixel space. Source:
[Rombach et al. 2021].

limited receptive fields. To capture long-range dependencies and global context, self-
attention blocks are inserted into lower-resolution layers of the U-Net [Dhariwal and
Nichol 2021a], where cost is lower and global information is more critical. These blocks
enable interactions between distant spatial locations, improving structure, symmetry, and
coherence.

Conditional generation via cross-attention. For tasks like text-to-image syn-
thesis, the U-Net is conditioned on external inputs via cross-attention, a key feature of the
Latent Diffusion Model (LDM) [Rombach et al. 2021]. Here, the spatial feature maps
from the U-Net act as the query vectors, while the conditioning vector (e.g., a text embed-
ding from a pre-trained CLIP model) provides the key and value vectors. Cross-attention
layers are distributed across the U-Net, typically alongside self-attention, aligning the
denoising process with semantic guidance across scales and effectively steering the gen-
eration. Figure 1.20 shows what this conditioning looks like.

1.6. Architectural and methodological advancements
Since their initial formulation, as detailed in Sections 1.3 and 1.4, diffusion models have
undergone numerous enhancements aimed at improving sample quality, generation speed,
and conditional control. These advancements have transformed them from theoretical cu-
riosities into state-of-the-art generative tools. In this section, we highlight several seminal
lines of improvement.

1.6.1. Accelerating sampling via advanced solvers

A primary limitation of early diffusion models like DDPMs was the computationally
expensive sampling process, often requiring hundreds or even thousands of sequential
network evaluations. Considerable effort has been devoted to accelerating this process
without degrading sample quality.

The work of [Song et al. 2021b] introduced a foundational view by framing diffu-
sion as a stochastic differential equation (SDE), showing that DDPMs’ discrete forward
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and reverse processes are discretizations of a continuous-time SDE. This yields a reverse-
time ordinary differential equation (ODE) whose solution maps noise into data, reframing
sampling as a numerical ODE-solving problem and enabling the use of advanced solvers.

One of the earliest and most impactful methods derived from this view was the
Denoising Diffusion Implicit Model (DDIM) [Song et al. 2021a], which defined a non-
Markovian forward process leading to a deterministic reverse path. Unlike the stochas-
tic, step-by-step sampling of DDPMs, DDIM allows for large, deterministic transitions
through latent space, drastically reducing the number of steps (e.g., from 1000 to 50)
while maintaining competitive image quality.

Expanding on this ODE-based direction, DPM-Solver [Lu et al. 2022] and DPM-
Solver++ [Lu et al. 2023] developed high-order, semi-linear solvers tailored to the struc-
ture of the diffusion ODE. These solvers analytically handle the linear components and
approximate the non-linear score term using high-order polynomials. As a result, they
achieve accurate integration with just 10–20 steps—an order-of-magnitude improvement
over earlier approaches.

More recently, Rectified Flow [Liu et al. 2023] proposed a conceptual shift: in-
stead of simulating denoising, it learns a velocity field that maps noise to data along
nearly straight lines in latent space. This simplification allows even basic Euler solvers to
perform well, offering both speed and a fresh generative modeling paradigm.

1.6.2. Enhancing controllability with guidance

Enabling precise user control over the generated output is essential for many applica-
tions. A key milestone in this direction was Classifier Guidance [Dhariwal and Nichol
2021b], which introduced a mechanism to steer generation using gradients from an exter-
nal, pre-trained classifier. At each denoising step, the gradient of the classifier’s output
with respect to the current noisy sample zt is added to the diffusion model’s noise esti-
mate, effectively guiding the generation towards a desired class.

While effective, this approach depends on a separate noise-aware classifier. Classifier-
Free Guidance (CFG) [Ho and Salimans 2021] offered a more practical and now widely
adopted alternative. It eliminates the need for an external classifier by training the dif-
fusion model on both conditional inputs (e.g., text prompts) and a null or “uncondi-
tional” context. During inference, the model computes both a conditional noise prediction
εθ (xt ,c) and an unconditional one εθ (xt , /0), and then interpolates between them. This
mechanism significantly boosts controllability and fidelity, becoming a standard compo-
nent in modern systems like Stable Diffusion.

Recent works, including Extended Classifier-Free Guidance [Chung et al. 2025]
and Free Guidance [Tang et al. 2025], have refined CFG by analyzing its trade-offs. These
studies noted issues like mode collapse at high guidance scales and proposed sampling
adjustments to balance prompt adherence and output diversity. Rather than introducing a
new paradigm, their contribution lies in improving CFG’s robustness and generalization
across use cases.
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1.6.3. Efficient high-resolution synthesis in latent space

Scaling diffusion models to high-resolution images is computationally prohibitive in pixel
space due to the quadratic scaling of self-attention and memory costs. Latent Diffusion
Models (LDMs) [Rombach et al. 2021] provided a landmark contribution by shifting
the diffusion process from the high-dimensional pixel space to a compact, learned latent
space. Their approach is a two-stage process: first, a powerful autoencoder is trained
to compress images into a semantically rich but spatially smaller latent representation.
Second, a diffusion model is trained exclusively in this latent space. By operating on these
compressed latents, the LDM can generate high-resolution outputs with a fraction of the
computational resources required by pixel-space models. This decoupling of perceptual
compression and generative modeling was a key enabler for the widespread accessibility
of high-quality image synthesis.

1.6.4. Architectural evolution: beyond the U-Net

A seminal contribution from [Peebles and Xie 2023] was the introduction of the Diffu-
sion Transformer (DiT). This work challenged the necessity of the convolutional U-Net
backbone. Their key insight was to replace the U-Net entirely with a standard Transformer
architecture. The model operates on latent patches of the image, similar to a Vision Trans-
former [Dosovitskiy et al. 2021]. They demonstrated that a well-designed Transformer,
when scaled up in terms of depth, width, and training data, can outperform the best U-
Net-based diffusion models on class-conditional image synthesis benchmarks. This was
a landmark result, suggesting that a unified Transformer-based architecture could be a
scalable and superior foundation for future generative models across modalities.

1.7. Applications of Diffusion Models

Table 1.1. Prominent Techniques and Their Application in Industrial Diffusion Models

Technique Industrial Solution / Model Resource

Latent Diffusion Stable Diffusion (Stability
AI, Runway, LMU Munich)

[Rombach et al. 2021]

Classifier-Free Guidance DALL-E 2 (OpenAI) [Ramesh et al. 2022]

Cascaded Diffusion &
Strong Text Encoders

Imagen (Google Research) [Saharia et al. 2022]

Diffusion Transformer
Architecture

Sora (OpenAI) OpenAI (2024). Video generation
models as world simulators.2

Fast ODE/SDE Solvers
(DDIM, DPM-Solver)

Stable Diffusion Ecosystem
(Hugging Face Diffusers)

Diffusers: State-of-the-art diffu-
sion models3

Diffusion models have demonstrated remarkable versatility, extending far beyond
image synthesis into a wide array of scientific and industrial domains. Their strong gen-
erative capabilities, ability to model complex distributions, and compatibility with con-

2Technical Report: https://openai.com/research/video-generation-models-as-world-simulators
3Hugging Face Diffusers Documentation: https://huggingface.co/docs/diffusers/index
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ditioning mechanisms make them a compelling choice for tasks involving structured or
multimodal data. Below, we outline key areas where diffusion models are defining the
state of the art. A more complete list of applications in a wide range of areas can be
found in [Yang et al. 2024]. To illustrate this direct lineage from academic research to
practical application, Table 1.1 summarizes several of these key techniques and identifies
their implementation in well-known generative models. Each entry is accompanied by a
reference to the official technical report or foundational paper, providing a verifiable link
between the concepts and their real-world impact.

1.7.1. Diffusion models in database applications

Diffusion models have become essential tools in database applications, providing control-
lable synthetic data generation, robust imputation, and hybrid vector-relational capabili-
ties. [Liu et al. 2024] showed that SQL-like predicates can steer the denoising process for
workload replay or privacy-preserving data sharing, while FinDiff [Sattarov et al. 2023]
demonstrated superior utility-privacy trade-offs compared to GAN baselines in regulated
finance applications.

For data repair and augmentation, [Villaizán-Vallelado et al. 2025] combined
transformer denoisers with dynamic masking to outperform VAE and GAN methods on
supporting both data imputation and synthetic data generation while maintaining privacy.
[Li et al. 2025] identified four key research themes: data augmentation, data imputation,
trustworthy synthesis, and anomaly detection, while highlighting ongoing challenges in
mixed-type encoding, fairness, and scalability.

On the systems side, ACORN [Patel et al. 2024] introduced an in-database in-
dex that unifies vector search with relational queries, enabling efficient hybrid workloads
over vector data (embedded images, text, and video) as well as structured data, such as
attributes and keywords. Regarding privacy concerns, [Wu et al. 2025] addressed pri-
vacy vulnerabilities in diffusion models used for tabular data synthesis. Their method
demonstrated superior capability in detecting privacy leaks in diffusion-based tabular data
synthesis compared to traditional heuristic evaluation methods.

