43

Chapter

3

Explorando Testes End-to-End com Playwright: Um
Convite a Automacao de Qualidade

Matusalen Costa Alves, Iallen Gédbio de Santos Sousa, Mayllon Veras da
Silva

Abstract

This chapter explores the discipline of software testing and the importance of End-to-
End testing in ensuring the quality of modern web applications. The study introduces the
Playwright framework, which provides a modern and robust solution for creating reliable
automated tests. It includes a guide to setting up the environment, writing tests using
actions and assertions, and analyzing execution reports. Furthermore, it demonstrates
the practical application of these concepts through the automation of a "ToDo List" ap-
plication, highlighting the use of the Page Object Model pattern, code generation with
CodeGen, and debugging techniques with the Trace Viewer.

Resumo

Este capitulo explora a disciplina de testes de software e a importdancia dos testes End-
to-End na garantia da qualidade de aplicagées web modernas. O estudo apresenta o
framework Playwright, que oferece uma solucdo moderna e robusta para a criagdo de
testes automatizados confidveis. Inclui um guia para a configuracdo do ambiente, a es-
crita de testes com 0 uso de agbes e assercoes, e a andlise de relatorios de execucdo.
Além disso, demonstra a aplicagdo prdtica desses conceitos por meio da automacdo de
uma aplicacdo "ToDo List", evidenciando o uso do padrdo Page Object Model, geracdo
de cédigo com o CodeGen e de técnicas de depuracdo com o Trace Viewer.

3.1. Introducao

No cendrio contemporaneo do desenvolvimento de software, a entrega de produtos dig-
itais de alta qualidade transcendeu o status de diferencial competitivo para se tornar um
requisito fundamental para a relevancia e o sucesso de qualquer projeto. A complexidade
crescente das aplicagdes, caracterizadas por arquiteturas distribuidas, interfaces interati-
vas e a necessidade de compatibilidade com uma vasta gama de dispositivos e navegadores

44

impde desafios as equipes de desenvolvimento. Nesse contexto, a garantia da qualidade
deixa de ser uma fase isolada no final do ciclo de vida para se consolidar como uma tarefa
continua e integrada a todas as etapas da producdo [Sommerville 2019].

No ambito dos testes, um teste automatizado € um processo de verificacdo e val-
idacdo de software que utiliza ferramentas e scripts para executar rotinas de checagem
sem interveng@o humana [Sommerville 2019]. Esta abordagem substitui tarefas repetiti-
vas e manuais, o que permite a execucio de um grande volume de testes de forma rapida
e consistente.

A qualidade é um pilar em Engenharia de Software. Conforme preconiza Robert
C. Martin, a conduta de um programador profissional exige a certeza de que o c6digo en-
tregue funciona como esperado, e o conjunto de testes (também conhecido como suite de
testes) automatizados € um dos principais mecanismo para prover essa garantia. A ausén-
cia de testes compromete a funcionalidade do produto e introduz o conhecido "débito
técnico" que dificulta a manutencio e a evolugdo do sistema a longo prazo [Martin 2012].

A prética da automacdo de testes €, portanto, a fundacdo sobre a qual a agilidade
e a sustentabilidade de projetos modernos estdao calcadas. Martin Fowler argumenta que a
capacidade de refatorar o cédigo (aperfeicoar seu design interno sem alterar seu compor-
tamento externo) é diretamente dependente da existéncia de uma rede de testes confidveis
fornecida pela suite de testes automatizados [Fowler 2020]. Sem essa rede, qualquer al-
teracdo se torna arriscada. Essa condic¢do dificulta a melhoria continua e a capacidade da
equipe de responder rapidamente a novas demandas.

A relevancia dessa disciplina é ainda mais acentuada pelo advento de novas tec-
nologias, como os Modelos de Linguagem de Grande Escala (LLMs), que t€m sido cada
vez mais utilizados para a geragdo automadtica de cédigo. Embora essas ferramentas pos-
sam acelerar o desenvolvimento, elas também introduzem a necessidade de uma veri-
ficacdo rigorosa, visto que a revisdo manual de todo o cddigo gerado €, muitas vezes,
impraticdvel [Vaithilingam et al. 2022]. Nesse novo paradigma, os testes automatizados
tornam-se essenciais para validar o software.

Para organizar as estratégias de validacdo, a indudstria adota modelos como a
piramide de testes. Esta é organizada em uma base larga de testes unitdrios, uma ca-
mada intermedidria de testes de integracdo e, no topo, uma camada mais seleta de testes
End-to-End. Estes dltimos sdo cruciais por simularem a jornada completa do usuario;
eles validam fluxos do inicio ao fim e garantem que todos os componentes do sistema
funcionem de maneira coesa.

Neste minicurso, materializado na forma deste capitulo, nos concentraremos na
criacdo de testes End-to-End com o uso do Playwright, uma ferramenta moderna mantida
pela Microsoft. O Playwright se destaca por oferecer uma solucio eficiente, rdpida e
confidvel para a automacio de interacdes em navegadores, o que o torna uma escolha
adequada para enfrentar os desafios discutidos.

O restante deste capitulo estd organizado da seguinte maneira: a Se¢do 3.2 apro-
funda os conceitos da disciplina de testes de software; a Secdo 3.3 apresenta a arquitetura
e os diferenciais do ecossistema Playwright; a Secdo 3.4 detalha os passos priticos para a
configuracdo e utilizacio da ferramenta; a Sec¢do 3.5 demonstra, através de um estudo de

45

caso, a automacdo de uma aplicagao real; e, por fim, a Secdo 3.6 conclui o trabalho com
uma sintese dos aprendizados e sugestdes para estudos futuros.

3.2. A Disciplina de Testes de Software

A verificacdo e validacdo sdo disciplinas fundamentais da Engenharia de Software, re-
sponsdveis por assegurar que um sistema computacional atenda as suas especificacdes e
satisfaca as necessidades dos seus usudrios. Dentro deste escopo, a prética de testes de
software se estabelece como o principal mecanismo para identificar defeitos e avaliar a
qualidade de um produto. Esta sec@o explora os conceitos essenciais desta disciplina, a
comecar por uma andlise da evolucdo histérica dos testes automatizados. Em seguida,
apresentaremos a Pirdmide de Testes, o modelo estratégico mais influente para a organi-
zacdo de suites de testes, e, por fim, detalharemos o papel critico dos testes End-to-End,
que sdo o foco deste capitulo.

