
Chapter

3
Explorando Testes End-to-End com Playwright: Um
Convite à Automação de Qualidade

Matusalen Costa Alves, Iallen Gábio de Santos Sousa, Mayllon Veras da
Silva

Abstract

This chapter explores the discipline of software testing and the importance of End-to-
End testing in ensuring the quality of modern web applications. The study introduces the
Playwright framework, which provides a modern and robust solution for creating reliable
automated tests. It includes a guide to setting up the environment, writing tests using
actions and assertions, and analyzing execution reports. Furthermore, it demonstrates
the practical application of these concepts through the automation of a "ToDo List" ap-
plication, highlighting the use of the Page Object Model pattern, code generation with
CodeGen, and debugging techniques with the Trace Viewer.

Resumo

Este capítulo explora a disciplina de testes de software e a importância dos testes End-
to-End na garantia da qualidade de aplicações web modernas. O estudo apresenta o
framework Playwright, que oferece uma solução moderna e robusta para a criação de
testes automatizados confiáveis. Inclui um guia para a configuração do ambiente, a es-
crita de testes com o uso de ações e asserções, e a análise de relatórios de execução.
Além disso, demonstra a aplicação prática desses conceitos por meio da automação de
uma aplicação "ToDo List", evidenciando o uso do padrão Page Object Model, geração
de código com o CodeGen e de técnicas de depuração com o Trace Viewer.

3.1. Introdução
No cenário contemporâneo do desenvolvimento de software, a entrega de produtos dig-
itais de alta qualidade transcendeu o status de diferencial competitivo para se tornar um
requisito fundamental para a relevância e o sucesso de qualquer projeto. A complexidade
crescente das aplicações, caracterizadas por arquiteturas distribuídas, interfaces interati-
vas e a necessidade de compatibilidade com uma vasta gama de dispositivos e navegadores

43

impõe desafios às equipes de desenvolvimento. Nesse contexto, a garantia da qualidade
deixa de ser uma fase isolada no final do ciclo de vida para se consolidar como uma tarefa
contínua e integrada a todas as etapas da produção [Sommerville 2019].

No âmbito dos testes, um teste automatizado é um processo de verificação e val-
idação de software que utiliza ferramentas e scripts para executar rotinas de checagem
sem intervenção humana [Sommerville 2019]. Esta abordagem substitui tarefas repetiti-
vas e manuais, o que permite a execução de um grande volume de testes de forma rápida
e consistente.

A qualidade é um pilar em Engenharia de Software. Conforme preconiza Robert
C. Martin, a conduta de um programador profissional exige a certeza de que o código en-
tregue funciona como esperado, e o conjunto de testes (também conhecido como suíte de
testes) automatizados é um dos principais mecanismo para prover essa garantia. A ausên-
cia de testes compromete a funcionalidade do produto e introduz o conhecido "débito
técnico" que dificulta a manutenção e a evolução do sistema a longo prazo [Martin 2012].

A prática da automação de testes é, portanto, a fundação sobre a qual a agilidade
e a sustentabilidade de projetos modernos estão calcadas. Martin Fowler argumenta que a
capacidade de refatorar o código (aperfeiçoar seu design interno sem alterar seu compor-
tamento externo) é diretamente dependente da existência de uma rede de testes confiáveis
fornecida pela suíte de testes automatizados [Fowler 2020]. Sem essa rede, qualquer al-
teração se torna arriscada. Essa condição dificulta a melhoria contínua e a capacidade da
equipe de responder rapidamente a novas demandas.

A relevância dessa disciplina é ainda mais acentuada pelo advento de novas tec-
nologias, como os Modelos de Linguagem de Grande Escala (LLMs), que têm sido cada
vez mais utilizados para a geração automática de código. Embora essas ferramentas pos-
sam acelerar o desenvolvimento, elas também introduzem a necessidade de uma veri-
ficação rigorosa, visto que a revisão manual de todo o código gerado é, muitas vezes,
impraticável [Vaithilingam et al. 2022]. Nesse novo paradigma, os testes automatizados
tornam-se essenciais para validar o software.

Para organizar as estratégias de validação, a indústria adota modelos como a
pirâmide de testes. Esta é organizada em uma base larga de testes unitários, uma ca-
mada intermediária de testes de integração e, no topo, uma camada mais seleta de testes
End-to-End. Estes últimos são cruciais por simularem a jornada completa do usuário;
eles validam fluxos do início ao fim e garantem que todos os componentes do sistema
funcionem de maneira coesa.

Neste minicurso, materializado na forma deste capítulo, nos concentraremos na
criação de testes End-to-End com o uso do Playwright, uma ferramenta moderna mantida
pela Microsoft. O Playwright se destaca por oferecer uma solução eficiente, rápida e
confiável para a automação de interações em navegadores, o que o torna uma escolha
adequada para enfrentar os desafios discutidos.

O restante deste capítulo está organizado da seguinte maneira: a Seção 3.2 apro-
funda os conceitos da disciplina de testes de software; a Seção 3.3 apresenta a arquitetura
e os diferenciais do ecossistema Playwright; a Seção 3.4 detalha os passos práticos para a
configuração e utilização da ferramenta; a Seção 3.5 demonstra, através de um estudo de

44

caso, a automação de uma aplicação real; e, por fim, a Seção 3.6 conclui o trabalho com
uma síntese dos aprendizados e sugestões para estudos futuros.