[Shi et al. 2025] addresses the critical need for synthetic tabular data generation
in machine learning, where real datasets often suffer from scarcity, privacy concerns, and
class imbalance issues. The authors organize methods into three main categories (tra-
ditional generation, diffusion models, and LLM-based approaches), provide a complete
pipeline overview from generation through evaluation, and identify key challenges and
real-world applications.

1.7.2. Synthetic data for tabular domains

In enterprise settings, generating high-fidelity synthetic data is critical for data augmenta-
tion, privacy preservation, and simulation. Diffusion models have been adapted to handle
heterogeneous tabular data. The contribution of methods like TabDDPM [Kotelnikov
et al. 2023] was to design a diffusion process specifically for tabular formats containing a
mix of continuous and categorical features. This is achieved by using specialized forward
noising schemes for each data type and replacing the convolutional U-Net with a standard
Multi-Layer Perceptron (MLP) architecture suited for non-spatial data, thereby enabling
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realistic synthetic table generation.

1.7.3. Text-to-image and text-to-video generation

Perhaps the most culturally significant application of diffusion models is in conditional
generation from natural language. The key contribution of models like Stable Diffusion
[Rombach et al. 2021] was to make high-resolution synthesis computationally tractable
by performing the diffusion process in a compressed latent space learned by a powerful
autoencoder. Concurrently, models like Imagen [Saharia et al. 2022] demonstrated an-
other critical insight: the power of leveraging large, pre-trained language models as text
encoders, combined with a cascaded diffusion architecture that progressively increases
image resolution, leading to unprecedented photorealism and semantic fidelity.

This paradigm has been naturally extended to text-to-video generation. The pri-
mary challenge here is maintaining temporal consistency across frames. Seminal works
like Videofusion [Luo et al. 2023] and Video Diffusion Models [Ho et al. 2022] con-
tributed solutions by extending the image generation architecture with spatiotemporal at-
tention mechanisms. Their key innovation was to enable the model to attend not only to
spatial information within a frame but also to temporal information across frames, ensur-
ing that object identity and motion remain coherent over time.

1.7.4. Bioinformatics and molecular design

In the life sciences, diffusion models are driving breakthroughs in problems involving
complex 3D structures. DiffDock [Corso et al. 2023] reframed molecular docking as a
generative modeling task, predicting how a small molecule binds to a protein. It diffuses
over ligand poses, including translational, rotational, and torsional degrees of freedom,
to efficiently sample realistic binding conformations. In de novo protein design, RFdif-
fusion [Watson et al. 2023] made a landmark contribution by learning to generate novel,
functional protein backbones. It applies a diffusion process directly to the 3D coordinates
and orientations of amino acid residues, enabling the design of complex protein structures
conditioned on functional motifs or structural constraints.

1.7.5. Text and language modeling

While Transformers dominate language modeling, diffusion models offer a compelling
alternative paradigm. The key contribution of Diffusion-LM [Li et al. 2022] was to
successfully adapt the continuous denoising process to the discrete domain of text. It
achieves this by first embedding discrete word tokens into a continuous space, performing
the diffusion process on these embeddings, and then rounding the denoised embeddings
back to the nearest token in the vocabulary. This non-autoregressive approach offers
unique benefits, such as iterative refinement and strong performance on controlled text
generation and infilling tasks, where the model must generate text consistent with a given
prefix and suffix.

1.7.6. Graph generation

Generative modeling for graphs is essential in areas like social network analysis, drug
discovery, and circuit design. The main challenge is jointly modeling a graph’s discrete
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structure (nodes and edges) and its continuous attributes. DiGress [Vignac et al. 2023] ad-
dresses this by proposing a unified framework that diffuses both the adjacency matrix and
node/edge features. This joint denoising process captures the interplay between structure
and attributes, enabling the generation of realistic and diverse graphs from a simple noise
prior.

1.8. Conclusion
In this work, we presented a comprehensive and accessible overview of diffusion models,
tracing their development from foundational probabilistic principles to their current role
as a leading paradigm in generative artificial intelligence. We began by exploring the the-
oretical origins of Denoising Diffusion Probabilistic Models (DDPMs) and score-based
generative models, showing how both perspectives converge on the goal of learning to
reverse a noise process. This unification underpins the core mechanism of diffusion mod-
els: training a neural network to denoise samples corrupted through a carefully designed
diffusion process.

The practical success of diffusion models is largely attributed to architectural in-
novations. Central to this is the U-Net backbone, augmented with time-step embeddings
and cross-attention modules, enabling both temporal coherence and external conditioning.
Alongside this, methodological advances such as Classifier-Free Guidance have improved
controllability, while solvers like DDIM and DPM-Solver++ dramatically reduce the sam-
pling time. Latent Diffusion Models (LDMs) further extended the applicability of these
techniques to high-resolution outputs with manageable computational cost.

These developments have spurred a broad spectrum of real-world applications.
Diffusion models now power systems in domains ranging from image and video genera-
tion to protein design, molecular docking, and tabular data synthesis. Their flexibility in
modeling complex, multimodal, and structured data highlights their versatility and trans-
formative potential. As the field moves forward, open challenges remain in efficiency,
compositionality, and alignment, ensuring that diffusion models will continue to be an
active area of research and innovation.

References
[Aali et al. 2023] Aali, A., Arvinte, M., Kumar, S., and Tamir, J. I. (2023). Solving

inverse problems with score-based generative priors learned from noisy data. In 2023
57th Asilomar Conference on Signals, Systems, and Computers, pages 837–843.

[Bishop and Bishop 2024] Bishop, C. M. and Bishop, H. (2024). Deep Learning - Foun-
dations and Concepts. Springer.

[Chung et al. 2023] Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., and Ye, J. C.
(2023). Diffusion posterior sampling for general noisy inverse problems. In The
Eleventh International Conference on Learning Representations.

[Chung et al. 2025] Chung, H., Kim, J., Park, G. Y., Nam, H., and Ye, J. C. (2025).
CFG++: Manifold-constrained classifier free guidance for diffusion models. In The
Thirteenth International Conference on Learning Representations.
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Chapter

2
Introduction to LLM-Based Agents

Eduardo Bezerra

Abstract

This chapter provides an introductory yet comprehensive exploration of large language
model (LLM)-based agents, tracing their evolution from early statistical language
models to modern, tool-using systems capable of reasoning and acting in complex
environments. We review the key architectural advances that enabled emergent
capabilities, introduce prompting techniques and interaction patterns such as ReAct,
Plan-and-Act, and Pre-Act, and explain how these patterns coordinate multi-step
reasoning with external tools. Core mechanisms including tool calling, Retrieval-
Augmented Generation (RAG), and Text-to-SQL pipelines are examined. To bridge
theory and practice, the chapter is accompanied by a suite of Jupyter notebooks that
demonstrate complete end-to-end workflows across the topics presented. The aim
is to equip the reader with both the conceptual understanding and hands-on skills
necessary to design, implement, and critically assess LLM-based agents in real-world
applications.

Agents represent an exciting and
promising new approach to building
a wide range of software
applications. Agents are
autonomous problem-solving
entities that are able to flexibly
solve problems in complex, dynamic
environments, without receiving
permanent guidance from the user.

Jennings & Wooldridge (1998)
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2.1. Introduction
According to the AIMA Book [Russell and Norvig 2021], an intelligent agent is an
agent that acts rationally. That is, it selects actions that are expected to maximize its
performance measure, based on the percept sequence and its built-in knowledge. The
quest to such agents has been a central theme in AI since its inception. Early efforts,
such as the Logic Theorist [Newell et al. 1956] and Shakey the Robot [Nilsson 1984],
focused on symbolic reasoning and planning in structured environments. These
systems embodied the classical view of agents as entities that perceive, reason, and
act to achieve goals. With the advent of the large language model (LLM) era,
interest in AI agents has experienced a strong resurgence. Unlike earlier symbolic
systems, modern agents are increasingly built using connectionist paradigms, in which
reasoning is powered by LLMs instead of symbolic logic.

The goal of this chapter is to provide a comprehensive yet accessible in-
troduction to LLM-based agents. We aim to equip the reader with a conceptual
understanding of their architectures and interaction strategies, and to demonstrate
how they can be used to perform structured tasks over databases and other tools. The
chapter is accompanied with hands-on examples in the form of Jupyter notebooks.