3.2.1. Histéria e Evolucao dos Testes Automatizados

A prética de automatizar testes de software evoluiu em paralelo com as préprias metodolo-
gias de desenvolvimento. Nas abordagens mais tradicionais, como o modelo em cascata,
os testes eram frequentemente relegados a uma fase final e executados de forma pre-
dominantemente manual, um processo lento, repetitivo e suscetivel a falhas humanas. A
necessidade de otimizar essa etapa impulsionou o surgimento das primeiras ferramentas
de automacdo, muitas baseadas em scripts simples ou em técnicas de captura e repeticdo
de interagcdes do usudrio.

A Figura 3.1 ilustra os marcos dessa progressdo. A linha do tempo demonstra a
transicdo de um modelo sequencial e manual, associado ao modelo cascata, para ciclos
iterativos e ageis, que culminaram nas praticas de testes continuos e na exploracdo de
testes autdnomos com o avancgo da inteligéncia artificial.

Automacao
Ferramentas Robusta Ferramentas e Testes Autéonomos,
Manual de Automacao Ferramentas + Frameworks Aprendizado de
Testing Volumosas Coédigo Aberto Mais Escalaveis Maquina e IA
@) . @)
1980-1990 1990 - 2000 2000 - 2010 2010-2018 2019 - Hoje
Metodologia Experimentacao com novas Metodologia DevOps e Testes Colaboracgao entre
Cascata abordagens de desenvolvimento Agil Continuos IA e desenvolvedor

Figure 3.1. Marcos da evolucao da automacao de testes, da metodologia cascata
aos testes continuos e autonomos.

Uma mudanga de paradigma ocorreu com a ascensio das metodologias dgeis no
final da década de 1990. A partir de entdo, os testes passaram a ser vistos ndo apenas

46

como uma atividade de verificacdo final, mas como uma parte intrinseca do processo
de desenvolvimento e design. A criacdo de frameworks de teste, como os da familia
xUnit, foi fundamental para essa transformacdo, pois forneceu aos desenvolvedores as
ferramentas para escrever testes de forma sistemadtica e integrar a automagao ao processo
de codificacdo.

Essa evolucio foi acelerada pela consolidagdo da cultura DevOps e das esteiras de
Integragdo e Entrega Continua (CI/CD), que tornaram a automagao de testes um requisito
essencial. Em um ciclo de vida onde novas versdes do software sdo liberadas com alta
frequéncia, a execu¢do manual de testes de regressao se torna impraticavel. A automagao
passou a ser, portanto, o pilar que garante a seguranca e a agilidade necessdrias para a
inovagdo continua [Sommerville 2019].

3.2.2. A Piramide de Testes: Estratégias e Niveis

Com a proliferacdo dos testes automatizados, tornou-se necessdria a criagdo de um mod-
elo estratégico para orientar sua implementacdo de forma eficiente. O modelo mais am-
plamente adotado pela indistria € a Pirimide de Testes, um conceito originalmente pro-
posto por Mike Cohn [Cohn 2009]. A piramide € uma heuristica visual que descreve a
propor¢ao ideal entre diferentes tipos de testes em uma suite de automacao.

A Figura 3.2 representa visualmente este modelo. A largura de cada camada sug-
ere o volume ideal de testes, enquanto os icones laterais ilustram as caracteristicas de cada
nivel: a base é a mais rdpida e de menor custo, enquanto o topo é o mais lento e de maior
custo.

Figure 3.2. Representacao da Piramide de Testes e suas caracteristicas de ve-
locidade e custo.

A base da piramide é composta pelos Testes de Unidade (Unit Tests). Estes testes
verificam os menores componentes do sistema, como uma fun¢do ou uma classe, de
forma isolada. Sido caracterizados por sua alta velocidade de execucgdo e baixo custo
de manutenc¢do. Por testarem a Idgica de negécio em seu nivel mais granular, eles devem
constituir a maior parte da suite de testes.

A camada intermedidria € composta pelos Testes de Integragao, por vezes chama-
dos de Testes de Servico (Service Tests). O objetivo destes testes é verificar a interagdao
entre dois ou mais componentes do sistema, como a comunicagdo entre um servico de
aplicacdo e o banco de dados. S@o mais lentos e complexos que os testes de unidade, pois
envolvem multiplos componentes, e, por isso, devem existir em menor ndimero.

47

No topo da piramide, encontram-se os Testes End-to-End. Estes testes validam um
fluxo completo do sistema sob a perspectiva do usudrio final, o que geralmente envolve
a intera¢@o com a interface grafica. Conforme detalhado por Martin Fowler, embora os
testes End-to-End oferecam a maior confianca sobre o funcionamento do sistema, eles
também sdo os mais lentos, frageis e caros para manter. Portanto, a estratégia da pirdmide
recomenda que eles sejam utilizados de forma seletiva, focados nos fluxos mais criticos
do negocio [Fowler 2012].

3.2.3. O Papel Critico dos Testes End-to-End

Um teste End-to-End (E2E) € uma técnica de teste que simula um cendrio de usudrio
real do inicio ao fim. Diferentemente dos testes de unidade e integracdo, que operam
em camadas mais baixas e com partes isoladas do cédigo, um teste E2E interage com o
sistema através da sua interface de usudrio, da mesma forma que um cliente faria. O seu
escopo abrange todas as camadas da arquitetura da aplicacdo, desde a interface grafica no
navegador até os servi¢os de backend e o banco de dados.

A Figura 3.3 ilustra de forma esquematica este processo. A interacdo do usudrio
ocorre na camada mais externa, a interface (representada pelo formulério), e desencadeia
uma série de operagdes que atravessam os diversos componentes da arquitetura do sistema
(representados pelos cubos), como servigos de aplicacd@o e bancos de dados. Um teste E2E
bem-sucedido valida a integridade de todo esse percurso.

T-e-ee

Interface do Usuario Servigo A Servigo B Servigo C

Figure 3.3. Exemplo do fluxo de um teste End-to-End, da interface aos compo-
nentes do sistema.

O principal valor dos testes E2E reside na sua capacidade de fornecer um alto
grau de confianca de que a aplicagdo, como um todo, estd funcionando corretamente e
atendendo aos requisitos de negdcio. Ao validar fluxos completos, como um processo de
cadastro de usudrio ou a finalizacdo de uma compra em um e-commerce, os testes E2E
garantem que a integracdo entre os diversos componentes do sistema estd operando de
forma coesa.