3.2. A Disciplina de Testes de Software
A verificação e validação são disciplinas fundamentais da Engenharia de Software, re-
sponsáveis por assegurar que um sistema computacional atenda às suas especificações e
satisfaça as necessidades dos seus usuários. Dentro deste escopo, a prática de testes de
software se estabelece como o principal mecanismo para identificar defeitos e avaliar a
qualidade de um produto. Esta seção explora os conceitos essenciais desta disciplina, a
começar por uma análise da evolução histórica dos testes automatizados. Em seguida,
apresentaremos a Pirâmide de Testes, o modelo estratégico mais influente para a organi-
zação de suítes de testes, e, por fim, detalharemos o papel crítico dos testes End-to-End,
que são o foco deste capítulo.

3.2.1. História e Evolução dos Testes Automatizados

A prática de automatizar testes de software evoluiu em paralelo com as próprias metodolo-
gias de desenvolvimento. Nas abordagens mais tradicionais, como o modelo em cascata,
os testes eram frequentemente relegados a uma fase final e executados de forma pre-
dominantemente manual, um processo lento, repetitivo e suscetível a falhas humanas. A
necessidade de otimizar essa etapa impulsionou o surgimento das primeiras ferramentas
de automação, muitas baseadas em scripts simples ou em técnicas de captura e repetição
de interações do usuário.

A Figura 3.1 ilustra os marcos dessa progressão. A linha do tempo demonstra a
transição de um modelo sequencial e manual, associado ao modelo cascata, para ciclos
iterativos e ágeis, que culminaram nas práticas de testes contínuos e na exploração de
testes autônomos com o avanço da inteligência artificial.

Figure 3.1. Marcos da evolução da automação de testes, da metodologia cascata
aos testes contínuos e autônomos.

Uma mudança de paradigma ocorreu com a ascensão das metodologias ágeis no
final da década de 1990. A partir de então, os testes passaram a ser vistos não apenas

45

como uma atividade de verificação final, mas como uma parte intrínseca do processo
de desenvolvimento e design. A criação de frameworks de teste, como os da família
xUnit, foi fundamental para essa transformação, pois forneceu aos desenvolvedores as
ferramentas para escrever testes de forma sistemática e integrar a automação ao processo
de codificação.

Essa evolução foi acelerada pela consolidação da cultura DevOps e das esteiras de
Integração e Entrega Contínua (CI/CD), que tornaram a automação de testes um requisito
essencial. Em um ciclo de vida onde novas versões do software são liberadas com alta
frequência, a execução manual de testes de regressão se torna impraticável. A automação
passou a ser, portanto, o pilar que garante a segurança e a agilidade necessárias para a
inovação contínua [Sommerville 2019].

3.2.2. A Pirâmide de Testes: Estratégias e Níveis

Com a proliferação dos testes automatizados, tornou-se necessária a criação de um mod-
elo estratégico para orientar sua implementação de forma eficiente. O modelo mais am-
plamente adotado pela indústria é a Pirâmide de Testes, um conceito originalmente pro-
posto por Mike Cohn [Cohn 2009]. A pirâmide é uma heurística visual que descreve a
proporção ideal entre diferentes tipos de testes em uma suíte de automação.

A Figura 3.2 representa visualmente este modelo. A largura de cada camada sug-
ere o volume ideal de testes, enquanto os ícones laterais ilustram as características de cada
nível: a base é a mais rápida e de menor custo, enquanto o topo é o mais lento e de maior
custo.

Figure 3.2. Representação da Pirâmide de Testes e suas características de ve-
locidade e custo.

A base da pirâmide é composta pelos Testes de Unidade (Unit Tests). Estes testes
verificam os menores componentes do sistema, como uma função ou uma classe, de
forma isolada. São caracterizados por sua alta velocidade de execução e baixo custo
de manutenção. Por testarem a lógica de negócio em seu nível mais granular, eles devem
constituir a maior parte da suíte de testes.

A camada intermediária é composta pelos Testes de Integração, por vezes chama-
dos de Testes de Serviço (Service Tests). O objetivo destes testes é verificar a interação
entre dois ou mais componentes do sistema, como a comunicação entre um serviço de
aplicação e o banco de dados. São mais lentos e complexos que os testes de unidade, pois
envolvem múltiplos componentes, e, por isso, devem existir em menor número.

46

No topo da pirâmide, encontram-se os Testes End-to-End. Estes testes validam um
fluxo completo do sistema sob a perspectiva do usuário final, o que geralmente envolve
a interação com a interface gráfica. Conforme detalhado por Martin Fowler, embora os
testes End-to-End ofereçam a maior confiança sobre o funcionamento do sistema, eles
também são os mais lentos, frágeis e caros para manter. Portanto, a estratégia da pirâmide
recomenda que eles sejam utilizados de forma seletiva, focados nos fluxos mais críticos
do negócio [Fowler 2012].

3.2.3. O Papel Crítico dos Testes End-to-End

Um teste End-to-End (E2E) é uma técnica de teste que simula um cenário de usuário
real do início ao fim. Diferentemente dos testes de unidade e integração, que operam
em camadas mais baixas e com partes isoladas do código, um teste E2E interage com o
sistema através da sua interface de usuário, da mesma forma que um cliente faria. O seu
escopo abrange todas as camadas da arquitetura da aplicação, desde a interface gráfica no
navegador até os serviços de backend e o banco de dados.