This rest of this chapter is organized as follows. Section 2.2 reviews the evo-
lution from statistical language models to modern neural-based LLMs, highlighting
the scaling advances that enabled emergent capabilities. Section 2.3 transitions
from standalone LLMs to agentic systems, defining LLM-based agents, clarifying
“structured tasks,” and motivating tool-using architectures. Section 2.4 introduces
prompting techniques and interaction patterns that structure multi-step reasoning
and tool use. Section 2.5 details the tool-calling mechanism, including tool registra-
tion, structured message exchange, and orchestration between the LLM and external
systems. Section 2.6 presents Retrieval-Augmented Generation (RAG) as a strategy
to ground outputs in authoritative external data. Section 2.7 describes the complete
Text-to-SQL pipeline, covering intent parsing, schema linking, value grounding, SQL
generation, execution and correction, and answer presentation with interactive refine-
ment. Section 2.8 presents a set of Jupyter notebooks that illustrate the full range of
concepts and techniques discussed in the chapter, enabling hands-on experimentation
beyond individual components. Finally, Section 2.9 offers concluding observations,
discusses limitations and ethical considerations, and highlights directions for further
study.

2.2. From Statistical Language Models to Neural-based LLMs
By definition, a language model is a system trained to understand and generate
human language by learning patterns from large amounts of text data1. It predicts
what tokens, which are small units of text (a whole word, part of a word, or even
punctuation), are most likely to come next in a sequence. Then the predicted token
can be appended to the sequence, and another token can be predicted. By repeatedly

1Although the term “language model” has recently been extended to other modalities such as
images, audio, and video, this chapter focuses exclusively on agents that interact with language
models for text.
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performing this prediction, the model can generate entire sentences, paragraphs, or
even full documents. For this reason, a language model is a type of generative model.

Early approaches to build language models were mainly probabilistic in na-
ture [Rosenfeld 2000]. These models learns conditional probabilities of co-occurrence
of items by counting the frequency of token sequences in a large body of text, called
a corpus. It was the era of the n-gram models. For example, a bi-gram model (an
n-gram with n = 2) estimates the probability of the next token (wi) based only on
the previous token (wi−1), i.e., Pr(wi|wi−1). A tri-gram model (n = 3) considers the
two preceding tokens, i.e., Pr(wi|wi−2,wi−1). In general, an n-gram model learns
these probabilities by counting the frequency of token sequences in a large body of
text, called a corpus. For a bi-gram model, the probability would be calculated as:

Pr(wi|wi−1) = count(wi−1,wi)
count(wi−1)

In a statistical language model, its context window refers to the portion of
preceding text the model can consider when predicting the next token. In this case,
the context window is fixed to the last n−1 tokens. For example, a trigram (n = 3)
model predicts the next token using only the previous two tokens as context. Tokens
outside this window have no influence on the prediction

The probabilistic approach allows the model to predict the most likely
next token in a sequence. For instance, after seeing the sequence “the cat”, a
trigram model might assign a high probability to tokens like “sat” or “is”, and
low probability to tokens like barks. These probability values are computed based
on how often those pairs appeared in the training corpus. Earlier probabilistic
approaches, such as n-gram models, represented language through discrete fre-
quency counts and conditional probabilities. While effective in certain domains,
they were limited by sparsity issues and short context windows. With the ad-
vent of the Deep Learning era [Bezerra 2016, LeCun et al. 2015], neural network-
based approaches for building language models began to appear in the litera-
ture [Bengio et al. 2003, Mikolov et al. 2010, Vaswani et al. 2017]. These new ap-
proaches eventually gave rise to what is current known as Large Language Models
(LLMs).

LLMs are language models with a very large number of parameters, trained
using self-supervised learning on vast amounts of text, and capable of leveraging much
longer context windows. It is difficult to pinpoint exactly when the adjective “large”
began to be consistently attached to the term “language model”. Although the expres-
sion appears as early as 2018 in reference to models such as BERT [Devlin et al. 2019],
it rose to prominence and became the default terminology as model scale increased
dramatically, particularly following the release of GPT-3 in 2020. However, the
meaning of “large” in LLMs continues to evolve, as each new generation of models
surpasses the previous in size and capability.

While the concept of context window is common to both pre-neural and
modern neural approaches, its interpretation differs across generations of models.
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In statistical language models, each prediction step simply uses the most recent
n−1 tokens available. In modern neural LLMs, the context window is much larger
(thousands or even hundreds of thousands of tokens). Here, the window is a shared
“token budget” that includes both the input prompt and the model’s generated
output. For example, with a 4,096-token context window, if the prompt uses 1,000
tokens, the model can generate up to 3,096 tokens before earlier tokens start to be
dropped from consideration (a phenomenon sometimes called contextual drift). In
both cases, the size of the context window limits how much prior information the
model can use at once, directly affecting its ability to maintain coherence, recall
details, and follow multi-step instructions.

In modern LLM-based applications, the term prompt refers to the input
provided to the model at inference time to elicit a desired output. The prompt
can contain instructions, examples, constraints, or context information, and it is
processed along with the model’s learned parameters to determine the generated
response. The design of prompts (i.e., what information to include, in what order,
and with what phrasing) has a direct impact on the model’s behavior and output
quality.

A related concept, particularly relevant in multi-turn or agent-based setups,
is the system prompt (sometimes called a “system message”). This is an instruction
or set of instructions, often provided at the start of a conversation, that defines
the model’s overall role, objectives, tone, and operational constraints. Unlike user
prompts that change with each interaction, the system prompt persists as part of the
context across turns, acting as a stable guide for the model’s responses. In frameworks
for build LLM-based applications, the system prompt is explicitly separated from
user messages; in these frameworks, it often embeds information about available
tools, policies, or domain-specific knowledge.

By the time we discuss prompting techniques in Section 2.4 and tool reg-
istration in Section 2.5, both concepts, prompt and system prompt, will serve as
foundational elements. They are key to understanding how natural language is
transformed into structured model behavior, whether in a simple question-answer
scenario or in a complex, multi-step agent workflow.

The context window sets a hard limit on how much information an LLM
can use at once. However, scaling up model architecture, data, and compute
has empirically revealed a complementary phenomenon, one in which entirely new
capabilities emerge. An important observation in the study of LLMs is the emergence
of qualitatively new capabilities as model scale increases. This idea echoes Philip
W. Anderson’s 1972 essay More Is Different [Anderson 1972], which argues that
increasing the scale and complexity of a system can give rise to qualitatively new
phenomena, irreducible to the behavior of its smaller components. In the natural
sciences, for example, the principles of chemistry emerge from, but are not reducible to,
the laws of quantum physics, and biology in turn exhibits properties not explainable
by chemistry alone. Recent studies of large language models reveal similar patterns:
as the number of parameters, the amount of training data, and the compute budget
increase, new abilities often appear abruptly rather than gradually [Wei et al. 2022a,
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Kayhan et al. 2023]. Examples include in-context learning, multi-step reasoning,
and code generation. These emergent capabilities mirror Anderson’s insight that
“more” can indeed be fundamentally “different”.

The rapid appearance of these emergent capabilities has fueled an intense
period of innovation in model architectures and training strategies. Each successive
generation of LLMs not only increased in size but also integrated new techniques, such
as improved pretraining objectives, instruction tuning, and reinforcement learning
from human feedback, that amplified their reasoning abilities and practical usefulness.
This acceleration is evident when looking at the key milestones in LLM development.
Figure 2.1 presents a timeline that summarizes the chronological evolution of large
language models (LLMs) and LLM-based agents from 2018 to 2025. On the left-hand
side of the timeline, we highlight key LLM milestones, beginning with GPT-1 and
GPT-2 developed by OpenAI, followed by T5 and PaLM, and later models such as
LLaMA, Claude, Gemini, Qwen, DeepSeek R1, and GPT-5. These models reflect
the rapid progression in model scale, training data, and emergent properties.

The advances in architecture, scale, and training that led to neural-based
LLMs not only improved language modeling accuracy but also unlocked capabilities
that go beyond text generation. These capabilities have made it possible to design
systems where the LLM is one component in a larger framework, an agent, capable
of reasoning, planning, and interacting with external tools and environments.

2.3. From LLMs to LLM-based Agents
Although autonomous agents have a long history in AI (see Section 2.1), their
resurgence in the LLM era began in late 2022 with the release of ChatGPT, and
accelerated in early 2023 with frameworks like LangChain and open-source projects
such as AutoGPT and BabyAGI, which showcased how LLMs could plan, use tools,
and act autonomously. We define a LLM-based agent as a system that is built around
a Large Language Model. LLM-based agents are also known as generative agents. By
being built around a LLM, we mean that the LLM can be considered the “brain” of
the agent. This analogy is appropriate for several reasons. First, the LLM processes
information from the agent’s environment and the user. Second, the LLM uses its
understanding of the current context to decide on a course of action. Lastly, the LLM
creates natural language outputs, whether to interact with a user or to command
other tools.