Contudo, a implementacdo de testes E2E apresenta desafios. A sua natureza in-
tegrada os torna inerentemente mais lentos, pois dependem de operacdes de rede, render-
izacdo de interface e acesso a banco de dados. Eles também sdo mais frageis, ou seja, po-
dem falhar devido a pequenas alteragdes na interface do usudrio que nao necessariamente
representam um defeito na légica de negécio. Por essa razdo, a sua criagdo e manutengao
exigem um planejamento cuidadoso e a aplica¢do de padrdes de projeto especificos, como
discute Gerard Meszaros em sua obra sobre padrdes de teste [Meszaros 2007]. Apesar
desses desafios, os testes E2E sdo uma camada indispensdvel em uma estratégia de qual-
idade, pois estdo entre os poucos capazes de validar a experiéncia completa do usudrio.

48

3.3. O Ecossistema Playwright

Ap6s a fundamentacdo tedrica sobre a disciplina de testes de software, esta sec¢do dire-
ciona o foco para a ferramenta central deste capitulo: o Playwright. O objetivo € realizar
uma imersao técnica em seu ecossistema, a fim de demonstrar por que ele se estabelece
como uma solug@o moderna e eficaz para os desafios da automacao de testes E2E.

Iniciaremos com uma andlise detalhada do conceito e da arquitetura que garantem
a velocidade e a confiabilidade da ferramenta. Em seguida, exploraremos suas funcionalidades-
chave e os diferenciais que otimizam a experiéncia de desenvolvimento. Por fim, faremos
uma andlise comparativa que posiciona o Playwright em relagdo a outras ferramentas
consolidadas no mercado.

3.3.1. Conceito e Arquitetura

O Playwright € um framework de automacao de cédigo aberto, mantido pela Microsoft,
projetado para atender as demandas do desenvolvimento de aplicacdes web modernas.
Seu objetivo é fornecer uma API Unica, coesa e poderosa para a automagao dos trés prin-
cipais motores de renderizacdo de navegadores: Chromium (utilizado por Google Chrome
e Microsoft Edge), WebK:it (utilizado pelo Apple Safari) e Firefox. A filosofia do projeto
se concentra em trés pilares: velocidade, capacidade e, principalmente, confiabilidade,
para eliminar a instabilidade que historicamente afeta os testes de interface de usudrio.

A Figura 3.4 ilustra a arquitetura da ferrameta. No lado do cliente, os testes po-
dem ser escritos em diversas linguagens, como TypeScript, JavaScript e Python. Esses
scripts enviam instruc¢des ao servidor Playwright, que as traduz em comandos especificos
para o protocolo de depuracdo do navegador. A conexao WebSocket garante uma comu-
nicagdo bidirecional e eficiente, permitindo que o Playwright controle o navegador com
precisdo e receba eventos em tempo real. Essa estrutura é a base para muitas das fun-
cionalidades avancadas da ferramenta, como a capacidade de interceptar requisi¢des de
rede e a execucdo de testes em multiplos contextos de forma isolada.

é; Java
@

— e
Full Duplex @
Connection

A

Client | WebSocket Server
Connection

Figure 3.4. Visao geral da arquitetura de comunicacao do Playwright.

O principal diferencial técnico do Playwright reside em sua arquitetura. Diferente-
mente de solu¢des mais antigas que dependem de protocolos baseados em HTTP para a

49

comunicagao entre o script de teste e o navegador, o Playwright opera em um modelo fora
do processo. Nele, o script de teste se comunica com um servidor Node.js que, por sua
vez, envia comandos aos navegadores por meio de uma conexdo WebSocket persistente.
Essa comunicagdo direta e de baixa laténcia evita pontos de falha e gargalos de desem-
penho, o que resulta em uma execugdo de testes mais rapida e estavel [Microsoft 2025].

3.3.2. Funcionalidades-Chave e Diferenciais

O Playwright se distingue por um conjunto de funcionalidades nativas projetadas para
otimizar a experiéncia de desenvolvimento e aumentar a confiabilidade dos testes. Estes
recursos abordam desafios comuns na automagao de testes, como a instabilidade, a dificul-
dade de depuracgdo e a complexidade na criagdo de novos scripts. A seguir, detalharemos
as ferramentas que compdem esses diferenciais.

3.3.2.1. Trace Viewer: Depuracao de Viagem no Tempo

Um dos maiores desafios dos testes E2E é a depuracdo. Testes que falham em um ambi-
ente de integracdo continua podem ser dificeis de diagnosticar, pois o desenvolvedor ndo
tem acesso ao estado do navegador no momento da falha. O Playwright soluciona este
problema com o Trace Viewer, uma de suas ferramentas mais poderosas.

Ao final de uma execucdo de testes, o Playwright gera um relatério em HTML,
como o apresentado na Figura 3.5, que exibe o resultado de cada teste executado em
diferentes navegadores. Este relatério centraliza os resultados e serve como ponto de
partida para a anélise.

v Passed 6 Failed 0 Flaky 0 Skipped 0

Q All 6
03/09/2025, 12:16:50 Total time: 4.3s

v example.spec.js

v has title (chromium \,‘ 595ms

example.specjs:4 ([I] View Trace

v get started link \ichromium\“ 900ms
example.specjs:11 (II] View Trace

v has title (firefox) 14s
example.specjs:4 ([I] View Trace
get started link (firefox 1.7s
example.specjs:11 [[I) View Trace
has title (webkit 872ms
example.specjs:4 ([T} View Trace
get started link (webkit 1.3s
example.specjs:11 [[I) View Trace

Figure 3.5. Relatorio de testes do Playwright com a lista de execucées.

20

A partir do relatdrio, € possivel inspecionar cada teste individualmente para visu-
alizar os passos executados, como ganchos (hooks), acdes e asser¢cdes, conforme ilustrado
na Figura 3.6. Para uma andlise mais profunda, o relatério oferece acesso ao histérico
completo da execucao.

Q All 6 v Passed 6 Failed 0 Flaky 0 Skipped 0

next »

has title

example.spec.js:4 (0D View Trace | 595ms
‘ chromium ,‘

v/ Run

v Test Steps

> v Before Hooks 163ms
> v Navigate to "/" — example.specjs:5 329ms
> v Expect "toHaveTitle" — example.spec.js:8 63ms
> v After Hooks 131ms
v Traces
I —
=] L]
=
[) trace

Figure 3.6. Visualizacdo detalhada de um teste especifico no relatorio.

