Capítulo

17

Enfrentando os Desafios do Tecnicismo Reducionista na Computação

Marcelo Soares Loutfi

Abstract

This article explores the tension between accelerated technical training, driven by market demands, and the need for critical reflection on the social, ethical, and environmental implications of technologies. In this context, reductionist technicism prevails in computing education, disregarding the complexity of interactions between social and technological aspects. To address this challenge, the author proposes three premises: overcoming the dichotomy between the social and the technical, recognizing that ethics emerge from sociotechnical interactions, and utilizing accelerationism to foster more responsible innovations. As a solution, it is suggested to adopt speculative design in computing education from a post-anthropocentric perspective, which, in addition to aligning with these premises, allows for simulating future scenarios and analyzing the ethical implications of the technologies developed.

Resumo

Este artigo explora a tensão entre a formação técnica acelerada, impulsionada pelas demandas do mercado, e a necessidade de uma reflexão crítica sobre as implicações sociais, éticas e ambientais das tecnologias. Nesse cenário, prevalece o tecnicismo reducionista na educação em computação, que desconsidera a complexidade das interações entre os aspectos sociais e tecnológicos. Para enfrentar esse desafio, o autor propõe três premissas: a superação da dicotomia entre o social e o técnico, o reconhecimento de que a ética emerge das interações sociotécnicas, e a utilização do aceleracionismo para promover inovações mais responsáveis. Como solução, sugere-se a adoção do design especulativo na educação em computação em uma postura pós-antropocêntrica que, além de estar alinhada com essas premissas, permite simular cenários futuros e analisar as implicações éticas das tecnologias desenvolvidas.

17.1. Contextualização

No Brasil, a educação em computação enfrenta um paradoxo amplamente reconhecido: de um lado, a demanda do mercado por profissionais altamente qualificados tecnicamente [Oliveira 2025], impulsionada por plataformas de cursos que prometem rápida qualificação e altos salários; de outro, a necessidade de uma formação que promova reflexão crítica sobre as implicações sociais e éticas das tecnologias [Carvalho et al. 2021]. Esse cenário pressiona principalmente as instituições particulares a reduzir a carga horária e adotar abordagens híbridas, focando na qualificação técnica e m detrimento de u ma formação mais ampla, que envolve a capacidade de compreender as implicações sociais, políticas, econômicas e ambientais das tecnologias. Essa aceleração busca responder às exigências do mercado e acompanha a expansão do setor educacional como um nicho lucrativo, no qual o desenvolvimento tecnológico é marcado por uma crescente objetificação.

Já as universidades públicas mantêm modelos tradicionais e, muitas vezes, parecem distantes das dinâmicas do mercado. Embora reconheçam a importância de disciplinas que abordem as dimensões sociais, culturais e ambientais da tecnologia, essas iniciativas são insuficientes para contrabalançar a formação técnica a celerada. Disciplinas como "Programação", "Algoritmos e Estrutura de Dados", "Modelagem de Sistemas" e "Redes de Computadores" ocupam posição central nos currículos, mas oferecem pouco suporte ao desenvolvimento das dimensões sociotécnicas necessárias para compreender a interdependência entre tecnologia e sociedade [Malik and Malik 2021, Zorzo et al. 2017]. Mesmo em áreas como "Interação Humano-Computador" (IHC), conteúdos como Usabilidade ou Ética em Computação tendem a permanecer restritos a abordagens pontuais, sem avançar para uma análise mais profunda dos contextos e dinâmicas sociotécnicas que estruturam as relações entre humanos e artefatos [Selbst et al. 2019, Connolly 2020].

O resultado é uma percepção de que a área de computação está enraizada em um tecnicismo reducionista, que se manifesta de diversas maneiras, como no fenômeno da "dataficação da vida" [Blok 2023], que parte do pressuposto de que os aspectos da experiência humana podem ser convertidos em dados analisáveis. O avanço do *big data*, do aprendizado de máquina e dos algoritmos preditivos que fortalece a crença de que decisões complexas em áreas como saúde [Sarker 2024], segurança [Andrade et al. 2024], educação [Xi 2024] e mercado financeiro [Prabakar et al. 2024] podem ser automatizadas com base em padrões estatísticos, marginalizando o contexto sociocultural de onde esses dados emergem. Já na infraestrutura de TI, o foco em performance e custo-benefício, como exemplificado pela computação em nuvem, raramente discute as implicações ambientais e a concentração de poder em grandes corporações [Jiang 2025].