In the context of AI agents, a structured task is a problem or goal that
can be broken down into a series of well-defined, discrete steps with clear inputs
and outputs. These tasks are typically predictable and follow a specific, predeter-
mined workflow. A LLM-based agent extends its underlying LLM with features
such as structured decision-making processes and access to external tools. These
capabilities transform the underlying LLM (which is a passive text generator) into
a active agent that can perceive, reason, and act in the real world, making them
suitable for complex, multi-step structured tasks that require both intelligence and
execution [Sapkota et al. 2025].
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2018

2019

2020

2021

2022

2023

2024

2025

GPT-1
OpenAI

GPT-2
OpenAI

T5
Google

GPT-3
OpenAI

Chinchilla
DeepMind

PaLM
Google

LLaMA 1
Meta

Claude
Anthropic

Gemini
Google

GPT-4
OpenAI

Claude family
Anthropic

Mistral
Mixtral

Claude 4
Anthropic

Gemini 2.5
Google

DeepSeek R1
DeepSeek

LLaMA 4
Meta

XLNet
Google

GPT-Neo
EleutherAI

Granite
IBM

LLaMA 2
Meta

LLaMA 3
Meta

LLaMA 3.1
Meta

Qwen 3
Alibaba Cloud

GPT-5
OpenAI

Figure 2.1: Timeline showing the evolution of selected Large Language Models from
2018 to 2025.
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2.4. From Prompting Techniques to Interaction Patterns
The idea of guiding a language model’s behavior through its input existed in earlier
NLP systems, such as sequence-to-sequence models for translation and summarization,
but it was often framed in terms of task-specific inputs rather than “prompting”.
With the release of GPT-2 in 2019, and especially GPT-3 in 2020, the effectiveness
of well-crafted natural language prompts in steering large, general-purpose models
became widely recognized, sparking a wave of research and practice in prompting
techniques. Table 2.1 summarizes some notable prompting techniques.

Technique Description

Zero-shot Ask the model to perform a task without giving any
examples.

Few-shot Provide a small set of examples to guide output format
and style.

Chain-of-thought Instruct the model to reason step-by-step before answer-
ing.

Role Assign a role/persona to influence tone and perspective.

Self-consistency Sample multiple reasoning paths and choose the most
common answer.

Style/format Specify required style, tone, or format in the prompt.

Table 2.1: Common prompting techniques for a single LLM invocation.

Most of the prompting techniques listed in Table 2.1 are self-explanatory.
One notable exception is Chain-of-Thought (CoT), which was the first prompting
technique to be formalized in a high-profile paper [Wei et al. 2022b]. CoT refers to
phrasing a single prompt in a way that elicits step-by-step reasoning from the model.
CoT prompting can be explicit (instructing the model to reason step-by-step) or
implicit (designing a question that naturally triggers reasoning). Modern instruction-
tuned LLMs often display CoT-like reasoning without the explicit phrase, but the
explicit form remains important when one needs to reliably control output style or
reasoning depth. Explicit CoT is typically achieved by adding an instruction such
as “Let’s think step by step” to the prompt, or by supplying intermediate reasoning
examples. An illustration of explicit CoT in use is provided in Figure 2.2; note,
however, that if only the question “What is the day before the day after tomorrow?”
is provided to a modern LLM (without the “Let’s think step by step” part), it will
most likely generate the reasoning trace along with the final answer.2

While simple prompting techniques (Table 2.1) can be effective for direct
questions or single-step reasoning, they are often insufficient for tasks that require

2This behavior is largely due to the fine-tuning process used in modern instruction-tuned LLMs,
which often includes examples of step-by-step reasoning in domains such as mathematics, logic
puzzles, and riddles. During reinforcement learning from human feedback (RLHF), annotators tend
to reward answers that include clear intermediate reasoning, making such outputs more likely even
when no explicit “Let’s think step by step” instruction is given.
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What is the day before the day after tomorrow?

Today is Thursday, August 7, 2025.
Tomorrow → Friday, August 8, 2025.
The day after tomorrow → Saturday, August 9, 2025.
The day before the day after tomorrow → Friday, August 8, 2025.

Friday (tomorrow).

Figure 2.2: Example of explicit Chain-of-Thought reasoning applied to a simple logic
puzzle.

User Reasoning Action Observation Final Answer

multiple reasoning steps, integration of external information, or stateful decision-
making. In such cases, the interaction between the model and its environment must
follow a structured process rather than a single prompt-response exchange.

An interaction pattern is a structured template that defines how a language
model agent engages in multi-step interactions (encompassing reasoning, tool use,
and memory updates) to perform complex tasks. By specifying the order and format
of the model’s outputs, such patterns promote consistent behavior and facilitate
integration into larger systems. Modern LLM-based agents employ these patterns to
coordinate reasoning with external tools (e.g., search engines, database interfaces,
and APIs), interpret results, adapt their behavior, and decide whether to invoke
additional tools or finalize their responses. The emergence of these interaction
patterns has been a key catalyst for the renewed interest in building AI agents in
the LLM era.

Examples of interaction patterns include ReAct, Plan-and-Act, Pre-Act, and
Tree-of-Thought. Table 2.2 summarizes a selection of prominent interaction patterns
for LLM-based agents, ordered chronologically by their initial publication date. This
timeline helps illustrate how research has progressively explored different strategies
for structuring model-environment interaction, from the introduction of ReAct in
late 2022 to more recent approaches such as Plan-and-Act and Pre-Act in 2025.

Month/Year Interaction Pattern Reference

October/2022 ReAct [Yao et al. 2022]
May/2023 Tree-of-Thought [Yao et al. 2023]

March/2025 Plan-and-Act [Erdogan et al. 2025]
May/2025 Pre-Act [Hu et al. 2025]

Table 2.2: Timeline of selected interaction patterns with references.

The ReAct (Reason + Act) pattern is designed for scenarios in which large
language models (LLMs) must interleave reasoning steps with the use of external
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tools to accomplish complex, goal-directed tasks [Yao et al. 2022]. The “Reason”
component refers to the model’s internal reasoning process, similar to the Chain-
of-Thought (CoT) approach. The “Act” component corresponds to moments when
the model decides to invoke an external tool (such as a search engine, calculator,
or database query) to obtain intermediate results that support the final answer.
Because LLMs lack direct perception of their environment, they must be explicitly
informed (by the agent) about which tools are available. Once equipped with this
knowledge, the model can determine, for each prompt, which tools are required and
how to integrate their outputs into its reasoning process.

In general, the reasoning process of a model that uses ReAct consists of three
stages: Thought, Action, and Observation.

• Thought: In this stage, the model generates an internal reasoning step, similar
to CoT, to plan its next move. This step may be triggered directly by the
original prompt or by the observation of results produced by a previously
invoked tool.

• Action: Based on the plan, the model may decide it is necessary to interact
with an external tool (such as a search engine, calculator, or code interpreter).
In this case, the LLM generates a structured instruction indicating which tool
should be called and with what parameters.

• Observation: The model receives the tool’s output and incorporates it into its
subsequent reasoning.

Figure 2.3 illustrates the ReAct pattern through an example in which an
LLM-based agent handles a business query about payroll expenses. The sequence of
steps can be read from top to bottom, following the colored boxes and their legends.
The Query Box contains a natural language question about the Sales department’s
payroll for “last month”, illustrating how such queries often omit technical specifics.
The two Reasoning Boxes depict the agent’s internal thought process. In the
first reasoning step, the agent interprets “last month” relative to the current date
(August 8, 2025), concluding that it refers to July 2025 (2025-07). The Action
Box shows the agent’s reasoning (Call Sales API with normalized parameters) and
the textual specification of the tool to be invoked. This specification is then used by
the agent to make the actual API call. The Observation Box contains the raw API
response in JSON format, representing the structured data returned by the external
system. In the second reasoning step, the agent analyzes this response and prepares
it for presentation. Finally, the Answer Box provides the human-readable output
(generated by the LLM), synthesizing all the information into a concise, clear answer.

ReAct operationalized the concept of an “LLM-based agent” by giving LLMs
a structured way to think, act, and adapt in real time, turning abstract reasoning into
practical, tool-augmented workflows. More recent patterns, such as Plan-and-Act
separate planning and execution into distinct LLM modules for improved performance
on long-horizon tasks [Erdogan et al. 2025]. Pre-Act further enhances this by contin-
ually refining multi-step execution plans during task execution [Rawat et al. 2025].
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What was the total payroll expense for the Sales department last month?

Today is August 8, 2025, so “last month” → 2025-07. Department
string is “Sales”.

Call Sales API with normalized parameters:

sales.get_payroll("department": "Sales", "period":
"2025-07")

"department": "Sales", "period": "2025-07", "currency":
"USD", "total_payroll": 842350.75

The JSON shows July 2025 Sales payroll = 842350.75 USD. Format for
readability.

The total payroll expense for the Sales department in July 2025 was
$842,350.75 (USD).

Figure 2.3: ReAct interaction pattern example showing reasoning, action, observation,
and answer for a fictional Sales API query.

User Reasoning Action Observation Final Answer

A detailed discussion of these and other emerging patterns is beyond the scope of
this chapter; readers are encouraged to consult the corresponding papers for in-depth
explanations and examples.