A Figura 3.3 ilustra de forma esquemática este processo. A interação do usuário
ocorre na camada mais externa, a interface (representada pelo formulário), e desencadeia
uma série de operações que atravessam os diversos componentes da arquitetura do sistema
(representados pelos cubos), como serviços de aplicação e bancos de dados. Um teste E2E
bem-sucedido valida a integridade de todo esse percurso.

Figure 3.3. Exemplo do fluxo de um teste End-to-End, da interface aos compo-
nentes do sistema.

O principal valor dos testes E2E reside na sua capacidade de fornecer um alto
grau de confiança de que a aplicação, como um todo, está funcionando corretamente e
atendendo aos requisitos de negócio. Ao validar fluxos completos, como um processo de
cadastro de usuário ou a finalização de uma compra em um e-commerce, os testes E2E
garantem que a integração entre os diversos componentes do sistema está operando de
forma coesa.

Contudo, a implementação de testes E2E apresenta desafios. A sua natureza in-
tegrada os torna inerentemente mais lentos, pois dependem de operações de rede, render-
ização de interface e acesso a banco de dados. Eles também são mais frágeis, ou seja, po-
dem falhar devido a pequenas alterações na interface do usuário que não necessariamente
representam um defeito na lógica de negócio. Por essa razão, a sua criação e manutenção
exigem um planejamento cuidadoso e a aplicação de padrões de projeto específicos, como
discute Gerard Meszaros em sua obra sobre padrões de teste [Meszaros 2007]. Apesar
desses desafios, os testes E2E são uma camada indispensável em uma estratégia de qual-
idade, pois estão entre os poucos capazes de validar a experiência completa do usuário.

47

3.3. O Ecossistema Playwright
Após a fundamentação teórica sobre a disciplina de testes de software, esta seção dire-
ciona o foco para a ferramenta central deste capítulo: o Playwright. O objetivo é realizar
uma imersão técnica em seu ecossistema, a fim de demonstrar por que ele se estabelece
como uma solução moderna e eficaz para os desafios da automação de testes E2E.

Iniciaremos com uma análise detalhada do conceito e da arquitetura que garantem
a velocidade e a confiabilidade da ferramenta. Em seguida, exploraremos suas funcionalidades-
chave e os diferenciais que otimizam a experiência de desenvolvimento. Por fim, faremos
uma análise comparativa que posiciona o Playwright em relação a outras ferramentas
consolidadas no mercado.

3.3.1. Conceito e Arquitetura

O Playwright é um framework de automação de código aberto, mantido pela Microsoft,
projetado para atender às demandas do desenvolvimento de aplicações web modernas.
Seu objetivo é fornecer uma API única, coesa e poderosa para a automação dos três prin-
cipais motores de renderização de navegadores: Chromium (utilizado por Google Chrome
e Microsoft Edge), WebKit (utilizado pelo Apple Safari) e Firefox. A filosofia do projeto
se concentra em três pilares: velocidade, capacidade e, principalmente, confiabilidade,
para eliminar a instabilidade que historicamente afeta os testes de interface de usuário.

A Figura 3.4 ilustra a arquitetura da ferrameta. No lado do cliente, os testes po-
dem ser escritos em diversas linguagens, como TypeScript, JavaScript e Python. Esses
scripts enviam instruções ao servidor Playwright, que as traduz em comandos específicos
para o protocolo de depuração do navegador. A conexão WebSocket garante uma comu-
nicação bidirecional e eficiente, permitindo que o Playwright controle o navegador com
precisão e receba eventos em tempo real. Essa estrutura é a base para muitas das fun-
cionalidades avançadas da ferramenta, como a capacidade de interceptar requisições de
rede e a execução de testes em múltiplos contextos de forma isolada.

Figure 3.4. Visão geral da arquitetura de comunicação do Playwright.

O principal diferencial técnico do Playwright reside em sua arquitetura. Diferente-
mente de soluções mais antigas que dependem de protocolos baseados em HTTP para a

48

comunicação entre o script de teste e o navegador, o Playwright opera em um modelo fora
do processo. Nele, o script de teste se comunica com um servidor Node.js que, por sua
vez, envia comandos aos navegadores por meio de uma conexão WebSocket persistente.
Essa comunicação direta e de baixa latência evita pontos de falha e gargalos de desem-
penho, o que resulta em uma execução de testes mais rápida e estável [Microsoft 2025].

3.3.2. Funcionalidades-Chave e Diferenciais

O Playwright se distingue por um conjunto de funcionalidades nativas projetadas para
otimizar a experiência de desenvolvimento e aumentar a confiabilidade dos testes. Estes
recursos abordam desafios comuns na automação de testes, como a instabilidade, a dificul-
dade de depuração e a complexidade na criação de novos scripts. A seguir, detalharemos
as ferramentas que compõem esses diferenciais.

3.3.2.1. Trace Viewer: Depuração de Viagem no Tempo

Um dos maiores desafios dos testes E2E é a depuração. Testes que falham em um ambi-
ente de integração contínua podem ser difíceis de diagnosticar, pois o desenvolvedor não
tem acesso ao estado do navegador no momento da falha. O Playwright soluciona este
problema com o Trace Viewer, uma de suas ferramentas mais poderosas.

Ao final de uma execução de testes, o Playwright gera um relatório em HTML,
como o apresentado na Figura 3.5, que exibe o resultado de cada teste executado em
diferentes navegadores. Este relatório centraliza os resultados e serve como ponto de
partida para a análise.