A partir de um panorama que limita o entendimento da complexidade das interações entre humanos, máquinas, dados e infraestruturas, emergem questões urgentes: Como preparar profissionais para a interdependência entre aspectos sociais e tecnológicos? Quais são os limites éticos da integração humano-máquina? Como os futuros profissionais podem mitigar os impactos negativos das inovações tecnológicas em um ambiente de constante aceleração?

Superar o tecnicismo reducionista é um desafio central, exigindo u ma mudança profunda na forma como praticamos a Computação. É necessário adotar uma perspectiva sociotécnica que forme profissionais capazes de refletir criticamente so bre os impactos

éticos, sociais e ambientais de suas criações.

17.2. Perspectivas Sombrias na Educação em Computação

Enquanto o aceleracionismo impulsiona o avanço tecnológico como motor de transformação, teóricos do Antropoceno¹ [Crutzen 2016] alertam sobre as consequências de ações descontroladas e tecnocêntricas, que ignoram limites ecológicos e éticos. Esse impulso se reflete em tendências emergentes que, no futuro, podem redefinir profundamente este campo de estudo, alterando como a área da Computação é percebida, desenvolvida e ensinada.

A ascensão da Inteligência Artificial generativa é uma tendência que já está moldando comportamentos e redefinindo valores sociais. Um reflexo dessa transformação é a crescente desconfiança dos alunos em relação aos professores [Culén and Stevens 2022] e o risco de dependência de respostas prontas dessas tecnologia [Azambuja and Silva 2024], preferindo informações de redes sociais ou IAs generativas, o que enfraquece o conhecimento tradicional em sala de aula e suprime a análise crítica.

Além disso, há um risco significativo de que dimensões centrais do processo de ensino, como a avaliação, o *feedback* e até mesmo a seleção de conteúdos, sejam delegadas a sistemas automatizados ou algoritmos, sem a devida reflexão crítica sobre os vieses, valores e visões de mundo neles incorporados [Azambuja and Silva 2024]. Tal terceirização pode comprometer princípios pedagógicos essenciais, como a equidade no acesso e na avaliação, a valorização da singularidade de cada estudante, a construção de uma aprendizagem crítica e reflexiva, a mediação humana como fator de diálogo e empatia, e a formação integral que articula dimensões cognitivas, éticas e sociais.

Enquanto isso, os conglomerados tecnológicos expandem de forma sistemática seu controle sobre a vida cotidiana, convertendo experiências humanas em matéria-prima para modelos preditivos e comerciais que moldam comportamentos [Zuboff 2021]. Essa dinâmica orienta tendências de consumo, influenciando discursos sociais e políticos. O poder concentrado nas mãos de líderes dessas corporações ultrapassa as fronteiras econômicas, afetando diretamente democracias e políticas nacionais, ao mesmo tempo em que reconfigura o espaço público. Nesse cenário, a comunidade científica, historicamente responsável por mediar e qualificar debates de relevância social, vê-se progressivamente marginalizada, cedendo terreno para influenciadores digitais e plataformas algorítmicas que, guiadas por interesses de engajamento e lucro, ditam a agenda e o foco do debate público.

Essas mudanças podem ter repercussões tanto diretas quanto indiretas. À medida que os professores perdem prestígio, as instituições de ensino superior, responsáveis pela maior parte das pesquisas científicas no país, correm o risco de sofrer cortes orçamentários em favor de escolas técnicas, que priorizam uma formação acelerada e mais alinhada às demandas imediatas do mercado. Nesse contexto, a IA generativa poderia marginalizar ainda mais o conhecimento científico, redirecionando-o para servir aos interesses dos conglomerados tecnológicos.

¹O Antropoceno é um conceito que designa uma nova época geológica, marcada pela influência decisiva das atividades humanas sobre o planeta

Se esse cenário persistir, no futuro a disputa não será mais pela atenção do aluno, mas pelas suas crenças e valores, que moldarão sua visão de mundo e impactarão profundamente sua formação crítica e ética. Isso distanciará ainda mais a Computação de sua responsabilidade em abordar problemas sociais complexos [Abebe et al. 2020], priorizando o lucro, a eficiência técnica e os interesses das grandes corporações tecnológicas, em detrimento da reflexão crítica e da inovação socialmente responsável.

17.3. Premissas para enfrentar o desafio do tecnicismo e reducionismo na área da Computação

Para superar o tecnicismo e reducionismo na Computação, propõe-se três premissas que reorientam a prática e o ensino, alinhando a educação à necessidade de integrar o técnico e o social. Essas premissas, não prescritivas, visam mitigar crises ecológicas e sociais, promover decisões éticas e redefinir o papel da tecnologia diante do aceleracionismo.