Memory Management in LLM-Based Agents
In the context of LLM-based agents, memory refers to mechanisms that allow the
agent to retain and reuse information across interactions. While the underlying LLM
has no persistent state beyond its current context window, the agent architecture can
maintain external memory to simulate continuity over time. Two common forms are:

• Short-term memory, typically implemented as a rolling conversation history or
working buffer, storing recent messages, tool outputs, and intermediate reasoning
steps. This supports coherence within multi-turn tasks and is often truncated or
summarized to stay within context window limits.

• Long-term memory, implemented via external storage (e.g., databases, vector
stores), enabling the agent to recall facts, user preferences, or prior task results
across sessions. This is particularly important in personalized assistants and
domain-specific agents.
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Memory management involves deciding what to store, how to represent it (raw
text, embeddings, structured records), and when to retrieve or summarize it. Poorly
managed memory can lead to context overflow, forgotten constraints, or irrelevant
retrievals. In interaction patterns such as ReAct or Plan-and-Act, effective memory
use supports informed decision-making by grounding reasoning steps in prior context.

Although not the focus of this chapter, memory is a critical enabler for
sustained, context-aware behavior in LLM-based agents and directly complements
the tool calling, RAG, and prompting strategies discussed later in the chapter.

2.5. Tool Calling
In the agent paradigm, a tool is any external capability that an LLM can invoke
to perform reasoning steps or access information beyond its pretraining. Examples
include APIs, search engines, calculators, and SQL databases. Tool calling refers
to the mechanism by which an LLM interacts with such external functions, APIs,
or services by generating structured messages with the appropriate parameters. As
discussed in Section 2.4, this process often relies on an interaction pattern, such a
ReAct.

Before an LLM-based agent can decide that a tool should be invoked, it
must be made aware of its existence, capabilities, and usage parameters. This
process is known as tool registration. This is typically achieved by providing the
model with a structured description of each tool (often in JSON or another machine-
readable schema) at the start of the interaction or during an initialization step. The
specification usually includes the tool’s name, purpose, input parameters (with types
and constraints), and expected output format. These descriptions are embedded
into the model’s system prompt or provided via an API that supports dynamic tool
registration. By incorporating this metadata into its context, the LLM can reason
about which tool is relevant to the current task, how to construct valid calls, and
how to interpret the returned results. Examples of tool registration for a Search API
and an SQL executor are shown in Listings 2.1 and 2.2, respectively.

{
"name": "search_knowledge_base",
"description": "Find documents in the domain-specific KB",
"parameters": {

"query": { "type": "string", "description": "Search terms" },
"top_k": { "type": "integer", "description": "Max results", "default": 5 }

}
}

Listing 2.1: Example of tool registration with search API details.

Tool registration itself is an instance of a structured message exchange. The
agent sends the LLM a machine-readable description of each tool, following a fixed
schema (often JSON) that encodes metadata such as the tool’s name, purpose, input
parameters, and output format.
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{
"name": "execute_sql",
"description": "Run SQL queries on the market_data database",
"parameters": {

"sql": { "type": "string", "description": "Valid SQL query" }
},
"schema": {

"tables": {
"companies": ["company_id", "name", "sector", "market_cap"],
"stock_prices": ["company_id", "trade_date", "close_price"]

},
"relationships": [

"companies.company_id = stock_prices.company_id"
]

}
}

Listing 2.2: Example of tool registration with database schema details.

In general, a structured message is a machine-readable data object used
for communication either within the agent (for example, between the LLM and
its orchestration layer) or between the agent and external systems. It follows a
predefined, consistent format (typically JSON or similar) with explicit fields for
metadata, parameters, and content, enabling reliable parsing, execution of tool calls,
and integration of results across multi-step interactions. Listings 2.1 and 2.2 are
examples of structured messages that an agent can send to its underlying LLM.

Figure 2.4 presents a schematic view of the tool calling mechanism. The
diagram shows a nested architecture in which the agent (depicted as the outer
green container) manages the entire process. Within the agent, the LLM serves
as the reasoning component. External tools (e.g., search API, SQL executor, code
interpreter) are separate systems that the agent can invoke.

In step 1, a human user, a system task, or even another agent provides the
agent with an original prompt, for example: “Identify the top 10 renewable energy
companies by market capitalization in 2025, retrieve their average stock price over
the past week, and present the results in a table”. Upon receiving this prompt, the
agent processes it, informing the LLM of the relevant tools, policies, and context.
This information is passed as a structured message. The LLM interprets the message
and decides on the next steps, which may include calling a tool.

In the example from Figure 2.4, the LLM first decides to call a search engine.
It returns to the agent the specification for invoking this tool, including the textual
query: “Top 10 renewable energy companies by market capitalization in 2025” (see
Listing 2.4a). The agent executes the search (step 2a), receives the results (step 2b),
and appends them to a new structured message for the LLM. Reasoning over this
updated context, the LLM determines that it needs information from another tool,
this time, an SQL engine. The agent again receives the tool call specification, invokes
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Ô Agent (Controller)

jLLM (Brain)

 /X User / System Task

Û Tool A
Search API

õ Tool B
SQL Executor

1. Original Prompt
4. Answer

2a. execute 3a. execute

2b. result
(JSON)

3b. result
(JSON)

Figure 2.4: Agent-first orchestration with top user/system task source. The task
feeds an incoming prompt to the Agent; after iterative reasoning and tool use, the
Agent delivers the final answer. The LLM interprets messages, decides next step, and
produces structured output. The agent receives prompt, adds tools/policies/context
and builds structured messages for the LLM.

the tool (step 3a), receives the result (step 3b, see Listing 2.4b), and appends
the resulting data to a new structured message for the LLM. With this enriched
context, the LLM reasons one final time and decides to produce the final answer
to be generated (see Listing 2.4c). The agent delivers the final answer back to the
user/system (step 4).

SELECT company,
AVG(close_price) AS avg_price_last_week

FROM stock_prices
WHERE company IN ('NextEra Energy', 'Iberdrola')
AND trade_date >= CURRENT_DATE - INTERVAL '7 days'

GROUP BY company;

Listing 2.3: SQL query generated by the LLM in step 3.

It should be clear from the example of Figure 2.4 that it is not the LLM
that directly calls the tool. The LLM’s job is to decide that a tool is needed and
then generate a structured output (like a JSON object) that describes which tool to
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(a) Search API Result

{
"type": "tool_result",
"tool_name": "Search API",
"parameters": { "query": "Top 10 renewable energy companies by market

capitalization in 2025" },↪→

"output": [
{ "company": "NextEra Energy", "market_cap": "150B USD" },
{ "company": "Iberdrola", "market_cap": "90B USD" }

]
}

(b) SQL Executor Result

{
"type": "tool_result",
"tool_name": "SQL Executor",
"parameters": {

"sql_query": "SELECT company, AVG(close_price) ..."
},
"output": [

{ "company": "NextEra Energy", "avg_price": 78.52 },
{ "company": "Iberdrola", "avg_price": 12.37 }

]
}

(c) Final Answer

{
"type": "final_answer",
"summary": "Average stock prices",
"data": [

{ "company": "NextEra Energy", "avg_price": 78.52, "currency": "USD" },
{ "company": "Iberdrola", "avg_price": 12.37, "currency": "USD" }

],
"sources": [

"https://example.com/nextera",
"https://example.com/iberdrola"

]
}

Listing 2.4: Structured messages exchanged during an agent execution (e.g., ReAct
or Plan-and-Act): (a) Search API result, (b) SQL executor result, (c) final answer
produced by the LLM.
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use and what arguments to pass to it. The agent (or the orchestration layer in the
application) is the component that receives this structured output from the LLM. It
then parses that output and actually executes the function or API call associated
with the tool. One analogy that can be made is the following: the LLM is the brain
that reasons and decides; it figures out what needs to be done. The agent is the
body that takes the brain’s instructions and performs the physical action in the
real world. This separation of concerns is fundamental to how tool-calling works in
modern LLM applications. It ensures that the LLM, which is a powerful reasoning
engine, isn’t burdened with the task of execution, while the agent, which is a reliable
and predictable executor, can handle the actual interaction with external systems.
It’s a robust design pattern that maximizes the strengths of both components.

While the example in Figure 2.4 illustrates the general mechanics of tool
calling, it abstracts away many of the task-specific details involved in deciding how
to use a particular tool. In practice, each type of tool may require its own reasoning
strategy, input transformation, and post-processing steps. For instance, generating a
search query for an information retrieval module involves different considerations than
producing a valid SQL statement for a database engine. The next two paragraphs
highlight these differences by previewing how the tool-calling process unfolds in two
concrete scenarios that will be explored in detail later in this chapter.

In step 2, the LLM returns to the agent the specification for invoking the
Search API, including the textual query “Top 10 renewable energy companies by
market capitalization in 2025 ” (Listing 2.4a). Determining this query from the user’s
original prompt requires retrieving and ranking relevant information, a process that
follows the Retrieval-Augmented Generation (RAG) paradigm. The details of this
approach will be presented in Section 2.6.