Figure 3.5. Relatório de testes do Playwright com a lista de execuções.

49

A partir do relatório, é possível inspecionar cada teste individualmente para visu-
alizar os passos executados, como ganchos (hooks), ações e asserções, conforme ilustrado
na Figura 3.6. Para uma análise mais profunda, o relatório oferece acesso ao histórico
completo da execução.

Figure 3.6. Visualização detalhada de um teste específico no relatório.

A interface do Trace Viewer, exibida na Figura 3.7, proporciona uma experiência
de depuração de "viagem no tempo". Ela captura um traço completo da execução do
teste, permitindo que o desenvolvedor navegue pela linha do tempo e inspecione o estado
da aplicação em cada momento. A ferramenta exibe a lista de ações, o snapshot do DOM
antes e depois de cada ação, logs do console e requisições de rede. Esse nível de detalhe
contextualizado reduz drasticamente o tempo necessário para identificar a causa raiz de
uma falha [Microsoft 2025].

50

Figure 3.7. Interface principal do Trace Viewer com a linha do tempo, ações e o
snapshot do DOM.

3.3.2.2. Auto-waits: O Fim da Instabilidade

Um dos problemas mais comuns na automação de testes é a instabilidade (flakiness), onde
testes falham de forma intermitente sem uma causa aparente. Frequentemente, a raiz
do problema está em condições de corrida (race conditions), nas quais o script de teste
tenta interagir com um elemento da interface antes que ele esteja totalmente carregado
ou pronto para receber uma ação. A solução tradicional para isso envolvia a inserção de
pausas fixas ou esperas explícitas no código, o que o torna mais lento e complexo.

O Playwright resolve este problema de forma nativa com seu mecanismo de es-
peras automáticas, conhecido como auto-wait. Antes de executar qualquer ação, como um
clique ou o preenchimento de um campo, a ferramenta realiza uma série de verificações
para garantir que o elemento alvo esteja pronto para a interação. Essas checagens incluem
verificar se o elemento está visível, estável (sem animações em andamento) e habilitado
para receber eventos.

Essa inteligência nativa simplifica enormemente o código do teste. A Figura 3.8
demonstra a clareza de um script de teste em Playwright, onde os comandos são diretos
e focados na intenção do usuário. Por trás dessa simplicidade, a ferramenta gerencia a

51

sincronização.

Figure 3.8. Exemplo de código de teste em Playwright, com comandos diretos.

Na Figura 3.9, extraída do log de uma execução, mostra que, mesmo em um co-
mando como ‘page.goto‘, o Playwright aguarda ativamente por eventos específicos da
página, como o evento "load". Esse mecanismo de espera automática é um dos principais
motivos da alta confiabilidade dos testes escritos com Playwright [Microsoft 2025].

Figure 3.9. Log de execução de um comando, que evidencia a espera por um
evento específico da página.

3.3.2.3. Codegen: Geração de Testes Acelerada

Para acelerar a criação de novos testes e diminuir a barreira de entrada para novos usuários,
o Playwright inclui a ferramenta Codegen. Ao ser iniciada, ela abre uma janela de naveg-
ador junto com uma janela "Playwright Inspector". À medida que o usuário interage com
a aplicação no navegador (clica em botões, preenche formulários, navega entre páginas),
o Codegen grava essas ações e as traduz em tempo real para código Playwright.

A Figura 3.10 demonstra a ferramenta em ação. Na parte superior, o navegador
exibe a aplicação web sendo testada, enquanto na parte inferior, o "Playwright Inspec-
tor" exibe o código gerado a partir das interações. Esta funcionalidade é extremamente
útil tanto para aprender a sintaxe da API do Playwright quanto para criar rapidamente o

52

esqueleto de um novo teste, que pode então ser refinado e adaptado pelo desenvolvedor
[Microsoft 2025].

Figure 3.10. Ferramenta Codegen em execução, com o navegador e a janela do
inspetor que gera o código em tempo real.

3.3.2.4. Suporte Multi-Navegador e Execução Paralela

Finalmente, um dos maiores diferenciais do Playwright é seu suporte nativo e de primeira
classe aos três principais motores de renderização de navegadores: Chromium, Firefox e
WebKit. Isso permite que as equipes de desenvolvimento validem o comportamento de
suas aplicações em um ambiente verdadeiramente multiplataforma, o que garante uma
experiência de usuário consistente.

A capacidade de executar o mesmo conjunto de testes em diferentes navegadores
é evidenciada no relatório de testes, como já demonstrado na Figura 3.5, onde cada teste
foi validado nos três motores. Adicionalmente, o Playwright foi projetado para executar
testes em paralelo por padrão, distribuindo-os entre múltiplos processos de trabalho. Essa
abordagem reduz drasticamente o tempo total de execução da suíte de testes, um fator
crucial em ambientes de integração contínua.

3.3.3. Análise Comparativa

Para compreender o valor e os diferenciais do Playwright, é útil posicioná-lo no ecossis-
tema de ferramentas de automação de testes E2E. Embora existam diversas soluções, o
mercado foi historicamente dominado pelo Selenium, com o Cypress emergindo como
uma alternativa moderna popular. Cada uma dessas ferramentas possui uma arquitetura
e uma filosofia distintas, que resultam em diferentes vantagens e desvantagens. As infor-
mações apresentadas na Tabela 3.1 foram compiladas a partir da documentação oficial de
cada ferramenta [Microsoft 2025, Selenium 2025, Cypress 2025].