A interface do Trace Viewer, exibida na Figura 3.7, proporciona uma experiéncia
de depuragdo de "viagem no tempo". Ela captura um traco completo da execucido do
teste, permitindo que o desenvolvedor navegue pela linha do tempo e inspecione o estado
da aplicagdo em cada momento. A ferramenta exibe a lista de agdes, o snapshot do DOM
antes e depois de cada agdo, logs do console e requisi¢des de rede. Esse nivel de detalhe
contextualizado reduz drasticamente o tempo necessario para identificar a causa raiz de
uma falha [Microsoft 2025].

51

Playwright example.spec.js:4 > has title

Actions Metadata @ Action Before After 2

Before Hooks

v

Navigate to "/"

Expect "toHaveTitle'

After Hooks

v

W Paywright Docs APl Nodejsw Community O oo Q=

Playwright enables reliable end-to-end
testing for modern web apps.

cersmaren | [CEER

O J

Figure 3.7. Interface principal do Trace Viewer com a linha do tempo, acoes e o
snapshot do DOM.

3.3.2.2. Auto-waits: O Fim da Instabilidade

Um dos problemas mais comuns na automacao de testes € a instabilidade (flakiness), onde
testes falham de forma intermitente sem uma causa aparente. Frequentemente, a raiz
do problema estd em condi¢des de corrida (race conditions), nas quais o script de teste
tenta interagir com um elemento da interface antes que ele esteja totalmente carregado
ou pronto para receber uma a¢@o. A solugdo tradicional para isso envolvia a inser¢do de
pausas fixas ou esperas explicitas no c6digo, o que o torna mais lento e complexo.

O Playwright resolve este problema de forma nativa com seu mecanismo de es-
peras automadticas, conhecido como auto-wait. Antes de executar qualquer acao, como um
clique ou o preenchimento de um campo, a ferramenta realiza uma série de verificagdes
para garantir que o elemento alvo esteja pronto para a intera¢do. Essas checagens incluem
verificar se o elemento estd visivel, estdvel (sem anima¢des em andamento) e habilitado
para receber eventos.

Essa inteligéncia nativa simplifica enormemente o cédigo do teste. A Figura 3.8
demonstra a clareza de um script de teste em Playwright, onde os comandos sdo diretos
e focados na intenc@o do usudrio. Por trds dessa simplicidade, a ferramenta gerencia a

52

sincronizacao.
Locator Call Log Errors Console Network 31 Source Attachments 1l
example.spec.js D @

1 // @ts-check
2 import { test, expect } from ‘@playwright/test’;

| test('has title', async ({ page }) => {
await page.goto('https://playwright.dev/");

// Expect a title "to contain"™ a substring.
await expect(page).toHaveTitle(/Playwright/);
1

test('get started link', async ({ page }) => {
await page.goto('https://playwright.dev/");

// Click the get started link.
await page.getByRole('link', { name: 'Get started’ }).click();

// Expects page to have a heading with the name of Installation.
await expect(page.getByRole('heading', { name: 'Installation’ })).toBeVisible();
1

Figure 3.8. Exemplo de cédigo de teste em Playwright, com comandos diretos.

Na Figura 3.9, extraida do log de uma execucdo, mostra que, mesmo em um co-
mando como ‘page.goto‘, o Playwright aguarda ativamente por eventos especificos da
pégina, como o evento "load". Esse mecanismo de espera automética € um dos principais
motivos da alta confiabilidade dos testes escritos com Playwright [Microsoft 2025].

Locator Call Log Errors Console Network 31 Source Attachments 1]

navigating to "https://playwright.dev/”, waiting until "load

Figure 3.9. Log de execucao de um comando, que evidencia a espera por um
evento especifico da pagina.

3.3.2.3. Codegen: Geracao de Testes Acelerada

Para acelerar a criac@o de novos testes e diminuir a barreira de entrada para novos usudrios,
o Playwright inclui a ferramenta Codegen. Ao ser iniciada, ela abre uma janela de naveg-
ador junto com uma janela "Playwright Inspector”. A medida que o usudrio interage com
a aplicagd@o no navegador (clica em botdes, preenche formuldrios, navega entre paginas),
o Codegen grava essas acgoes e as traduz em tempo real para cédigo Playwright.

A Figura 3.10 demonstra a ferramenta em ac¢do. Na parte superior, o navegador
exibe a aplicacdo web sendo testada, enquanto na parte inferior, o "Playwright Inspec-
tor" exibe o codigo gerado a partir das interacdes. Esta funcionalidade é extremamente
dtil tanto para aprender a sintaxe da API do Playwright quanto para criar rapidamente o

23

esqueleto de um novo teste, que pode entdo ser refinado e adaptado pelo desenvolvedor
[Microsoft 2025].

Thisisjustademo, ¥ @ @ @ ab

eoe Playwright Inspector
@ Record (¥ & a0, @ D 1 Target: Test Runner =0

import { test, expect } from '@playwright/test';

test('test', async ({ page }) => {
await page.goto('https://demo.playwright.dev/todomvc/#/');
await page.getByPlaceholder('What needs to be done?').click();
await page.getByPlaceholder('What needs to be done?').fill('water the plants');
await page.getByPlaceholder('What needs to be done?').press('Enter');
await page.getByPlaceholder('What needs to be done?').fill('feed the dog');
await page.getByPlaceholder('What needs to be done?').press('Enter');
await page.locator('li').filter({ hasText: 'water the plants' }).getBylLabel('Toggle Todo').check();
await page.getByRole('link', { name: 'Completed' }).click();
await expect(page.getByTestId('todo-title')).toContainText('water the plants');
await page.getByRole('link', { name: 'Active' }).click();
await expect(page.getByTestId('todo-title')).toContainText('feed the dog');

N

Locator Log

todomvc.com

Figure 3.10. Ferramenta Codegen em execugao, com o navegador e a janela do
inspetor que gera o cadigo em tempo real.

3.3.2.4. Suporte Multi-Navegador e Execucao Paralela

Finalmente, um dos maiores diferenciais do Playwright é seu suporte nativo e de primeira
classe aos trés principais motores de renderizacao de navegadores: Chromium, Firefox e
WebKit. Isso permite que as equipes de desenvolvimento validem o comportamento de
suas aplicacdes em um ambiente verdadeiramente multiplataforma, o que garante uma
experiéncia de usudrio consistente.