In step 3, the LLM returns to the agent the specification for invoking the
SQL Executor, including the query presented in Listing 2.3. Determining this SQL
expression is itself a non-trivial process that involves translating natural language
into an executable query. The specific techniques and challenges of this Text-to-SQL
transformation will be discussed in Section 2.7.

2.6. Retrieval-Augmented Generation
One significant challenge in LLM-based agents is hallucination, the tendency of
the model to produce outputs that sound plausible but are factually incorrect or
unsupported. Hallucinations often arise when the model is asked about information
that was likely absent, outdated, or only partially represented in its training data.
This includes recent events, niche technical domains, and proprietary datasets. A
widely adopted strategy to address this limitation is Retrieval-Augmented Gener-
ation (RAG) [Fan et al. 2024], in which the agent retrieves relevant, authoritative
information from external sources at query time and feeds it to the LLM. By ground-
ing the model’s generation in fresh, domain-specific evidence, RAG both mitigates
hallucination and enables the agent to handle queries beyond the scope of its original
training corpus.

In practice, RAG works by retrieving relevant documents or passages from a
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knowledge base and inserting them directly into the LLM’s context window. This
integration allows the model to ground its output in concrete, up-to-date evidence,
improving factual accuracy and reducing unsupported content. In the earlier tool
calling example (Figure 2.4), this corresponds to the Search API step, where the
agent formulates a query, retrieves results from an external source, and passes them
to the LLM before generating the next reasoning step.

2.6.1. Phases of RAG
A RAG pipeline is typically composed of two phases: Indexing and Retrieval and
Generation. The first phase is executed offline as a form of pre-processing, while
the second is performed online, since the language model needs to retrieve relevant
information in real time to build context for generating a response. Each of these
phases involves several steps, as described below.

Indexing. The steps of this phase are depicted in Figure 2.5. In the Data Loading
step, documents are collected from targeted sources such as PDF files, web pages,
or other forms of unstructured information. In the subsequent Chunking step, each
document is divided into smaller segments to facilitate processing. Various strategies
can be employed for splitting documents, depending on the structure and nature of the
document (see Section 2.6.2). Then, each chunk is mapped to a vector representation,
using a process usually known as embedding. A vector embedding is a numerical
representation of text data in a continuous, high-dimensional space that captures
semantic or structural similarity. There are several embedding frameworks to map
text data to a vector representation, such as BERT, RoBERTa, and BERTimbau.
In the last step (Vector Storage), these vectors are stored in a vector database,
which is a specialized data store designed to efficiently index, store, and retrieve
high-dimensional vector embeddings based on similarity search. This indexing phase
is typically performed offline; afterward, the collection is ready to be queried at
runtime so relevant chunks can be injected into the LLM’s context window to ground
answers.

Retrieval and Generation. The steps of this phase are depicted in Figure 2.6.
It starts with Query Embedding, where the user’s query is transformed into a vector
representation using the same embedding model employed during indexing. In
Retrieval, the system searches the vector database using similarity search (e.g.,
semantic search or dense retrieval methods such as DPR) to identify the top-k
most relevant chunks. These retrieved chunks are then combined with the original
query in Prompt Construction, forming a context-rich prompt for the language
model. Finally, in Generation, the LLM processes this augmented prompt to produce
a grounded, accurate answer, leveraging both the retrieved evidence and its own
reasoning capabilities.
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A Data Loading
Load raw data from various sources (PDFs, websites, etc.)

ô Chunking
Split documents into manageable chunks

¨ Embedding
Convert chunks into vectors

õ Vector Storage
Store vectors in a vector database

Figure 2.5: Phase 1: Data Indexing (Offline). This phase prepares a knowledge
base for use in RAG. It begins with Data Loading, where raw data is collected from
various sources such as PDFs, websites, or internal documentation. In the Chunking
step, the documents are split into smaller, manageable segments to improve retrieval
granularity. These chunks are then passed through an Embedding step, which converts
them into high-dimensional vector representations using a pre-trained model. Finally,
the resulting vectors are stored in a Vector Database, enabling efficient semantic
search during the retrieval phase.

2.6.2. Chunking Strategies
In the indexing stage of RAG (see Figure 2.5), the strategy to break each document in
the knowledge base into chunks is very important. In a document chunking strategy,
several factors directly influence retrieval quality and downstream LLM performance:

1. Chunk Size Trade-offs. Chunks that are too small risk losing important
context, leading to incomplete or ambiguous matches during retrieval. Chunks
that are too large may exceed the model’s context limits or dilute relevance by
mixing unrelated information. The ideal size balances semantic completeness
with retrieval precision, often expressed in tokens or characters.

2. Overlap Strategy. Overlapping content between consecutive chunks helps
preserve context across chunk boundaries, ensuring that relevant information
appearing near the edge of one chunk is still captured in the next. Too much
overlap, however, increases storage and retrieval costs without proportional
benefits.

3. Metadata Preservation. Alongside the chunk text, associated metadata
(e.g., source document ID, section headings, timestamps, authorship) should
be stored and linked to each chunk. Preserving metadata enables filtered or
faceted retrieval, traceability of sources, and better grounding of the final
generated response.

There are four commonly used approaches to chunking [Fan et al. 2024,
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Û Query Embedding
Convert query to a vector

Z Retrieval
Find top-k relevant chunks

+ Prompt Construction
Combine chunks and query

Æ Generation
LLM generates the final answer

Figure 2.6: Overview of the Retrieval and Generation phase in a RAG pipeline.
This online phase begins with Query Embedding, where the user’s natural language
query is converted into a dense vector representation. In the Retrieval step, this
vector is used to perform a similarity search over a vector database to retrieve the
top-k most relevant text chunks. These chunks are then combined with the original
query during the Prompt Construction step to form the context window. Finally, in
the Generation step, the language model uses this enriched prompt to generate a
grounded and context-aware response.

Arslan et al. 2024]: Fixed-Size Chunking, Recursive Character Text Splitting, Se-
mantic Chunking, and Structure-Based Chunking. The following paragraphs describe
each one of these approaches.

Fixed-size chunking is the most basic approach to splitting text, where the
content is divided into consecutive segments of a predetermined size, typically
measured in characters or tokens, without regard for linguistic or semantic boundaries.
For instance, a document might be split into 500-character chunks with an overlap
of 50-100 characters to preserve some context between segments. This method
works well for uniformly structured data, such as simple logs, raw transcripts, or
other unformatted text streams, but its simplicity comes at a cost: it can interrupt
sentences or paragraphs mid-thought, fragmenting ideas and potentially reducing
retrieval quality.

Recursive character text splitting is a more sophisticated and widely recom-
mended strategy for general-purpose text, designed to prioritize natural boundaries
before falling back to fixed-size segments. It uses a hierarchy of separators, such as
paragraph breaks (“\n\n”), line breaks (“\n”), sentence endings (“.”), and spaces,
to divide the text. The splitter first attempts to segment by paragraphs, then by
sentences, and so on; if a chunk remains too large, it defaults to a fixed-size split. This
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method is particularly effective for documents with varied structures, like reports,
articles, or books, as it preserves paragraphs and sentences intact whenever possible.
However, because it still relies on syntactic markers, it may fail to capture semantic
relationships that span across these boundaries.

Semantic chunking is an advanced strategy that prioritizes the meaning
of the content over its syntactic structure. It begins by breaking the document
into smaller units, such as sentences, and then generating vector embeddings for
each. By measuring the similarity between embeddings of adjacent sentences, the
method detects “semantic breaks” where the similarity falls below a chosen threshold,
signaling a shift in topic and prompting the start of a new chunk. This approach is
well-suited for unstructured text or content where the flow of ideas takes precedence
over rigid formatting, such as conversational exchanges or creative writing. However,
it is more computationally demanding and requires both an embedding model and
careful tuning of the similarity threshold.

Structure-based chunking leverages the explicit organization of a document
to produce meaningful chunks. For example, a Markdown header splitter uses
section headers (e.g., “#”, “##”) as boundaries, creating chunks that align with
sections and subsections, often preserving the headers in the metadata to provide
additional context. Similarly, an HTML/XML splitter relies on tags to identify
logical components such as titles, paragraphs, or lists, ensuring that related content
stays together. This method is particularly effective for structured documents like
technical manuals or user guides with clear hierarchical organization. Its main
limitation is that it is format-dependent and unsuitable for unstructured text.

2.7. Text-to-SQL
Text-to-SQL refers to the process of converting a natural language query into an equiv-
alent SQL statement that can be executed on a relational database [Shi et al. 2025,
Liu et al. 2025, Deng et al. 2022]. The objective is to generate a query that faith-
fully captures the users’s intent and returns the correct results when run against the
target data. In the context of LLM-based agents, Text-to-SQL serves as a reasoning
capability that enables the agent to bridge the gap between free-form language and
the structured syntax of SQL, allowing natural language requests to be transformed
into precise, executable commands.