53

Table 3.1. Análise Comparativa de Frameworks de Testes E2E.

Critério Playwright Selenium Cypress
Suporte a Linguagens JavaScript, Java,

Python, .NET
JavaScript, Java, C#,
Python, etc.

JavaScript

Driver do Navegador Não requer driver Requer um driver para
cada navegador

Não requer driver

Relatórios Nativos Sim Não Sim
Recursos de Depuração Ferramentas nativas

e depuração "time-
traveling"

Não possui ferramentas
de depuração nativas

Ferramentas nativas
e depuração "time-
traveling"

Esperas Automáticas Sim Não Sim

A tabela destaca as diferenças na experiência do desenvolvedor. O Selenium, com
seu vasto suporte a linguagens, oferece grande flexibilidade, mas exige uma configuração
mais complexa, como a gestão de drivers específicos para cada navegador. Por outro
lado, Cypress e Playwright proporcionam uma experiência mais integrada, com relatórios
nativos, esperas automáticas e ferramentas de depuração avançadas que simplificam a
escrita e a manutenção dos testes.

Já o Playwright, diferente das duas outras alternativas, se posiciona de forma van-
tajosa ao combinar o amplo suporte a linguagens, similar ao do Selenium, com as con-
veniências modernas encontradas no Cypress, estabelecendo-se como uma solução que
equilibra poder e facilidade de uso.

3.4. Instalando o Playwright no Projeto
Após a apresentação conceitual do ecossistema Playwright, esta seção inicia a jornada
prática. O objetivo é guiar o leitor através dos passos fundamentais para a criação e
execução de um projeto de testes do início ao fim.

Iniciaremos com as instruções para a instalação e configuração completa do am-
biente de desenvolvimento.

Em seguida, faremos uma análise detalhada da anatomia de um arquivo de teste,
explicando seus componentes essenciais, como comandos e asserções.

Por fim, demonstraremos como executar a suíte de testes e analisar os relatórios
de resultados gerados pela ferramenta.

3.4.1. Configuração do Ambiente

O primeiro passo para utilizar o Playwright é a preparação do ambiente de desenvolvi-
mento. O principal pré-requisito é ter o Node.js instalado, que inclui o gerenciador de
pacotes npm. Com o ambiente Node.js pronto, a instalação do Playwright é realizada por
meio de um único comando que inicia um assistente de configuração interativo.

Para iniciar um novo projeto ou adicionar o Playwright a um projeto existente, o
comando a ser executado no terminal é o apresentado no Código 3.1.

1 npm init playwright@latest

Listing 3.1. Comando de inicialização do Playwright via npm.

54

Ao executar este comando, o assistente de configuração fará algumas perguntas
para personalizar o projeto, como:

• A escolha entre TypeScript ou JavaScript para a escrita dos testes.

• O nome do diretório onde os testes serão armazenados (o padrão é tests).

• A adição de um fluxo de trabalho para o GitHub Actions, útil para a integração
contínua.

• A confirmação para instalar os navegadores necessários (Chromium, Firefox e We-
bKit).

Após a conclusão do assistente, o Playwright criará uma estrutura de arquivos
e diretórios no projeto. Essa estrutura inicial, conforme detalhado na documentação e
demonstrado no Código 3.2, organiza os arquivos de forma lógica e inclui exemplos para
facilitar os primeiros passos do desenvolvedor [Microsoft 2025].

1 .
2 |-- playwright.config.ts
3 |-- package.json
4 |-- tests/
5 | |-- example.spec.ts
6 |-- tests-examples/
7 |-- demo-todo-app.spec.ts

Listing 3.2. Estrutura de arquivos gerada pela instalação do Playwright.

O arquivo playwright.config.ts, presente na estrutura do Código 3.2, é o centro de
controle do projeto, onde são definidas configurações como os navegadores alvo, tempos
de espera e formatos de relatório. O diretório tests/ é o local padrão para os testes do
projeto, enquanto o tests-examples/ contém exemplos mais elaborados que demonstram
diferentes funcionalidades da ferramenta.

3.4.2. Anatomia de um Teste: Comandos e Asserções

Um teste em Playwright, em sua essência, é uma sequência de duas operações fundamen-
tais: a execução de ações para simular a interação do usuário com a página e a verificação
do estado da aplicação por meio de asserções. A estrutura de um teste é declarada dentro
de uma função test(), que recebe como argumento a fixture page, um objeto que representa
uma única aba no navegador e serve como a principal interface para a automação.

O Código 3.3 apresenta um arquivo de teste completo, example.spec.ts, que con-
tém dois cenários de teste distintos. O primeiro verifica se a página possui o título esper-
ado, e o segundo valida a navegação ao clicar em um link e checar o conteúdo da nova
página.

1 import { test, expect } from ’@playwright/test’;
2

3 test(’has title’, async ({ page }) => {
4 await page.goto(’https://playwright.dev/’);

55

5 // Espera que o título da página contenha o texto "Playwright

".

6 await expect(page).toHaveTitle(/Playwright/);
7 });
8

9 test(’get started link’, async ({ page }) => {
10 await page.goto(’https://playwright.dev/’);
11 // Clica no link com o nome "Get started".