A capacidade de executar o0 mesmo conjunto de testes em diferentes navegadores
¢é evidenciada no relatério de testes, como ja demonstrado na Figura 3.5, onde cada teste
foi validado nos trés motores. Adicionalmente, o Playwright foi projetado para executar
testes em paralelo por padrdo, distribuindo-os entre multiplos processos de trabalho. Essa
abordagem reduz drasticamente o tempo total de execucdo da suite de testes, um fator
crucial em ambientes de integracdo continua.

3.3.3. Analise Comparativa

Para compreender o valor e os diferenciais do Playwright, € ttil posiciond-lo no ecossis-
tema de ferramentas de automacdo de testes E2E. Embora existam diversas solucdes, o
mercado foi historicamente dominado pelo Selenium, com o Cypress emergindo como
uma alternativa moderna popular. Cada uma dessas ferramentas possui uma arquitetura
e uma filosofia distintas, que resultam em diferentes vantagens e desvantagens. As infor-
magdes apresentadas na Tabela 3.1 foram compiladas a partir da documentagao oficial de
cada ferramenta [Microsoft 2025, Selenium 2025, Cypress 2025].

54

Table 3.1. Analise Comparativa de Frameworks de Testes E2E.

Critério Playwright Selenium Cypress
Suporte a Linguagens | JavaScript, Java, | JavaScript, Java, C#, | JavaScript
Python, .NET Python, etc.
Driver do Navegador Nao requer driver Requer um driver para | Nao requer driver
cada navegador
Relatérios Nativos Sim Nao Sim
Recursos de Depuracao | Ferramentas nativas | Ndo possui ferramentas | Ferramentas ~ nativas
e depuragdo "time- | de depurag@o nativas e depuragio "time-
traveling" traveling"
Esperas Automaticas Sim Nio Sim

A tabela destaca as diferengas na experiéncia do desenvolvedor. O Selenium, com
seu vasto suporte a linguagens, oferece grande flexibilidade, mas exige uma configuracio
mais complexa, como a gestdo de drivers especificos para cada navegador. Por outro
lado, Cypress e Playwright proporcionam uma experiéncia mais integrada, com relatérios
nativos, esperas automaticas e ferramentas de depuracdo avancadas que simplificam a
escrita e a manutengdo dos testes.

J4 o Playwright, diferente das duas outras alternativas, se posiciona de forma van-
tajosa a0 combinar o amplo suporte a linguagens, similar ao do Selenium, com as con-
veniéncias modernas encontradas no Cypress, estabelecendo-se como uma solugdo que
equilibra poder e facilidade de uso.

3.4. Instalando o Playwright no Projeto

Ap6s a apresentag@o conceitual do ecossistema Playwright, esta se¢do inicia a jornada
pratica. O objetivo € guiar o leitor através dos passos fundamentais para a criagdo e
execucgdo de um projeto de testes do inicio ao fim.

Iniciaremos com as instrugdes para a instalacdo e configuracdo completa do am-
biente de desenvolvimento.

Em seguida, faremos uma anélise detalhada da anatomia de um arquivo de teste,
explicando seus componentes essenciais, como comandos e asserc¢des.

Por fim, demonstraremos como executar a suite de testes e analisar os relatérios
de resultados gerados pela ferramenta.
3.4.1. Configuracao do Ambiente

O primeiro passo para utilizar o Playwright € a preparacdo do ambiente de desenvolvi-
mento. O principal pré-requisito € ter o Node.js instalado, que inclui o gerenciador de
pacotes npm. Com o ambiente Node.js pronto, a instalacdo do Playwright é realizada por
meio de um tnico comando que inicia um assistente de configuracio interativo.

Para iniciar um novo projeto ou adicionar o Playwright a um projeto existente, o
comando a ser executado no terminal é o apresentado no Cédigo 3.1.

i npm init playwright@latest

Listing 3.1. Comando de inicializagao do Playwright via npm.

95

Ao executar este comando, o assistente de configuracdo fard algumas perguntas
para personalizar o projeto, como:

* A escolha entre TypeScript ou JavaScript para a escrita dos testes.
* O nome do diretério onde os testes serdo armazenados (o padrio € fests).

* A adi¢do de um fluxo de trabalho para o GitHub Actions, ttil para a integracdo
continua.

* A confirmagdo para instalar os navegadores necessarios (Chromium, Firefox e We-
bKit).

Ap6s a conclusdo do assistente, o Playwright criard uma estrutura de arquivos
e diretérios no projeto. Essa estrutura inicial, conforme detalhado na documentacio e
demonstrado no Cédigo 3.2, organiza os arquivos de forma logica e inclui exemplos para
facilitar os primeiros passos do desenvolvedor [Microsoft 2025].

2 |—-— playwright.config.ts

3 | —— package. json
4 | -— tests/

5| | -— example.spec.ts
¢ |—— tests—examples/
7 | —— demo-todo—-app.spec.ts

Listing 3.2. Estrutura de arquivos gerada pela instalacdao do Playwright.

O arquivo playwright.config.ts, presente na estrutura do Cédigo 3.2, € o centro de
controle do projeto, onde sdo definidas configuracdes como os navegadores alvo, tempos
de espera e formatos de relatério. O diretério tests/ € o local padrdo para os testes do
projeto, enquanto o tests-examples/ contém exemplos mais elaborados que demonstram
diferentes funcionalidades da ferramenta.

3.4.2. Anatomia de um Teste: Comandos e Assercoes

Um teste em Playwright, em sua esséncia, ¢ uma sequéncia de duas operagdes fundamen-
tais: a execugdo de acdes para simular a interac@o do usudrio com a pagina e a verificagdo
do estado da aplicagdo por meio de asser¢des. A estrutura de um teste € declarada dentro
de uma fungdo fest(), que recebe como argumento a fixture page, um objeto que representa
uma dnica aba no navegador e serve como a principal interface para a automacao.

O Cédigo 3.3 apresenta um arquivo de teste completo, example.spec.ts, que con-
tém dois cendrios de teste distintos. O primeiro verifica se a pagina possui o titulo esper-
ado, e o segundo valida a navegacdo ao clicar em um link e checar o contetido da nova
pagina.

| import { test, expect } from ’'@playwright/test’;
;s test ("has title’, asyne ({ page }) => {
4 await page.goto (’https://playwright.dev/’);

6

9

15

26

// Espera que o titulo da pagina contenha o texto "Playwright

"

await expect (page) .toHaveTitle (/Playwright/);
1)

test (' get started link’, async ({ page }) => {
await page.goto (’'https://playwright.dev/’);
// Clica no link com o nome "Get started".
await page.getByRole(’1link’, { name: ’'Get started’ }).click();
// Espera que a pagina possua um cabecalho com o nome "
Installation".
await expect (page.getByRole (' heading’, { name: ’'Installation’
})) .toBeVisible () ;

1)

Listing 3.3. Exemplo de um arquivo de teste completo em Playwright.