17.3.1. Superar a Dicotomia entre o Social e o Técnico na Educação em Computação

A tradição moderna, ancorada no dualismo cartesiano, instituiu uma rígida separação entre mente e matéria. Aos humanos foi concedida a exclusividade da razão e da agência; enquanto aos objetos, como instituições, empresas, outros seres vivos e o próprio meio ambiente, restou o papel de elementos passivos [Latour 2012]. Esse modo de pensar transbordou para a academia, consolidando a divisão entre ciências sociais e ciências naturais. Cada campo passou, então, a observar a realidade por lentes próprias, sustentadas por referenciais teóricos, metodológicos e técnicos distintos, ainda que o objetivo fosse o mesmo: compreender e intervir no mundo em que vivemos.

Na Computação, essa herança dualista manifesta-se na divisão entre disciplinas estritamente técnicas, como Programação e aquelas voltadas às dimensões sociotécnicas, como IHC. Essa cisão empobrece a compreensão integrada do ecossistema no qual a tecnologia se insere e de suas múltiplas implicações, produzindo uma visão fragmentada de fenômenos que, na prática, se apresentam de forma indissociável.

Por exemplo, ao analisar uma IA, uma abordagem positivista, centrada em dados quantitativos, pode oferecer um retrato estatístico do fenômeno, enquanto uma perspectiva interpretativista pode revelar sentidos, valores e dinâmicas subjetivas que estruturam a experiência dos usuários. Embora complementares, essas leituras muitas vezes entram em conflito, já que são produzidas de forma artificialmente separada, em vez de integradas a uma visão que reconheça a inseparabilidade entre o social e o técnico. Nesse sentido, Kruger (2020) argumenta que a IA deve ser compreendida como um agente político ativo, capaz de desafiar a dicotomia entre o social e o técnico. Isso significa reconhecer que a técnica não apenas apoia, mas também produz e reconfigura o social; e vice-versa.

Esse entendimento evidencia a necessidade de que professores e pesquisadores revisem suas práticas pedagógicas, promovendo a integração entre os estudos de Ciência, Tecnologia e Sociedade (CTS) e a Filosofia da Ciência nas disciplinas técnicas [Malik and Malik 2022]. Assim, o aprendizado deixa de se restringir ao "como" desenvolver tecnologias e passa a contemplar também o "por que" e o "para quem" elas são concebidas.

O "por que" não se limita à lógica instrumental de resolver problemas técnicos, mas implica refletir s obre o s mundos que desejamos c riar, s ustentar e h abitar. A qui se conecta o conceito de *worlding* (mundificação), proposto por Haraway (2016). Diferente da ideia de mundo como algo dado, estável e externo a nós, o *worlding* entende o mundo como um processo em constante construção, sempre emaranhado às nossas práticas materiais e simbólicas. Em outras palavras, projetar tecnologias significa também participar ativamente de um processo de "fazer-mundo", no qual cada escolha técnica contribui para compor as realidades que consideramos possíveis e habitáveis. Para a Computação, isso significa reconhecer que algoritmos, sistemas e infraestruturas ajudam a definir como vivemos, nos relacionamos e imaginamos o futuro.

O "para quem", por sua vez, não deve ser reduzido a usuários previamente definidos ou a interesses de mercado. Ele precisa incluir os atores frequentemente marginalizados nos processos de concepção tecnológica, como: comunidades humanas vulnerabilizadas, povos indígenas, saberes não ocidentais, perspectivas negras e decoloniais, além de seres não humanos e do próprio ambiente. Incorporar essas vozes e cosmologias significa reconhecer que há múltiplas formas de existir, conhecer e habitar o mundo, e que a Computação, ao projetar sistemas, não deve reforçar apenas visões hegemônicas, mas abrir espaço para mundos plurais e interdependentes.

Dessa forma, o processo educativo deixa de reforçar uma separação artificial entre dimensões sociais e técnicas e passa a tratar esses saberes como coemergentes e entrelaçados, refletindo a complexidade viva dos e cossistemas s ociotécnicos. C ontudo, é necessário cuidado para que essas visões não sejam apropriadas de forma superficial ou instrumentalizadas como recurso estético ou mercadológico. Em vez disso, devem ser integradas de modo ético e responsável, respeitando sua densidade histórica, cultural e política, e possibilitando que diferentes ontologias participem ativamente da concepção de sistemas e da imaginação de futuros sociotécnicos.