12 await page.getByRole(’link’, { name: ’Get started’ }).click();
13 // Espera que a página possua um cabeçalho com o nome "

Installation".

14 await expect(page.getByRole(’heading’, { name: ’Installation’
})).toBeVisible();

15 });

Listing 3.3. Exemplo de um arquivo de teste completo em Playwright.

As ações em um teste começam, geralmente, com a navegação para uma URL,
como visto na linha await page.goto(’https://playwright.dev/’). Após o carregamento da
página, o teste interage com seus elementos. Para encontrar esses elementos, o Play-
wright utiliza a API de Locators, que são objetos que representam uma forma de encon-
trar um ou mais elementos na página a qualquer momento. No exemplo do Código 3.3,
page.getByRole(’link’, name: ’Get started’) é um locator que encontra um link com o
texto específico. Uma vez que o elemento é localizado, ações como .click() podem ser
executadas.

As asserções são utilizadas para verificar se a aplicação se comporta como o es-
perado após uma série de ações. O Playwright utiliza a função expect(), que, combinada
com seus validadores assíncronos, aguarda até que uma condição seja atendida ou um
tempo limite seja atingido. Essa característica torna os testes mais resilientes e menos
suscetíveis a falhas por tempo. Nos exemplos, expect(page).toHaveTitle(/Playwright/)
e expect(locator).toBeVisible() são asserções que pausam a execução do teste até que a
condição de validação seja verdadeira.

É importante notar que o Playwright garante o isolamento total entre os testes.
Cada função test recebe uma instância de page que pertence a um BrowserContext exclu-
sivo, o que é equivalente a um perfil de navegador completamente novo. Isso significa
que cookies, armazenamento local e sessões não são compartilhados entre os testes, o que
garante que a execução de um não possa interferir no resultado do outro.

3.4.3. Executando Testes e Analisando Resultados

Uma vez que os testes são escritos, o próximo passo é executá-los para verificar o com-
portamento da aplicação. O Playwright oferece uma interface de linha de comando (CLI)
para gerenciar a execução dos testes de forma flexível e poderosa.

O comando fundamental para executar toda a suíte de testes é apresentado no
Código 3.4. Por padrão, este comando executa todos os arquivos de teste encontrados no
projeto, em paralelo e em modo headless (sem abrir uma interface gráfica do navegador)
para todos os navegadores configurados no arquivo playwright.config.ts.

56

1 npx playwright test

Listing 3.4. Comando para executar a suíte de testes.

Após a execução, os resultados são exibidos diretamente no terminal, como mostra
o Código 3.5, com um resumo de quantos testes passaram ou falharam em cada navegador.

1 Running 6 tests using 3 workers
2 6 passed (4.3s)

Listing 3.5. Exemplo de saída do terminal após a execução dos testes.

A execução pode ser personalizada com diversos parâmetros. Por exemplo, a flag
–headed executa os testes em um navegador com interface gráfica visível, enquanto a flag
–project permite especificar um único navegador, como em npx playwright test –project
chromium.

O principal artefato para a análise dos resultados é o Relatório HTML. Ele fornece
um painel interativo para explorar os resultados de cada teste. O relatório é aberto auto-
maticamente quando há falhas, mas pode ser acessado a qualquer momento com o co-
mando do Código 3.6.

1 npx playwright show-report

Listing 3.6. Comando para visualizar o relatório HTML.

A interface principal do relatório, já apresentada na Figura 3.5, permite uma
análise visual completa dos resultados. A partir dela, é possível filtrar testes por status
(aprovado, falhou, etc.) e por navegador, além de inspecionar os passos de cada teste e
acessar o traço completo da execução para uma depuração aprofundada, como será detal-
hado na próxima seção.

Após a exploração dos conceitos teóricos e das ferramentas práticas, esta seção
consolida o aprendizado através da aplicação completa dos conhecimentos em um pro-
jeto real. O objetivo é guiar o leitor na construção de uma suíte de testes E2E para uma
aplicação web do tipo "ToDo List", um exemplo clássico utilizado para a demonstração
de tecnologias de frontend. Seguiremos um fluxo de trabalho estruturado: primeiramente,
definiremos o escopo e os cenários de teste; em seguida, implementaremos os testes uti-
lizando o padrão de projeto Page Object Model; e, por fim, demonstraremos como depurar
e analisar os resultados.

3.5. Estudo de Caso: Todo List com Definição do Escopo e Cenários de Teste
A aplicação "ToDo List" a ser testada possui uma interface simples para o gerenciamento
de tarefas. O usuário pode adicionar, editar, marcar como concluída e excluir tarefas.
Nosso objetivo é criar um conjunto de testes automatizados que valide estas funcionali-
dades críticas, garantindo a integridade da experiência do usuário.

Para este capítulo, implementaremos um conjunto representativo dos cenários de
teste mais importantes. A suíte de testes completa, com validações adicionais, estará
disponível no repositório do projeto para consulta. Os cenários que abordaremos são:

57

• Carregamento da Página: Verificar se a aplicação carrega corretamente e exibe
seus elementos principais.

• Adição de Tarefa: Validar a criação de uma ou mais tarefas.

• Edição de Tarefa: Assegurar que uma tarefa existente pode ser editada.

• Exclusão de Tarefa: Verificar se uma tarefa pode ser removida da lista.

• Marcar Tarefa como Concluída: Validar a funcionalidade de marcar e desmarcar
uma tarefa.