As acdes em um teste comecam, geralmente, com a navegacio para uma URL,
como visto na linha await page.goto(’https://playwright.dev/’). Apds o carregamento da
pagina, o teste interage com seus elementos. Para encontrar esses elementos, o Play-
wright utiliza a API de Locators, que sio objetos que representam uma forma de encon-
trar um ou mais elementos na pagina a qualquer momento. No exemplo do Cédigo 3.3,
page.getByRole(’link’, name: ’Get started’) é um locator que encontra um link com o
texto especifico. Uma vez que o elemento € localizado, acdes como .click() podem ser
executadas.

As assercdes sdo utilizadas para verificar se a aplicacdo se comporta como o es-
perado apds uma série de acdes. O Playwright utiliza a fun¢do expect(), que, combinada
com seus validadores assincronos, aguarda até que uma condi¢do seja atendida ou um
tempo limite seja atingido. Essa caracteristica torna os testes mais resilientes e menos
suscetiveis a falhas por tempo. Nos exemplos, expect(page).toHaveTitle(/Playwright/)
e expect(locator).toBeVisible() sdo asser¢des que pausam a execucdo do teste até que a
condi¢do de validagdo seja verdadeira.

E importante notar que o Playwright garante o isolamento total entre os testes.
Cada funcio fest recebe uma instancia de page que pertence a um BrowserContext exclu-
sivo, o que € equivalente a um perfil de navegador completamente novo. Isso significa
que cookies, armazenamento local e sessdes nao sdo compartilhados entre os testes, o que
garante que a execugdo de um nao possa interferir no resultado do outro.

3.4.3. Executando Testes e Analisando Resultados

Uma vez que os testes s@o escritos, o proximo passo é executd-los para verificar o com-
portamento da aplicagcdo. O Playwright oferece uma interface de linha de comando (CLI)
para gerenciar a execugdo dos testes de forma flexivel e poderosa.

O comando fundamental para executar toda a suite de testes é apresentado no
Cdédigo 3.4. Por padrio, este comando executa todos os arquivos de teste encontrados no
projeto, em paralelo e em modo headless (sem abrir uma interface grafica do navegador)
para todos os navegadores configurados no arquivo playwright.config.ts.

1

S}

o7

npx playwright test

Listing 3.4. Comando para executar a suite de testes.

Ap6s a execucdo, os resultados sio exibidos diretamente no terminal, como mostra
0 Cédigo 3.5, com um resumo de quantos testes passaram ou falharam em cada navegador.

Running 6 tests using 3 workers
6 passed (4.3s)

Listing 3.5. Exemplo de saida do terminal apds a execugao dos testes.

A execugdo pode ser personalizada com diversos pardmetros. Por exemplo, a flag
—headed executa os testes em um navegador com interface grafica visivel, enquanto a flag
—project permite especificar um nico navegador, como em npx playwright test —project
chromium.

O principal artefato para a andlise dos resultados € o Relatério HTML. Ele fornece
um painel interativo para explorar os resultados de cada teste. O relatério € aberto auto-
maticamente quando hd falhas, mas pode ser acessado a qualquer momento com o co-
mando do Cédigo 3.6.

npx playwright show-report

Listing 3.6. Comando para visualizar o relatério HTML.

A interface principal do relatério, ja apresentada na Figura 3.5, permite uma
analise visual completa dos resultados. A partir dela, é possivel filtrar testes por status
(aprovado, falhou, etc.) e por navegador, além de inspecionar os passos de cada teste e
acessar o traco completo da execucao para uma depuracdo aprofundada, como serd detal-
hado na préxima secio.

Ap6s a exploragdo dos conceitos tedricos e das ferramentas praticas, esta se¢do
consolida o aprendizado através da aplicacdo completa dos conhecimentos em um pro-
jeto real. O objetivo € guiar o leitor na constru¢do de uma suite de testes E2E para uma
aplicacdo web do tipo "ToDo List", um exemplo cléssico utilizado para a demonstrago
de tecnologias de frontend. Seguiremos um fluxo de trabalho estruturado: primeiramente,
definiremos o escopo e os cendrios de teste; em seguida, implementaremos os testes uti-
lizando o padrao de projeto Page Object Model; e, por fim, demonstraremos como depurar
e analisar os resultados.

3.5. Estudo de Caso: Todo List com Definicao do Escopo e Cenarios de Teste

A aplicacdo "ToDo List" a ser testada possui uma interface simples para o gerenciamento
de tarefas. O usudrio pode adicionar, editar, marcar como concluida e excluir tarefas.
Nosso objetivo € criar um conjunto de testes automatizados que valide estas funcionali-
dades criticas, garantindo a integridade da experiéncia do usudrio.

Para este capitulo, implementaremos um conjunto representativo dos cendrios de
teste mais importantes. A suite de testes completa, com valida¢des adicionais, estard
disponivel no repositério do projeto para consulta. Os cendrios que abordaremos sao:

o8

» Carregamento da Pagina: Verificar se a aplicacdo carrega corretamente e exibe
seus elementos principais.

* Adicao de Tarefa: Validar a criacdo de uma ou mais tarefas.
* Edicao de Tarefa: Assegurar que uma tarefa existente pode ser editada.
» Exclusao de Tarefa: Verificar se uma tarefa pode ser removida da lista.

e Marcar Tarefa como Concluida: Validar a funcionalidade de marcar e desmarcar
uma tarefa.

* Validacao de Tarefa Duplicada: Garantir que a aplicagdo lida corretamente com
a tentativa de adicionar uma tarefa com o mesmo texto de uma j4 existente.

* Validacao de Tarefa Vazia: Verificar se o sistema impede a adi¢do de uma tarefa
sem texto.

A Figura 3.11 exibe a interface principal da aplicagdo que serd o objeto de nosso
estudo de caso.

Lista de Afazeres

Organize suas ideias, conquiste seus objetivos

Todas Pendentes Concluidas

Sua lista esta vazia

Adicione sua primeira tarefa acima

0 0 0

Total Concluidas Pendentes

Figure 3.11. Interface da aplicacao "ToDo List" utilizada no estudo de caso.

