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Abstract

This minicourse presents a practical introduction to embedded systems using the Bit-
DoglLab development board. Targeted at beginners with basic programming skills, the
minicourse introduces essential hardware and software concepts through hands-on activi-
ties. Participants will work with digital I/O, analog sensors (ADC), pull-up/down resistors,
and develop a simple interactive game. The proposal aims to foster interest in embedded
systems through accessible and engaging experimentation.

Resumo

Este minicurso apresenta uma introdugdo prdtica aos sistemas embarcados utilizando a
placa de desenvolvimento BitDogLab. Destinado a iniciantes com conhecimentos bdsicos
em programagdo, aborda conceitos fundamentais de hardware e software por meio de
atividades interativas. Os participantes trabalhardo com entradas e saidas digitais,
sensores analdgicos (ADC), resistores pull-up/down e desenvolverdo um jogo interativo
simples. A proposta busca despertar o interesse por sistemas embarcados de forma
acessivel e diddtica.

4.1. Introducao

A educagdo em sistemas embarcados tornou-se um pilar para a formagdo de profissionais
capazes de desenvolver tecnologias que interagem diretamente com o mundo fisico. A
onipresenca desses sistemas — que permeiam veiculos autdbnomos, eletrodomésticos
inteligentes, dispositivos médicos e redes de manufatura — projeta um mercado que
reforca a urgéncia de formar engenheiros com um dominio versatil e integrado de hardware
e software [Pasricha 2022].
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Historicamente, o ensino dessa drea enfrenta desafios significativos. Curriculos
tradicionais de engenharia, muitas vezes compartimentados em dominios como Ciéncia da
Computagdo e Engenharia Elétrica, dificultam a formagao interdisciplinar que é essencial
para o desenvolvimento de sistemas embarcados [Sztipanovits et al. 2005]. Como resposta
a essa lacuna, os Computadores de Placa Unica (SBCs), como Raspberry Pi e Arduino,
foram amplamente adotados na educagdo, com estudos sistemdticos demonstrando um
aumento no engajamento e na motivacdo dos alunos por meio de uma abordagem mais
prética [Ariza and Baez 2021].

Nesse contexto, plataformas educacionais focadas na experimentagdo surgem como
ferramentas poderosas de aprendizagem ativa. Frameworks pedagdgicos recentes enfatizam
a importancia de um curriculo que aborde desde os fundamentos de hardware e software
até a integracdo de sensores, com foco em projetos praticos para capacitar profissionais
para dreas como robdtica e automagao [Benyeogor et al. 2024].

A placa BitDogLab, objeto central deste minicurso, insere-se nesse movimento.
Desenvolvida com base no Raspberry Pi Pico, ela apoia atividades STEAM (Ciéncia,
Tecnologia, Engenharia, Artes e Matemadtica) e busca democratizar o acesso ao ensino de
sistemas embarcados com uma baixa barreira de entrada. Ao combinar hardware aberto e
suporte educativo, a plataforma permite que estudantes avancem de conceitos tedricos a
projetos praticos de forma integrada [Fruett et al. 2024].

O restante deste capitulo estd organizado da seguinte maneira: a Se¢do 4.2 explora
0s conceitos tedricos de sistemas embarcados; a Secdo 4.3 apresenta em detalhes a placa
BitDogLab; a Secao 4.4 detalha os fundamentos de programacio e eletronica necessarios
para a prética; a Secdo 4.5 consolida o aprendizado com a construg@o de um jogo interativo;
e, por fim, a Se¢do 4.6 conclui o trabalho.

4.2. Fundamentos de Sistemas Embarcados

Para explorar de forma pratica o desenvolvimento de projetos com a placa BitDoglLab,
¢é essencial, primeiramente, estabelecer uma base conceitual s6lida. A Engenharia de
Sistemas Embarcados € um campo vasto e interdisciplinar, que combina conhecimentos
de eletrdnica, ciéncia da computacdo e engenharia de controle. Esta secdo introduz
os conceitos fundamentais da drea, comegando pela definicdo formal de um sistema
embarcado e suas classificacdes. Em seguida, serdo destacadas as principais diferencas que
o distinguem da computacio de propdsito geral e, por fim, serd apresentada a arquitetura
tipica que caracteriza esses sistemas, detalhando seus componentes de hardware e software.

4.2.1. O que é um Sistema Embarcado?

Um sistema embarcado €, em sua esséncia, um sistema computacional projetado para ser
0 "cérebro" oculto dentro de um dispositivo maior, com a missdo de executar uma ou
poucas fungdes de forma dedicada. Diferente de um computador de propdsito geral (como
um notebook, que pode rodar inimeros programas diferentes), um sistema embarcado é
uma combinag¢do otimizada de hardware e software, desenvolvida sob medida para uma
aplicacdo especifica. Seus componentes — um processador, memdria, interfaces de entrada
e saida (I/0O) e o software especializado conhecido como firmware — s@o dimensionados
para operar sob restricdes rigorosas de tempo de resposta, consumo de energia, custo
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e tamanho fisico. Essa natureza dedicada significa que o hardware e o software sdo
intrinsecamente acoplados, priorizando a eficiéncia e a intera¢cdo com o mundo fisico em
vez da versatilidade genérica [Wolf 2001, Micco et al. 2018, Kopetz 2022].