• Validação de Tarefa Duplicada: Garantir que a aplicação lida corretamente com
a tentativa de adicionar uma tarefa com o mesmo texto de uma já existente.

• Validação de Tarefa Vazia: Verificar se o sistema impede a adição de uma tarefa
sem texto.

A Figura 3.11 exibe a interface principal da aplicação que será o objeto de nosso
estudo de caso.

Figure 3.11. Interface da aplicação "ToDo List" utilizada no estudo de caso.

58

3.5.1. Implementação Prática com Page Object Model

Para implementar os cenários de teste de forma organizada e de fácil manutenção, uti-
lizaremos o padrão de projeto Page Object Model (POM). O POM é uma técnica de
design que consiste em criar uma classe para cada página da aplicação, encapsulando os
detalhes da interface do usuário. O principal benefício desta abordagem é a separação de
responsabilidades: a classe Page Object lida com a complexidade de encontrar e interagir
com os elementos da página, enquanto o arquivo de teste se concentra apenas na lógica e
nas asserções do cenário [Microsoft 2025].

A Figura 3.12 ilustra este padrão. As páginas da aplicação web são mapeadas para
classes Page Object, que por sua vez são utilizadas pelos scripts de teste. Essa camada de
abstração desacopla os testes da estrutura interna da interface, tornando-os mais resilientes
a mudanças no HTML.

Figure 3.12. Diagrama do fluxo de trabalho com o padrão Page Object Model.

Para a nossa aplicação, criamos a classe TodoPage. O código completo desta
classe está disponível no repositório do projeto para consulta [Alves 2025]; aqui, destacare-
mos seus componentes essenciais. Primeiramente, a classe centraliza todos os local-
izadores de elementos em seu construtor, como demonstrado no Código 3.7. Se um seletor
na interface do usuário mudar no futuro, só precisaremos atualizá-lo neste único local.

1 // Trecho de TodoPage.js

2 constructor(page) {
3 this.page = page;
4

5 // Localizadores dos elementos principais

6 this.taskInput = page.locator(’#taskInput’);
7 this.addButton = page.locator(’#addButton’);
8 this.taskList = page.locator(’#taskList’);
9 // ... outros localizadores disponiveis no repositorio

10 }

Listing 3.7. Trecho do construtor da classe TodoPage com os localizadores.

59

Em seguida, a classe expõe métodos de alto nível que representam as ações do
usuário. O Código 3.8 mostra o método addTask, que esconde os detalhes de implemen-
tação (preencher o campo e clicar no botão) por trás de uma única ação com um nome
claro e intuitivo.

1 // Trecho de TodoPage.js

2 async addTask(taskText) {
3 await this.taskInput.fill(taskText);
4 await this.addButton.click();
5 }

Listing 3.8. Exemplo de um método de ação na classe TodoPage.

Com a classe TodoPage pronta, o arquivo de teste (todo.spec.js), apresentado no
Código 3.9, se torna extremamente limpo e legível. Ele se concentra no fluxo do cenário
e nas validações, utilizando a instância do Page Object para orquestrar as interações com
o navegador. Note como o teste lê quase como um roteiro de caso de uso, sem a desordem
de seletores de CSS.

1 import { test, expect } from ’@playwright/test’;
2 import { TodoPage } from ’./TodoPage’; // Importa a classe

3

4 test.describe(’Gerenciamento de Tarefas’, () => {
5 let todoPage;
6

7 test.beforeEach(async ({ page }) => {
8 todoPage = new TodoPage(page);
9 await todoPage.goto();

10 });
11

12 test(’deve adicionar uma nova tarefa’, async () => {
13 const taskText = ’Comprar pao’;
14 await todoPage.addTask(taskText);
15 await expect(todoPage.taskList).toContainText(taskText);
16 });
17

18 // ... outros cenarios de teste disponiveis no repositorio

19 });

Listing 3.9. Arquivo de teste que utiliza a classe TodoPage para implementar os cenarios.

3.5.2. Depuração e Análise Avançada com o Trace Viewer

Um dos aspectos mais desafiadores na manutenção de uma suíte de testes é a investigação
de falhas. Um teste pode falhar por diversos motivos, desde um defeito real na aplicação
até um problema no próprio script de teste. Para demonstrar como diagnosticar um prob-
lema de forma eficiente, simularemos um cenário comum: um teste que falha devido a
um localizador incorreto.

O Código 3.10 apresenta uma variação do nosso teste de adicionar tarefa. Nele,

60

introduzimos um erro proposital na linha 22: o seletor para o botão de adicionar (‘[data-
testid="adicionar-button"]‘) está incorreto; o correto seria ‘[data-testid="add-button"]‘.

1 test(’Teste de Falha: Seletor incorreto do botao adicionar’,
async () => {

2 const taskText = ’Minha primeira tarefa’;
3 await todoPage.locators.taskInput.fill(taskText);
4

5 // ERRO PROPOSITAL: Usa seletor incorreto para o botao

6 // Original: [data-testid="add-button"]

7 // Incorreto: [data-testid="adicionar-button"]

8 await todoPage.page.locator(’[data-testid="adicionar-button
"]’).click();

9

10 // Estas verificacoes vao falhar porque a tarefa nao foi

adicionada

11 await expect(todoPage.getTaskCount()).toBe(1);
12 });

Listing 3.10. Exemplo de um teste com uma falha proposital (seletor incorreto).