17.3.2. Ética e Responsabilidade Emergem das Relações Sociotécnicas

Questões éticas não são escolhas individuais, mas emergem de interações entre humanos, máquinas, dados e infraestruturas. Como observa Verbeek (2015), projetar tecnologias é também projetar modos de existir no mundo, o que implica assumir uma responsabilidade ética inescapável. Essa responsabilidade não se limita às consequências futuras; ela envolve também as condições presentes que moldam a ação e a experiência. De forma complementar, Barad (2007) defende que realidade, significado e ética não existem de antemão, mas emergem das interações entre elementos técnicos e sociais. Em termos da computação, podemos entender isso como o entrelaçamento entre código, hardware, dados e as formas de uso e interpretação dadas pelas pessoas. As chamadas práticas discursivo-materiais podem ser vistas como o conjunto de ações e significados que se estabelecem quando escrevemos um software, implantamos uma infraestrutura em nuvem, coletamos e processamos dados e, ao mesmo tempo, atribuímos sentidos, regras e expectativas a esses processos. É nesse fluxo que o mundo digital "ganha forma" e passa a ser inteligível e habitável.

A ética, portanto, não é um adereço externo que aplicamos depois de um sistema pronto, mas um processo contínuo de responsabilização que acontece no próprio *design* e

uso da tecnologia.

No caso dos carros autônomos, por exemplo, a ética não se limita à programação de algoritmos de tomada de decisão em situações de risco. Ela envolve também as negociações entre fabricantes, reguladores e sociedade sobre padrões de segurança aceitáveis; a forma como sensores, câmeras e dados de geolocalização interpretam o ambiente; a interação dos usuários que delegam ou contestam a condução automática; e até mesmo as expectativas culturais sobre o que significa "dirigir" e "ser transportado". Cada um desses elementos participa da construção das normas de responsabilidade, distribuindo a agência entre humanos e não humanos.

Nesse cenário, a encenação especulativa de futuros torna-se uma estratégia poderosa para revelar como agência e responsabilidade são distribuídas e constantemente renegociadas entre os diferentes atores envolvidos. Assim, é necessário criar ambientes educacionais que simulem essas interações complexas, permitindo a co-construção negociada de responsabilidades entre humanos e não humanos. *Frameworks*, metodologias e ferramentas devem ser pensados justamente para evidenciar como as dinâmicas sociotécnicas produzem embates em torno da moralidade e expõem dilemas éticos que não podem ser resolvidos de maneira simples ou isolada.

17.3.3. Recondicionando o Aceleracionismo para uma Inovação Socialmente Consciente

A integração das teorias de CTS na Computação cria condições para transformar a lógica das respostas imediatas em um processo mais reflexivo. Isso não significa desacelerar a inovação, mas convertê-la em uma força propulsora para um desenvolvimento mais socialmente consciente.

Diversas iniciativas já ilustram esse movimento. No Brasil, a "Operação Serenata de Amor" usa aprendizado de máquina para auditar gastos públicos e promover transparência, enquanto o ecossistema do "Porto Digital", em Recife, articula aceleração tecnológica e impacto social em escala regional. No cenário internacional, pode-se citar o "AI for Earth", da Microsoft, que apoia projetos voltados à biodiversidade e à agricultura sustentável; e o "Platform for Real-Time Impact and Situation Monitoring" (PRISM), do "World Food Programme" (WFP), que integra dados climáticos e socioeconômicos para apoiar comunidades vulneráveis.

Apesar de situadas em contextos distintos, essas iniciativas compartilham elementos centrais: a valorização da participação comunitária e da inclusão social; o compromisso com a sustentabilidade ambiental; a busca por transparência e responsabilidade ética nos processos de design; e a capacidade de conciliar respostas rápidas com consistência de longo prazo, aliando aceleração a uma visão crítica. Entretanto, é importante reconhecer que tais exemplos operam em grandes escalas institucionais e corporativas. No campo da educação em Computação, é igualmente necessário criar condições para que os estudantes experimentem práticas semelhantes em escalas menores, mais locali-

²Operação Serenata de Amor: https://serenata.ai/

³Porto Digital: https://www.portodigital.org/

⁴AI for Earth: https://news.microsoft.com/pt-br/tag/ai-for-earth/

⁵PRISM: https://www.un-spider.org/space-application/space-technologies-in-the-un/wfp

zadas e responsivas a contextos sociotécnicos específicos, como o corre e m projetos de extensão universitária, *hackathons* voltados a problemas sociais ou atividades de prototipagem especulativa em sala de aula.