In an agent-based system, interaction with a database typically requires that
the SQL interface be registered as an available tool, along with its connection details
and schema description. Once this registration is in place, the agent can decide when
to use the tool in response to a user request. For example, given the question “What
was the total payroll expense for the Sales department last month?”, the agent may
determine that answering it requires querying the database. Following the ReAct
or Plan-and-Act paradigms (see Section 2.4), the LLM chooses to invoke the SQL
interface, using Text-to-SQL reasoning to translate the natural language request into
a valid SQL statement. In this way, the database becomes just another tool the
agent can call, much like a calculator or search engine, with Text-to-SQL serving as
the mechanism that bridges free-form language and precise, executable queries.
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Text-to-SQL has long been recognized as a valuable capability in the database
community [Shorten et al. 2025], enabling users to query relational databases with-
out writing SQL manually. Typical applications include: (i) business intelligence
dashboards with natural language interfaces; (ii) voice or chatbot assistants that
retrieve data from corporate systems; and (iii) self-service data exploration tools
for non-technical users. In the LLM era, these use cases are increasingly integrated
into multi-tool agent frameworks, where Text-to-SQL operates as the bridge between
natural language input and executable database queries.

The key steps of a Text-to-SQL pipeline, illustrated in Figure 2.7, describe the
sequential reasoning and processing stages required to transform a natural language
request into an executable SQL query and a user-friendly answer. While the specific
implementation details vary between traditional rule-based systems and modern
LLM-powered agents, the underlying process remains similar: interpret the request,
map it to the database schema and values, construct the query, execute it, and
refine the result as needed. The following sections describe each stage, highlighting
common challenges and considerations for LLM-based agents.

® 1. Intent Parsing
Identify task type, entities, predicates, time ranges, and aggregation.

õ 2. Schema Linking
Select relevant tables/columns and join paths.

Û 3. Value Grounding
Retrieve cell values / normalize literals for WHERE (e.g., names, dates).

ù 4. SQL Generation
Produce syntactically valid, semantically aligned SQL.

� 5. Execution & Correction
Run query; refine via execution feedback / self-correction.

✓ 6. Answer / Interactive Refinement
Return result; optionally ask clarifying questions and iterate.

Figure 2.7: Revised Text-to-SQL pipeline. Prior to this pipeline, the SQL interface
must be registered/available as a tool (connection + schema).

2.7.1. Intent Parsing
The first step in a Text-to-SQL pipeline is to interpret the user’s request and
determine its underlying intent. This involves identifying the task type (e.g., retrieval,
aggregation, filtering), the key entities mentioned, the attributes of interest, and any
constraints such as time ranges, conditions, or grouping requirements.
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In LLM-based agents, intent parsing often relies on semantic understanding
rather than rigid templates, enabling the model to capture nuanced requests such as
“List the top five customers by total sales in Q2” or “How many support tickets were
closed last week?”.

Accurate intent parsing ensures that subsequent steps operate with a clear
representation of what needs to be retrieved, reducing the risk of generating SQL
that is syntactically valid yet semantically misaligned with the user’s intent.

2.7.2. Schema Linking
Given a parsed intent, an LLM-based agent maps mentions in the request to concrete
schema elements (tables, columns, and relationships) and determines feasible join
paths. This typically involves name normalization (singular/plural forms, aliases),
leveraging foreign keys and primary keys, and disambiguating homonyms (e.g.,
name in multiple tables) using surrounding context. For large or heterogeneous
schemas, the agent often performs schema pruning: serializing a subset of the
catalog (table/column summaries, data types, brief descriptions) and including only
the most relevant pieces in the context window. Effective schema linking yields a
compact schema subgraph that preserves necessary joins and candidate columns
while excluding distractors, thereby simplifying subsequent value grounding and SQL
generation.

This process is often implemented as a two-stage pipeline: initial retrieval
followed by LLM-based validation. For example, consider the prompt “List the top
five customers by total sales in Q2”. The agent first retrieves the top-matching
schema items (via embedding search):

• customers (customer_id, name, region)

• orders (order_id, customer_id, order_date, total_amount)

It then confirms their relevance by sending an intermediary prompt to the
LLM, asking which schema items are necessary to answer the question.

Figures 2.8a and 2.8b illustrate how intermediate prompts can be used to
confirm schema relevance across different domains. The relevant schema elements
extracted by the LLM for each intermediate prompt are summarized in Table 2.3,
illustrating how the schema linking step narrows the database context to only the
fields necessary for accurate SQL generation.

2.7.3. Value Grounding
The third step in the Text-to-SQL pipeline involves mapping abstract references and
natural language expressions in the user query to concrete values that exist in the
database schema or data. This includes resolving temporal expressions (e.g., “last
month” → 2025-07, “Q2” → specific date range), performing entity disambiguation
(e.g., “Apple” → “Apple Inc.” as stored in the company table), and normalizing
literals (e.g., “Jan” → “January”, standardizing currency symbols, abbreviations, or
capitalization).
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Given this question: “List the top five customers by total sales in Q2”
and these candidate schema elements:
- customers: customer_id, name, region - orders: order_id, customer_id,
order_date, total_amount
Which elements are necessary to answer the question? Return only the
relevant ones.

(a) Sales database example

Given this question: “How many support tickets were closed last week?”
and these candidate schema elements:
- tickets: ticket_id, opened_date, closed_date, status, assigned_team -
teams: team_id, team_name, department
Which elements are necessary to answer the question? Return only the
relevant ones.

(b) Customer support database example

Figure 2.8: Examples of intermediate prompts for the schema linking step. In each
case, the agent presents candidate schema elements to the LLM, which identifies the
subset needed to answer the question.

Prompt (Figure ref.) Relevant schema elements

Figure 2.8a customers: customer_id, name
orders: customer_id, total_amount

Figure 2.8b tickets: ticket_id, closed_date

Table 2.3: Relevant schema elements identified by the LLM for each intermediate
prompt in the schema linking examples.

Value grounding also encompasses fuzzy matching techniques to handle varia-
tions in naming conventions, such as mapping “NYC” to “New York City” or “AI
dept” to “Artificial Intelligence Department” as they appear in the database records.
In LLM-based agents, this step often combines retrieval mechanisms (used to search
for candidate matches in the database) with the model’s reasoning capabilities to
infer the most appropriate mappings based on query context.

Effective value grounding is critical for preventing SQL queries from referencing
non-existent or incorrectly formatted values in WHERE clauses and JOIN conditions.
By ensuring values are both valid and properly formatted, it increases the likelihood
that generated queries will execute successfully and return meaningful, non-empty
results rather than failing due to exact-match errors.

The value grounding step is illustrated in Figure 2.9, where entity names and
temporal expressions are mapped to concrete database values and date ranges prior
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to SQL generation (see Figures 2.9a and 2.9b). In these examples, the mapping
assumes the current date is August 2025, so “Q2 last year” corresponds to April 1
to June 30, 2024, and “last month” corresponds to July 1 to July 31, 2025. Such
mappings may vary depending on the reference date, calendar conventions, or fiscal
year definitions.

Natural language query:
“Show the total sales for Apple in Q2 last year.”
Value grounding:
- “Apple” → "Apple Inc." (as stored in company.name)
- “Q2 last year” → ’2024-04-01’ to ’2024-06-30’

(a) Entity and temporal grounding with a named company and a quarter-relative period.

Natural language query:
“What was the total payroll expense for the Sales department last month?”
Value grounding:
- “Sales” → "Sales" (as stored in department.name)
- “last month” → ’2025-07-01’ to ’2025-07-31’

(b) Department and temporal grounding with a month-relative period.

Figure 2.9: Examples of value grounding: mapping abstract references (entities and
time expressions) to concrete database values and ranges before SQL generation.

2.7.4. SQL Generation
The fourth step synthesizes the parsed intent, identified schema elements, and
grounded values into a syntactically correct and semantically aligned SQL query.
This process involves translating the natural language structure into appropriate
SQL constructs, such as mapping aggregation requests to GROUP BY clauses with
aggregate functions (COUNT, SUM, AVG), temporal filters to WHERE conditions with date
comparisons, and ranking requirements to ORDER BY with LIMIT clauses.

The generation must also handle complex query patterns like subqueries
for nested conditions, proper JOIN syntax to connect multiple tables identified
during schema linking, and correct handling of NULL values and data types. In
LLM-based systems, SQL generation leverages the model’s understanding of SQL
syntax and semantics, often guided by schema-aware prompting that includes table
structures, relationships, and example queries to ensure dialect-specific correctness
(e.g., PostgreSQL vs. MySQL syntax differences).