5

29

3.5.1. Implementacao Pratica com Page Object Model

Para implementar os cendrios de teste de forma organizada e de facil manutengdo, uti-
lizaremos o padrdo de projeto Page Object Model (POM). O POM ¢é uma técnica de
design que consiste em criar uma classe para cada pigina da aplicagdo, encapsulando os
detalhes da interface do usudrio. O principal beneficio desta abordagem € a separag@o de
responsabilidades: a classe Page Object lida com a complexidade de encontrar e interagir
com os elementos da pagina, enquanto o arquivo de teste se concentra apenas na logica e
nas asser¢des do cendrio [Microsoft 2025].

A Figura 3.12 ilustra este padrdo. As pédginas da aplicacdo web sdo mapeadas para
classes Page Object, que por sua vez sdo utilizadas pelos scripts de teste. Essa camada de
abstrac@o desacopla os testes da estrutura interna da interface, tornando-os mais resilientes
a mudangas no HTML.

Web Pages Page Components Page Objects Test Scripts Test Execution & Reporting

S

X ceo
,

N

Test Cases 3

TestCases 4
TestCases 5

User Credentials

Header

|

Playwright

Obj
Page Object

Login Page I
Contact Page

GitHub

Test Management System

Page + Object = Page Object

Figure 3.12. Diagrama do fluxo de trabalho com o padrao Page Object Model.

Para a nossa aplicacdo, criamos a classe TodoPage. O cédigo completo desta
classe esta disponivel no repositdrio do projeto para consulta [Alves 2025]; aqui, destacare-
mos seus componentes essenciais. Primeiramente, a classe centraliza todos os local-
izadores de elementos em seu construtor, como demonstrado no Cédigo 3.7. Se um seletor
na interface do usudrio mudar no futuro, s6 precisaremos atualizd-lo neste tnico local.

// Trecho de TodoPage. js
constructor (page) {
this.page = page;

// Localizadores dos elementos principais
this.taskInput = page.locator (’ #taskInput’);
this.addButton page.locator (’ #addButton’) ;
this.taskList = page.locator (’#taskList’);

// ... outros localizadores disponiveis no repositorio

Listing 3.7. Trecho do construtor da classe TodoPage com os localizadores.

60

Em seguida, a classe expde métodos de alto nivel que representam as ac¢des do
usudrio. O Cddigo 3.8 mostra o método addTask, que esconde os detalhes de implemen-
tacdo (preencher o campo e clicar no botdo) por trds de uma dnica acdo com um nome
claro e intuitivo.

1 // Trecho de TodoPage. js

> async addTask (taskText) {

3 await this.taskInput.fill (taskText);
4 await this.addButton.click();

5|}

Listing 3.8. Exemplo de um método de acao na classe TodoPage.

Com a classe TodoPage pronta, o arquivo de teste (fodo.spec.js), apresentado no
Cadigo 3.9, se torna extremamente limpo e legivel. Ele se concentra no fluxo do cendario
e nas validacdes, utilizando a instincia do Page Object para orquestrar as interagdes com
o navegador. Note como o teste 1€ quase como um roteiro de caso de uso, sem a desordem
de seletores de CSS.

| import { test, expect } from ’'(@playwright/test’;
> import { TodoPage } from ’./TodoPage’; // Importa a classe

s+ test.describe (! Gerenciamento de Tarefas’, () => {
5 let todoPage;

7 test.beforeEach (asyne ({ page }) => {
8 todoPage = new TodoPage (page) ;

9 await todoPage.goto();

10)

12 test (' deve adicionar uma nova tarefa’, async () => {
13 const taskText = ’Comprar pao’;
14 await todoPage.addTask (taskText) ;

15 await expect (todoPage.taskList) .toContainText (taskText) ;
6 1)

18 // ... outros cenarios de teste disponiveis no repositorio

v });

Listing 3.9. Arquivo de teste que utiliza a classe TodoPage para implementar os cenarios.

3.5.2. Depuracao e Analise Avancada com o Trace Viewer

Um dos aspectos mais desafiadores na manuten¢ao de uma suite de testes € a investigacao
de falhas. Um teste pode falhar por diversos motivos, desde um defeito real na aplicagcdo
até um problema no préprio script de teste. Para demonstrar como diagnosticar um prob-
lema de forma eficiente, simularemos um cendrio comum: um teste que falha devido a
um localizador incorreto.

O Cédigo 3.10 apresenta uma variagdo do nosso teste de adicionar tarefa. Nele,

61

introduzimos um erro proposital na linha 22: o seletor para o botdo de adicionar (‘[data-
testid="adicionar-button"]‘) esta incorreto; o correto seria ‘[data-testid="add-button"]".

test (' Teste de Falha: Seletor incorreto do botao adicionar’,
async () => {
const taskText = ’'Minha primeira tarefa’;
await todoPage.locators.taskInput.fill (taskText) ;

// ERRO PROPOSITAL: Usa seletor incorreto para o botao

// Original: [data-testid="add-button"]

// Incorreto: [data-testid="adicionar-button"]

await todoPage.page.locator (’ [data-testid="adicionar-button
"17).click();

// Estas verificacoes vao falhar porque a tarefa nao foi
adicionada
await expect (todoPage.getTaskCount ()) .toBe (1) ;

Listing 3.10. Exemplo de um teste com uma falha proposital (seletor incorreto).

Ao executar este teste, o Playwright ird falhar. O primeiro passo da nossa andlise
¢ inspecionar o Relatério HTML. A Figura 3.13 exibe a tela de resultado para o teste que
falhou. O relatério imediatamente nos informa o tipo de erro (TimeoutError, indicando
que a ferramenta esperou por um elemento que nunca apareceu) e aponta para a linha
exata do cédigo que causou a falha.

Para uma andlise mais profunda, clicamos em "View Trace". Dentro do Trace
Viewer, a aba "Actions", mostrada na Figura 3.14, destaca em vermelho a ag@o exata que
falhou. Neste caso, o comando .click(). Isso permite que o desenvolvedor isole imediata-
mente o ponto problematico da execugao.

Para entender o motivo da falha, a aba "Errors", na Figura 3.15, fornece o log
detalhado. A mensagem "TimeoutError: waiting for locator(’[data-testid="adicionar-
button"]’)" confirma que o Playwright esgotou o tempo de espera porque nao conseguiu
encontrar o elemento com o seletor especificado. Através deste processo de andlise, do
geral para o especifico, o desenvolvedor pode diagnosticar rapidamente que o problema é
um erro no seletor, em vez de um defeito na funcionalidade da aplicacio.