Nesse processo, os estudantes devem ser desafiados a ir além da entrega técnica imediata, exercitando competências críticas e criativas que ampliam sua formação e fortalecem sua autonomia intelectual. Professores, por sua vez, encontram no aceleracionismo recondicionado uma oportunidade para engajar os alunos em práticas pedagógicas mais significativas, c onectando o a prendizado à s c omplexidades d o m undo contemporâneo. Para profissionais e organizações, essa postura constitui uma vantagem c ompetitiva: soluções que aliam agilidade tecnológica a consciência social e sustentabilidade tendem a ser mais robustas, adaptáveis e legitimadas perante a sociedade.

Assim, o aceleracionismo recondicionado deixa de representar um risco de superficialidade e passa a operar como motor de uma inovação mais consistente, duradoura e socialmente vantajosa, desde que guiado por princípios éticos, compromissos sustentáveis e práticas de responsabilidade compartilhada.

17.4. O Design Especulativo como uma postura Pós-Antropocêntrica

Uma visão pós-antropocêntrica do *design* tecnológico oferece uma análise aprofundada das interações entre atores humanos e não humanos, como tecnologias, infraestruturas, instituições, ambientes e outros seres vivos, reconhecendo que todos participam ativamente da configuração das experiências e da multiplicidade dos modos de v ida. Ao evidenciar essas interações, torna-se possível reconfigurar a realidade e criar condições para uma reflexão crítica tanto sobre questões emergentes da pós-modernidade, como o transhumanismo e o pós-humanismo, quanto sobre as crises contemporâneas da modernidade, como a crise climática e os desafios regulatórios das plataformas digitais.

Essa perspectiva evidencia que a agência não é prerrogativa exclusiva dos humanos, mas está sempre emaranhada às mediações técnicas que estruturam a vida cotidiana. Nesse contexto, a própria ação humana não ocorre de forma inteiramente deliberada, mas é constantemente mediada por ferramentas, sistemas e artefatos que estruturam a experiência cotidiana [Verbeek 2005, Ihde 1990]. Interfaces gráficas, sensores e sistemas de recomendação, por exemplo, configuram percepções e orientam ações, influenciando escolhas e comportamentos, além de moldar subjetividades e práticas sociais [Oogjes and Wakkary 2017, Hauser et al. 2018]. Além disso, a emergência da IA generativa atua ativamente tanto nos processos criativos quanto nos decisórios em diferentes contextos organizacionais, contribuindo para a redefinição da noção de uma agência expandida e interconectada entre humanos e não humanos [Krakowski 2025]. A análise desses arranjos como redes dinâmicas e heterogêneas possibilita problematizar sistemas que frequentemente são naturalizados como neutros ou dados. Latour (2005) nos convida a abrir as "caixas-pretas", evidenciando que decisões técnicas, sentidos, significados, escolhas políticas e relações de poder estão implicados na constituição dos sistemas.

Entretanto, é necessário reconhecer que nem todos os aspectos da realidade que envolve os sistemas de informação (SI) podem ser plenamente acessados. Muitas de suas qualidades, sobretudo na interação com outros atores, produzem desdobramentos invisíveis ou impossíveis de serem descritos em sua totalidade, seja pela complexidade da rede

sociotécnica em que estão inseridos, seja pela opacidade interna dos próprios sistemas, frequentemente resguardada por decisões de propriedade intelectual das empresas desenvolvedoras. Essa dificuldade de abrir as "caixas-pretas" e de compreender integralmente as múltiplas relações que sustentam esses sistemas limita a apreensão de seus efeitos na sociedade e no ambiente. Tal indeterminação, contudo, abre espaço para a especulação, especialmente sobre os pontos em que a realidade da rede sociotécnica apresenta lacunas de entendimento.

É justamente nesse terreno de incertezas e invisibilidades que o Design Especulativo [Dunne and Raby 2024] encontra sua força, ao oferecer caminhos para explorar, problematizar e dar visibilidade às dimensões ocultas dos ecossistemas sociotécnicos, incorporando atores que as abordagens tradicionais de concepção de sistemas tendem a marginalizar como *stakeholders*, por privilegiarem exclusivamente os humanos. Uma postura pós-antropocêntrica, contudo, reconhece que esses atores antes invisibilizados sempre estiveram presentes, agindo, moldando, afetando e sendo afetados pelas decisões tomadas.

Ao recorrer a protótipos narrativos [Ståhl et al. 2022] [Søndergaard et al. 2023] [Dörrenbächer et al. 2023] e cenários futuros [Stead and Coulton 2022], o Design Especulativo permite dramatizar as implicações éticas, políticas e ontológicas das tecnologias, trazendo à tona consequências que permanecem obscurecidas pelos discursos hegemônicos da inovação. Assim, em vez de orientar-se pela busca de eficiência ou pela lógica mercadológica, o Design Especulativo ativa o pensamento contrafactual [Wakkary et al. 2022, Cheon 2023], provocando estranhamento, convidando à imaginação coletiva de futuros mais justos, inclusivos e sustentáveis [Stead et al. 2022].