Robust SQL generation produces queries that not only execute without syntax
errors but also accurately reflect the user’s intent, avoiding common pitfalls such as
Cartesian products from missing JOIN conditions, incorrect aggregation levels, or
inefficient query structures that could cause performance issues on large datasets.
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Example 1: Aggregation and Ranking. Consider the prompt: “List the top
five customers by total sales in Q2.” After Intent Parsing, Schema Linking, and
Value Grounding, the system has determined:

• Task type: aggregation + ranking

• Relevant schema: customers(customer_id, name), orders(customer_id, total_amount,
order_date)

• Grounded values: Q2 = ’2025-04-01’ to ’2025-06-30’

SELECT c.name, SUM(o.total_amount) AS total_sales
FROM customers c
JOIN orders o ON c.customer_id = o.customer_id
WHERE o.order_date BETWEEN '2025-04-01' AND '2025-06-30'
GROUP BY c.name
ORDER BY total_sales DESC
LIMIT 5;

Listing 2.5: Example SQL generated for the Q2 sales query.

Example 2: Counting Filtered Records. Consider the prompt: “How many
support tickets were closed last month?” The system has determined:

• Task type: count + filtering by date

• Relevant schema: tickets(ticket_id, closed_date)

• Grounded values: last month (August 2025) = ’2025-08-01’ to ’2025-08-31’

SELECT COUNT(*) AS closed_tickets
FROM tickets
WHERE closed_date BETWEEN '2025-08-01' AND '2025-08-31';

Listing 2.6: Example SQL generated for counting closed support tickets.

2.7.5. Execution and Correction
The fifth step is to execute the generated SQL query against the target database
and address any errors that occur. This step forms a critical feedback loop in the
Text-to-SQL pipeline. The agent submits the query and receives either a valid result
set or an error message from the database engine. If an error is returned (e.g., syntax
violation, invalid column name, missing table, or permission restriction), the system
must interpret the message and use it to guide a correction.
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In LLM-based agents, the error output is typically fed back into the model as
an observation. The LLM then analyzes the failure, identifies its likely cause (such
as a misspelled column name, mismatched data type, or missing JOIN condition),
and produces a revised query. This iterative execution-correction cycle continues
until a valid query is obtained or a stopping condition is reached. By incorporating
this self-repair mechanism, the LLM shifts from being a static code generator to a
dynamic, resilient problem-solver capable of adapting to schema-specific constraints
and recovering from its own mistakes.

The interaction between SQL generation, execution, and error-driven correc-
tion is illustrated in Figure 2.10, which shows how an LLM-based agent iteratively
refines queries until a valid result is produced.

SQL Generation Execution Answer / Presentation

Correction

Valid
Result

Error Detected
Revised Query

Figure 2.10: Execution and correction loop. Successful execution yields a valid result
that flows to answer presentation; errors trigger correction and a revised query that
feeds back into SQL generation.

2.7.6. Answer and Interactive Refinement
The final step in the Text-to-SQL pipeline is to present the query result to the user
in a clear, natural language format and, when needed, to engage in a dialogue for
further refinement. The raw result set returned by the database, typically a table of
rows and columns, is often not user-friendly. The agent’s role is to interpret this data
and produce a concise, human-readable answer that directly addresses the original
request. For instance, a result containing a single count might be presented as:
“There were 15 support tickets closed last week,” rather than displaying a one-row,
one-column table.

If the initial request was ambiguous, incomplete, or yielded unexpected results,
this step also enables an interactive refinement process. The user can issue follow-up
queries (e.g., “What about the week before that?”) or clarify intent (e.g., “No, I
meant closed by the engineering team”). The system can then restart the pipeline
from an appropriate earlier stage, such as intent parsing or value grounding, while
incorporating the additional context, ultimately generating a more precise and
satisfactory answer.

This process is illustrated in Figure 2.10, where the agent’s response generation
is not the end of the process but part of an interactive cycle that can loop back to
earlier stages when clarification or refinement is needed.

Figure 2.11 demonstrates how an agent transforms raw database outputs into
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concise, user-friendly answers and supports iterative refinement based on follow-up
questions.

count
15

Agent: There were 15 support tickets closed last week.
(a) Initial query result transformed from raw SQL output to a clear
natural language answer.

count
12

User: What about the week before that?
Agent: There were 12 support tickets closed in the previous
week.

(b) Interactive refinement after the initial answer.

Figure 2.11: Examples of the answer and interactive refinement step: (a) raw SQL
output reformulated as natural language; (b) follow-up interaction to refine the
result.

The process of transforming raw SQL results into a concise, user-friendly
response is illustrated in Figure 2.12. In this case, the query result is a single count
value (15), which, following the approach in Figure 2.11a, is reformulated into the
natural language answer “There were 15 support tickets closed last week”. This
example demonstrates how the agent bridges the gap between structured data and
conversational output, ensuring that the final response directly addresses the user’s
original question.

The user asked: “How many support tickets were closed last week?”
The SQL query returned this result:
count
15
Respond with a natural language sentence directly answering the question.

Figure 2.12: Example of a prompt guiding the agent to transform a raw SQL result
into a natural language response.

2.8. Case Studies and Demonstrations
To consolidate the concepts presented throughout this chapter, we provide a col-
lection of Jupyter notebooks that illustrate the main topics covered, from the
foundations of large language models to the design and implementation of LLM-
based agents with multi-step reasoning and tool use. These notebooks are available
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at https://github.com/AILAB-CEFET-RJ/sbbd2025_course), and are designed to
be self-contained and reproducible, enabling readers to experiment directly with the
techniques, architectures, and workflows described in the text. The demonstrations
include:

1. From Statistical Models to LLMs. A hands-on comparison between $n$-gram
language models and small transformer-based models, illustrating differences
in context windows, scaling, and emergent capabilities.

2. From LLMs to LLM-based Agents. Construction of a minimal agent that uses
an LLM as its reasoning core, demonstrating perception, decision-making, and
tool invocation in simple structured tasks.

3. Prompting Techniques and Interaction Patterns. Experiments with zero-shot,
few-shot, and Chain-of-Thought prompting, followed by implementations of
interaction patterns such as ReAct, Plan-and-Act, and Pre-Act.

4. Tool Calling. Step-by-step examples of tool registration, structured message
exchange, and execution via APIs, search engines, and SQL interfaces.

5. Retrieval-Augmented Generation (RAG). Building a complete RAG pipeline,
including document chunking, embedding generation, vector storage, retrieval,
and grounded generation.

6. Text-to-SQL Pipeline. An end-to-end example covering intent parsing, schema
linking, value grounding, SQL generation, execution and correction, and answer
presentation with interactive refinement.

Each notebook follows a consistent structure: defining the required data and
tools, walking through each relevant pipeline stage, and allowing readers to modify
prompts, parameters, and components to observe their effect. By running these
notebooks, readers can explore how the concepts described in the chapter translate
into working implementations, reinforcing theoretical understanding with hands-on
practice.

2.9. Final Remarks
This chapter provided an introduction to LLM-based agents, tracing their evolution
from statistical language models to modern, tool-using architectures capable of
reasoning and acting in complex environments. We examined core building blocks
such as prompting techniques, interaction patterns, tool calling, retrieval-augmented
generation, and the Text-to-SQL pipeline, illustrating how these components integrate
into coherent, end-to-end workflows. Beyond theory, the accompanying Jupyter
notebooks provide practical demonstrations that enable readers to experiment with
these ideas in real-world scenarios. Together, these elements aim to equip the reader
with both the conceptual understanding and the hands-on skills necessary to design,
implement, and critically evaluate LLM-based agents in diverse application domains.
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Looking ahead, the field is poised to advance rapidly along several fronts.
Emerging trends such as multi-agent systems (agent collaboration), seamless multi-
modality, dynamic memory management, and domain-specific fine-tuning will expand
both the capabilities and the applicability of LLM-based agents. At the same time,
significant challenges remain, including ensuring factual reliability, safeguarding
data privacy, maintaining transparency in decision-making, and mitigating bias
amplification. Mitigation strategies include grounding outputs in authoritative data
(e.g., via RAG), maintaining detailed logs of reasoning steps and tool calls for
auditability, applying domain-specific access controls, and performing bias and safety
evaluations during development. Embedding such safeguards into the design and
operation of agents is crucial to align technical capabilities with legal requirements,
organizational policies, and societal expectations. Addressing these challenges will
require not only technical innovation but also interdisciplinary collaboration between
AI researchers, domain experts, and policymakers. By combining robust architectures
with responsible deployment practices, the next generation of LLM-based agents
can evolve from promising prototypes to dependable tools that operate safely and
effectively in high-impact real-world settings.

Finally, it is worth noting that the quest to build intelligent agents is
far from new. As Jennings and Wooldridge observed more than two decades
ago [Jennings and Wooldridge 1998], agents are autonomous problem-solving en-
tities capable of operating in complex, dynamic environments without continuous
human guidance. While the technological substrate has shifted (from symbolic
reasoning systems to large-scale neural models), the essence of this vision remains
strikingly relevant. Today’s LLM-based agents embody many of the same aspirations
outlined in that earlier work, demonstrating that the principles articulated then
continue to guide and inspire the development of the next generation of AI systems.
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