Ao executar este teste, o Playwright irá falhar. O primeiro passo da nossa análise
é inspecionar o Relatório HTML. A Figura 3.13 exibe a tela de resultado para o teste que
falhou. O relatório imediatamente nos informa o tipo de erro (TimeoutError, indicando
que a ferramenta esperou por um elemento que nunca apareceu) e aponta para a linha
exata do código que causou a falha.

Para uma análise mais profunda, clicamos em "View Trace". Dentro do Trace
Viewer, a aba "Actions", mostrada na Figura 3.14, destaca em vermelho a ação exata que
falhou. Neste caso, o comando .click(). Isso permite que o desenvolvedor isole imediata-
mente o ponto problemático da execução.

Para entender o motivo da falha, a aba "Errors", na Figura 3.15, fornece o log
detalhado. A mensagem "TimeoutError: waiting for locator(’[data-testid="adicionar-
button"]’)" confirma que o Playwright esgotou o tempo de espera porque não conseguiu
encontrar o elemento com o seletor especificado. Através deste processo de análise, do
geral para o específico, o desenvolvedor pode diagnosticar rapidamente que o problema é
um erro no seletor, em vez de um defeito na funcionalidade da aplicação.

3.6. Conclusão
Ao longo deste capítulo, realizamos uma jornada completa pelo universo dos testes E2E,
desde seus fundamentos teóricos até a sua aplicação prática com o framework Playwright.
Iniciamos por estabelecer a disciplina de testes de software como um pilar essencial da en-
genharia de software moderna, explorando sua evolução histórica e o modelo estratégico
da Pirâmide de Testes. Com essa base, aprofundamos no ecossistema Playwright, anal-
isando sua arquitetura, suas funcionalidades-chave e seu posicionamento em relação a
outras ferramentas do mercado.

A parte prática do capítulo guiou o leitor desde a configuração inicial de um pro-

61

Figure 3.13. Relatório HTML exibindo o teste que falhou e o erro correspondente.

jeto até a escrita e execução de testes, culminando em um estudo de caso detalhado.
Na implementação para a aplicação "ToDo List", demonstramos como escrever os testes
e como estruturá-los de forma fácil, aplicando o padrão de projeto POM. Além disso,
abordamos um aspecto crucial do dia a dia do desenvolvimento: a depuração de testes,
mostrando como o Trace Viewer acelera a identificação e a correção de falhas.

A principal mensagem deste capítulo é que a automação de testes E2E, com o
auxílio de ferramentas modernas como o Playwright, é uma prática acessível e de alto
impacto para qualquer equipe de desenvolvimento. Recursos como as esperas automáticas
e as ferramentas de depuração visual não são apenas conveniências, mas soluções diretas
para os desafios de instabilidade e complexidade que historicamente tornaram os testes de
UI um processo custoso.

Para os leitores que desejam aprofundar seus conhecimentos, o próximo passo
natural é explorar as outras capacidades que o ecossistema Playwright oferece, como
o suporte nativo para testes de API, a implementação de testes de regressão visual e a
funcionalidade de testes de componentes. Além disso, a integração da suíte de testes a
um pipeline de Integração e Entrega Contínua (CI/CD), como o GitHub Actions, é uma
etapa fundamental para automatizar completamente o processo de garantia de qualidade.
A documentação oficial do Playwright permanece como o recurso mais completo para o

62

Figure 3.14. Aba "Actions" do Trace Viewer, destacando a etapa que falhou.

Figure 3.15. Aba "Errors" do Trace Viewer com o log detalhado da falha.

estudo contínuo, e o repositório do nosso estudo de caso serve como um exemplo prático
e funcional de referência.

References
[Alves 2025] Alves, M. C. (2025). todo-codec: Aplicação para o minicurso de testes e2e

com playwright. https://github.com/watusalen/todo-codec. GitHub.
Acesso em: 2025-10-20.

[Cohn 2009] Cohn, M. (2009). Succeeding with Agile: Software Development Using
Scrum. Addison-Wesley Professional.

[Cypress 2025] Cypress (2025). Cypress documentation. https://docs.
cypress.io/. Acesso em: 2025-10-20.

[Fowler 2012] Fowler, M. (2012). The test pyramid. https://martinfowler.
com/bliki/TestPyramid.html. Acesso em: 2025-10-20.

63

[Fowler 2020] Fowler, M. (2020). Refatoração: Aperfeiçoando o design de códigos ex-
istentes. Novatec Editora.

[Martin 2012] Martin, R. C. (2012). O codificador limpo: um código de conduta para
programadores profissionais. Alta Books.

[Meszaros 2007] Meszaros, G. (2007). xUnit Test Patterns: Refactoring Test Code.
Addison-Wesley Professional.

[Microsoft 2025] Microsoft (2025). Playwright documentation. https://
playwright.dev/docs/intro. Acesso em: 2025-10-20.

[Selenium 2025] Selenium (2025). Selenium documentation. https://www.
selenium.dev/documentation/. Acesso em: 2025-10-20.

[Sommerville 2019] Sommerville, I. (2019). Engenharia de Software. Pearson Brasil.

[Vaithilingam et al. 2022] Vaithilingam, P., Zhang, T., and Glassman, E. L. (2022). Ex-
pectation vs. experience: Evaluating the usability of code generation tools powered by
large language models. In Extended Abstracts of the 2022 CHI Conference on Human
Factors in Computing Systems. ACM.

64