Tal abordagem já vem sendo aplicada em diferentes questões contemporâneas, como a vigilância de dados [Rafael et al. 2023], o futuro do trabalho mediado por inteligência artificial generativa [Popova 2023, Forlano and Halpern 2023], a literacia em IA [Benjamin et al. 2023], a criatividade cultural [Lin and Long 2023] e a educação em Computação [Loutfi and Siqueira 2024, Loutfi et al. 2025] entre outros temas.

No campo educacional, em particular, o Design Especulativo pode ser integrado em disciplinas técnicas de Computação para oferecer aos estudantes uma experiência prática e reflexiva sobre a complexidade, a imprevisibilidade e as repercussões das decisões tecnológicas. Para além do ambiente acadêmico, o Design Especulativo converte a crítica ao aceleracionismo em uma força propulsora para a construção de inovações mais socialmente conscientes, orientando o desenvolvimento tecnológico a partir de uma perspectiva de longo prazo. Nesse sentido, a vantagem competitiva de produtos e serviços não se restringe ao atendimento imediato de demandas de mercado, mas se fundamenta em sua capacidade de antecipar futuros possíveis e moldar futuros alternativos e desejáveis, ao mesmo tempo em que possibilita uma análise de riscos mais rigorosa, contemplando dimensões da vida cotidiana com relevância para o contexto corporativo, além de possibilitar a elaboração de estratégias eficazes para sua mitigação.

17.5. Considerações Finais

Por muitos anos, a área da Computação foi absorvida pela ânsia da onda aceleracionista, onde o progresso tecnológico é exaltado quase sem questionamentos, e onde velocidade

e inovação são considerados os únicos indicadores de sucesso. Contudo, essa corrida desenfreada nos deixa mal preparados para enfrentar os desafios éticos e ecológicos do Antropoceno. Ao invés de promover uma compreensão responsável e integrada das tecnologias que criamos, estamos nos distanciando das implicações sociais e ambientais que exigem nossa atenção imediata.

Para enfrentar esse quadro, este trabalho apresentou três premissas que orientam uma reconfiguração da educação e da prática computacional: superar a dicotomia entre o social e o técnico, reconhecer que ética e responsabilidade emergem das relações sociotécnicas e recondicionar o aceleracionismo para uma inovação mais ética, responsável e socialmente consciente.

O Design Especulativo mostra-se especialmente potente como prática capaz de apoiar essas três premissas. Ao estimular a criação de cenários e narrativas futuras, ele possibilita romper com a fragmentação disciplinar e integrar dimensões técnicas e sociais, promovendo uma visão entrelaçada dos ecossistemas sociotécnicos. No que se refere à ética, o Design Especulativo evidencia como a responsabilidade se distribui entre humanos e não humanos, permitindo que dilemas morais sejam encenados, discutidos e negociados em contextos simulados. Por fim, ao recondicionar o aceleracionismo, o Design Especulativo transforma a velocidade da inovação em um recurso pedagógico e crítico, incentivando que a experimentação rápida não seja voltada apenas ao mercado, mas também à imaginação de futuros mais sustentáveis, inclusivos e responsáveis.

Assim, o Design Especulativo, ancorado em uma postura pós-antropocêntrica, não se restringe a uma ferramenta pedagógica ou a um método de *design*, mas constitui uma forma de repensar a própria função da Computação em um mundo em crise. Ele amplia a capacidade da área de enfrentar os desafios contemporâneos, favorecendo práticas que acompanham o ritmo acelerado da inovação e direcionam esse ritmo para a construção de futuros desejáveis. Em última instância, trata-se de recuperar o potencial da Computação para além da lógica da eficiência e da produtividade, reafirmando sua profundidade política, ética e social, e sua potência de imaginar e sustentar modos de vida mais justos e habitáveis.

Referências

[Abebe et al. 2020] Abebe, R., Barocas, S., Kleinberg, J., Levy, K., Raghavan, M., and Robinson, D. G. (2020). Roles for computing in social change. In *Proceedings of the 2020 conference on fairness, accountability, and transparency*, pages 252–260.

[Andrade et al. 2024] Andrade, Y., Pimenta, M., Amarante, G., Faria, A. H., Vilas-Boas, M., da Silva, J. P., Rocha, F., da Silva, J., Meira Jr, W., Teodoro, G., et al. (2024). A descriptive and predictive analysis tool for criminal data: A case study from brazil. In *International Conference on Computational Science and Its Applications*, pages 151–169. Springer.