3.6. Conclusao

Ao longo deste capitulo, realizamos uma jornada completa pelo universo dos testes E2E,
desde seus fundamentos tedricos até a sua aplicacdo pritica com o framework Playwright.
Iniciamos por estabelecer a disciplina de testes de software como um pilar essencial da en-
genharia de software moderna, explorando sua evolugao histérica e 0 modelo estratégico
da Piramide de Testes. Com essa base, aprofundamos no ecossistema Playwright, anal-
isando sua arquitetura, suas funcionalidades-chave e seu posicionamento em relagdo a
outras ferramentas do mercado.

A parte pratica do capitulo guiou o leitor desde a configuracdo inicial de um pro-

62

Q All 1 Passed 0 X Failed 1 Flaky 0 Skipped 0

Teste de Falha - Demonstragio

Teste de Falha: Seletor incorreto do botdo adicionar

failure-demo.spec,js:12 0D View Trace | 4.3s
(_chromium)
X Run
v Errors
TimeoutError: locator.click: Timeout 1500ms exceeded. Copy prompt
Call log:

- waiting for locator('[data-testid="adicionar-button"]")

20
21

// Original: [data-testid="add-button"]
// Incorreto: [data-testid="adicionar-button"]
await todoPage.page.locator('[data-testid="adicionar-button"]").click();

23
24
25

await todoPage.page.waitForTimeout(1600);

|

|

|

|

|

|

| // Estas verificacdes vao falhar porque a tarefa nao foi adicionada
at C:\Users\Matusalen Alves\Desktop\todo\tests\failure-demo.spec.js:22:73

v Test Steps

> v Before Hooks 1.8s
> v Fill "Minha primeira tarefa" locator('[data-testid="task-input"]’) — failure-demo.specjs:16 23ms
> v Wait for timeout — failure-demo.specjs:17 1.0s
> X Click locator('[data-testid="adicionar-button"]) — failure-demo.spec,s:22 1.5s
> v After Hooks [}) 165ms
> « Worker Cleanup 102ms

Figure 3.13. Relatério HTML exibindo o teste que falhou e o erro correspondente.

jeto até a escrita e execucdo de testes, culminando em um estudo de caso detalhado.
Na implementacdo para a aplicacdo "ToDo List", demonstramos como escrever os testes
e como estruturd-los de forma fécil, aplicando o padrido de projeto POM. Além disso,
abordamos um aspecto crucial do dia a dia do desenvolvimento: a depuracdo de testes,
mostrando como o Trace Viewer acelera a identificac@o e a correc@o de falhas.

A principal mensagem deste capitulo é que a automacédo de testes E2E, com o
auxilio de ferramentas modernas como o Playwright, € uma pratica acessivel e de alto
impacto para qualquer equipe de desenvolvimento. Recursos como as esperas autométicas
e as ferramentas de depuracao visual ndo sdo apenas conveniéncias, mas solugdes diretas
para os desafios de instabilidade e complexidade que historicamente tornaram os testes de
UI um processo custoso.

Para os leitores que desejam aprofundar seus conhecimentos, 0 préximo passo
natural € explorar as outras capacidades que o ecossistema Playwright oferece, como
o suporte nativo para testes de API, a implementacdo de testes de regressao visual e a
funcionalidade de testes de componentes. Além disso, a integracdo da suite de testes a
um pipeline de Integracdo e Entrega Continua (CI/CD), como o GitHub Actions, é uma
etapa fundamental para automatizar completamente o processo de garantia de qualidade.
A documentacdo oficial do Playwright permanece como o recurso mais completo para o

63

Actions Metadata

.65

> Before Hooks

Fill “Minha primeira tarefa” 22ms
locator('[data-testid="task-input"]’)

Wait for timeout 1.0s

Click 1.5s
locator('[data-testid="adicionar-butt...
> After Hooks 7 164ms
Attach "error-context” 2 Oms

> Worker Cleanup 103ms
Figure 3.14. Aba "Actions" do Trace Viewer, destacando a etapa que falhou.

Locator Call Log Errorsﬂ Console '1 Network ‘11 Source Attachments '3
@ failure-demo.spec.js:22
TimeoutError: locator.click: Timeout 15008ms exceeded.

Call log:
- waiting for locator('[data-testid="adicionar-button"]")

Figure 3.15. Aba "Errors" do Trace Viewer com o log detalhado da falha.

estudo continuo, e o repositério do nosso estudo de caso serve como um exemplo pritico
e funcional de referéncia.

References

[Alves 2025] Alves, M. C. (2025). todo-codec: Aplicacio para o minicurso de testes e2e
com playwright. https://github.com/watusalen/todo-codec. GitHub.
Acesso em: 2025-10-20.

[Cohn 2009] Cohn, M. (2009). Succeeding with Agile: Software Development Using
Scrum. Addison-Wesley Professional.

[Cypress 2025] Cypress (2025). Cypress documentation. https://docs.
cypress.io/. Acesso em: 2025-10-20.

[Fowler 2012] Fowler, M. (2012). The test pyramid. https://martinfowler.
com/bliki/TestPyramid.html. Acesso em: 2025-10-20.

64

[Fowler 2020] Fowler, M. (2020). Refatoracdo: Aperfeicoando o design de codigos ex-
istentes. Novatec Editora.

[Martin 2012] Martin, R. C. (2012). O codificador limpo: um codigo de conduta para
programadores profissionais. Alta Books.

[Meszaros 2007] Meszaros, G. (2007). xUnit Test Patterns: Refactoring Test Code.
Addison-Wesley Professional.

[Microsoft 2025] Microsoft (2025). Playwright documentation. https://
playwright.dev/docs/intro. Acesso em: 2025-10-20.

[Selenium 2025] Selenium (2025). Selenium documentation. https://www.
selenium.dev/documentation/. Acesso em: 2025-10-20.

[Sommerville 2019] Sommerville, 1. (2019). Engenharia de Software. Pearson Brasil.

[Vaithilingam et al. 2022] Vaithilingam, P., Zhang, T., and Glassman, E. L. (2022). Ex-
pectation vs. experience: Evaluating the usability of code generation tools powered by
large language models. In Extended Abstracts of the 2022 CHI Conference on Human
Factors in Computing Systems. ACM.