[Azambuja and Silva 2024] Azambuja, C. C. d. and Silva, G. F. d. (2024). Novos desafios para a educação na era da inteligência artificial. *Filosofia Unisinos*, 25(1):e25107.

- [Barad 2007] Barad, K. (2007). Meeting the universe halfway: Quantum physics and the entanglement of matter and meaning. duke university Press.
- [Benjamin et al. 2023] Benjamin, J. J., Biggs, H., Berger, A., Rukanskaitė, J., Heidt, M. B., Merrill, N., Pierce, J., and Lindley, J. (2023). The entoptic field camera as metaphor-driven research-through-design with ai technologies. In *Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems*, pages 1–19.
- [Blok 2023] Blok, V. (2023). Philosophy of technology in the digital age: the datafication of the world, the homo virtualis, and the capacity of technological innovations to set the World free. Wageningen University & Research.
- [Carvalho et al. 2021] Carvalho, L. P., Oliveira, J., and Santoro, F. (2021). A presenÇa de conteÚdos sobre Ética computacional na literacia em computaÇÃo institucional brasileira.
- [Cheon 2023] Cheon, E. (2023). Powerful futures: How a big tech company envisions humans and technologies in the workplace of the future. *Proceedings of the ACM on Human-Computer Interaction*, 7(CSCW2):1–35.
- [Connolly 2020] Connolly, R. (2020). Why computing belongs within the social sciences. *Communications of the ACM*, 63(8):54–59.
- [Crutzen 2016] Crutzen, P. J. (2016). Geology of mankind. In *Paul J. Crutzen: A pioneer on atmospheric chemistry and climate change in the Anthropocene*, pages 211–215. Springer International Publishing Cham.
- [Culén and Stevens 2022] Culén, A. L. and Stevens, N. S. (2022). Speculative and critical approach to designing technological futures through hci education. *ID&A Interaction design & architecture* (s), 51(51):8–31.
- [Dörrenbächer et al. 2023] Dörrenbächer, J., Ringfort-Felner, R., and Hassenzahl, M. (2023). The intricacies of social robots: secondary analysis of fictional documentaries to explore the benefits and challenges of robots in complex social settings. In *Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems*, pages 1–13.
- [Dunne and Raby 2024] Dunne, A. and Raby, F. (2024). Speculative Everything, With a new preface by the authors: Design, Fiction, and Social Dreaming. MIT press.
- [Forlano and Halpern 2023] Forlano, L. E. and Halpern, M. K. (2023). Speculative histories, just futures: From counterfactual artifacts to counterfactual actions. *ACM Transactions on Computer-Human Interaction*, 30(2):1–37.
- [Haraway 2016] Haraway, D. (2016). *Staying with the trouble: making kin in the Chthu-lucene*. Experimental futures. Technological lives, scientific arts, anthropological voices. Duke University Press, Durham London.
- [Hauser et al. 2018] Hauser, S., Oogjes, D., Wakkary, R., and Verbeek, P.-P. (2018). An annotated portfolio on doing postphenomenology through research products. In *Proceedings of the 2018 designing interactive systems conference*, pages 459–471.

- [Ihde 1990] Ihde, D. (1990). *Technology and the lifeworld: From garden to earth*. Indiana University Press.
- [Jiang 2025] Jiang, M. (2025). Ethical cloud: Engineering concerns in the age of cloud computing. *Viterbi Conversations in Ethics*, 8(2). Acesso em: 14 set. 2025.
- [Krakowski 2025] Krakowski, S. (2025). Human-ai agency in the age of generative ai. *Information and Organization*, 35(1):100560.
- [Kruger 2020] Kruger, J. (2020). Nature, culture, ai and the common good—considering ai's place in bruno latour's politics of nature. In *Southern African Conference for Artificial Intelligence Research*, pages 21–33. Springer.
- [Latour 2005] Latour, B. (2005). Reassembling the social: An introduction to actornetwork-theory. Oxford university press.
- [Latour 2012] Latour, B. (2012). We have never been modern. Harvard university press.
- [Lin and Long 2023] Lin, L. and Long, D. (2023). Generative ai futures: A speculative design exploration. In *Proceedings of the 15th Conference on Creativity and Cognition*, pages 380–383.
- [Loutfi and Siqueira 2024] Loutfi, M. S. and Siqueira, S. W. M. (2024). Speculative design in a graduate program in informatics: Students perception and practical application: A novel approach for supporting information systems education. In *Proceedings of the 20th Brazilian Symposium on Information Systems*, pages 1–10.
- [Loutfi et al. 2025] Loutfi, M. S., Tibau, M., Gimenez, P. J., and Siqueira, S. W. M. (2025). Students' perceptions of speculative design with generative ai in creating futuristic narratives: An interdisciplinary study with undergraduate students from diverse fields. In *Simpósio Brasileiro de Sistemas de Informação (SBSI)*, pages 585–594. SBC.
- [Malik and Malik 2021] Malik, M. and Malik, M. M. (2021). Critical technical awakenings. *Journal of Social Computing*, 2(4):365–384.
- [Malik and Malik 2022] Malik, M. and Malik, M. M. (2022). Critical technical awakenings. *Journal of Social Computing*, 2(4):365–384.
- [Oliveira 2025] Oliveira, L. (2025). Falta de profissionais de ti no brasil: causas da escassez e como superar. Acesso em: 14 de set. 2025.
- [Oogjes and Wakkary 2017] Oogjes, D. and Wakkary, R. (2017). Videos of things: Speculating on, anticipating and synthesizing technological mediations. In *Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems*, pages 4489–4500.
- [Popova 2023] Popova, V. (2023). Co-creating futures for integrating generative ai into the designers' workflow.
- [Prabakar et al. 2024] Prabakar, S. et al. (2024). Strategic integration for future selection-lstm stock prediction algorithm based on the internet of things (iot). In 2024 1st International Conference on Advanced Computing and Emerging Technologies (ACET), pages 1–6. IEEE.

- [Rafael et al. 2023] Rafael, S., Silva, B., Anjos, H., Meintjes, L., and Tavares, P. (2023). Data surveillance in capitalism society: The globule app, a speculative design to control the algorithm. In *Proceedings of the 2023 ACM International Conference on Interactive Media Experiences Workshops*, pages 27–31.
- [Sarker 2024] Sarker, M. (2024). Revolutionizing healthcare: the role of machine learning in the health sector. *Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023*, 2(1):36–61.
- [Selbst et al. 2019] Selbst, A. D., Boyd, D., Friedler, S. A., Venkatasubramanian, S., and Vertesi, J. (2019). Fairness and abstraction in sociotechnical systems. In *Proceedings of the conference on fairness, accountability, and transparency*, pages 59–68.
- [Søndergaard et al. 2023] Søndergaard, M. L. J., Campo Woytuk, N., Howell, N., Tsaknaki, V., Helms, K., Jenkins, T., and Sanches, P. (2023). Fabulation as an approach for design futuring. In *Proceedings of the 2023 ACM designing interactive systems conference*, pages 1693–1709.
- [Ståhl et al. 2022] Ståhl, A., Balaam, M., Comber, R., Sanches, P., and Höök, K. (2022). Making new worlds—transformative becomings with soma design. In *Proceedings of the 2022 Chi conference on human factors in computing systems*, pages 1–17.
- [Stead and Coulton 2022] Stead, M. and Coulton, P. (2022). Sustainable technological futures: Moving beyond a one-world-world perspective. In *Nordic Human-Computer Interaction Conference*, pages 1–17.
- [Stead et al. 2022] Stead, M., Coulton, P., Pilling, F., Gradinar, A., Pilling, M., and Forrester, I. (2022). More-than-human-data interaction: bridging novel design research approaches to materialise and foreground data sustainability. In *Proceedings of the 25th International Academic Mindtrek Conference*, pages 62–74.
- [Verbeek 2005] Verbeek, P.-P. (2005). What things do: Philosophical reflections on technology, agency, and design. Penn State Press.
- [Verbeek 2015] Verbeek, P.-P. (2015). Cover story beyond interaction: a short introduction to mediation theory. *interactions*, 22(3):26–31.
- [Wakkary et al. 2022] Wakkary, R., Oogjes, D., and Behzad, A. (2022). Two years or more of co-speculation: polylogues of philosophers, designers, and a tilting bowl. *ACM Transactions on Computer-Human Interaction*, 29(5):1–44.
- [Xi 2024] Xi, L. (2024). Modern education: Advanced prediction techniques for student achievement data. *International Journal of Advanced Computer Science & Applications*, 15(1).
- [Zorzo et al. 2017] Zorzo, A. F., Nunes, D., Matos, E., Steinmacher, I., de Araujo, R. M., Correia, R., and Martins, S. (2017). Referenciais de formação para os cursos de graduação em computação.
- [Zuboff 2021] Zuboff, S. (2021). A era do capitalismo de vigilância. Editora Intrínseca.