Para compreender a diversidade desses sistemas, eles podem ser classificados com
base em suas demandas operacionais. A seguir, apresentamos uma taxonomia com as
principais categorias [Akdur et al. 2018, Kopetz 2022, Pereira et al. 2017]:

1. Tempo Real Estrito (Hard Real-Time): Sao sistemas em que uma falha no cumpri-
mento de um prazo pode ter consequéncias catastréficas. A correcdo do sistema
depende criticamente do tempo. Exemplos cldssicos incluem o sistema de freios
ABS de um carro, um marca-passo cardiaco ou o piloto automético de uma aeronave.

2. Tempo Real Suave (Soft Real-Time): Nesses sistemas, a falha em cumprir um
prazo resulta em uma degradagdo da qualidade ou do desempenho, mas ndo em uma
falha critica do sistema. Um exemplo € a transmissdo de video em uma smart TV,
onde um pequeno atraso pode causar um travamento momentaneo na imagem.

3. Missao Critica (Safety-Critical): Esta classifica¢do abrange sistemas cuja falha
pode resultar em danos significativos, ferimentos ou morte. Eles exigem processos
de desenvolvimento e certificacdes de seguranga rigorosos € sdo comuns em setores
como o automotivo, médico e aeroespacial.

4. 1oT e Borda (Edge): Focados em conectividade, esses sistemas operam na "borda"
da rede, coletando e, muitas vezes, pré-processando dados localmente antes de
envid-los para a nuvem. O baixo consumo de energia € um requisito fundamental
para esses dispositivos, que frequentemente operam com baterias.

5. Sistemas Ciber-Fisicos (CPS): Representam uma integracdo profunda entre com-
putacdo, rede e processos fisicos. Eles operam em um ciclo de realimentagio
continuo (malha fechada), onde sensores monitoram o ambiente e atuadores o modi-
ficam, como em robds industriais ou redes elétricas inteligentes.

Uma caracteristica fundamental que define o desenvolvimento de sistemas embar-
cados € a enorme importancia dos requisitos ndo-funcionais. Estes requisitos descrevem
como o sistema deve operar, em vez de o que ele deve fazer. Propriedades como o tempo
maximo de resposta a um evento, o consumo de energia por operacdo, a confiabilidade ao
longo de anos de uso continuo e a tolerancia a falhas sdo, muitas vezes, mais importantes
do que a propria l6gica da aplicag@o.

Devido a essa criticidade, o desenvolvimento de sistemas embarcados em setores
regulados € guiado por normas de seguranca e padrdes formais rigorosos, como a ISO
26262 para a industria automotiva, a IEC 62304 para software de dispositivos médicos e
a DO-178C para a aviagdo. Essas normas impdem processos estritos de gerenciamento
de requisitos, rastreabilidade e testes. Mesmo em um contexto educacional, a intro-
duc¢do a nocdes bésicas de verificacdo e validagdo (como testes de software-in-the-loop e
hardware-in-the-loop) prepara o estudante para as exigéncias do mercado, que enfrenta de-
safios constantes na especificacio e valida¢do desses requisitos ndo-funcionais complexos
[Kopetz 2022, Pereira et al. 2017, Garousi et al. 2018].
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4.2.2. Diferencas para a Computacio de Propésito Geral

Sistemas embarcados distinguem-se fundamentalmente da computacdo de propdsito geral
— como desktops, laptops e servidores — pelo seu foco em tarefas especificas e pela
sua profunda integracdo com o mundo fisico [Elsevier / ScienceDirect 2025]. Enquanto
um computador tradicional pode ser visto como uma ferramenta universal, projetada
para executar multiplas e variadas aplicagdes sob sistemas operacionais complexos, um
sistema embarcado é uma ferramenta especialista, otimizada para executar sua funcdo de
forma autonoma e eficiente, muitas vezes sem intervencao humana constante [Wolf 2001,
Kopetz 2022].

As diferencas se manifestam de forma concreta tanto no hardware quanto no soft-
ware. Computadores de propdsito geral s@o projetados para alto desempenho, equipados
com processadores de miltiplos nicleos, gigabytes de memoéria RAM e sistemas de ar-
mazenamento massivo. Em contraste, o hardware de um sistema embarcado € minimalista
e otimizado. Ele geralmente utiliza microcontroladores (MCUs) ou Sistemas em um Chip
(SoCs), que integram processador, memoria e periféricos (como portas de comunicagao)
em um tnico componente. A memdria € limitada a kilobytes ou poucos megabytes, e
o software, conhecido como firmware, € altamente especializado. Em muitos casos, em
vez de um sistema operacional completo como Windows ou Linux, o sistema pode rodar
diretamente sobre o hardware ou utilizar um Sistema Operacional de Tempo Real (RTOS),
que é um software minimalista projetado para garantir a execucdo de tarefas dentro de
prazos rigorosos [Kopetz 2022, Akesson et al. 2020].

Uma das distin¢des mais criticas reside na operacio em tempo real. A maioria dos
sistemas de propdsito geral opera com base no desempenho médio; ndo ha problema se um
programa levar alguns milissegundos a mais para abrir. Em muitos sistemas embarcados,
no entanto, a previsibilidade € essencial. Eles demandam respostas deterministicas a
eventos externos, o que significa que uma a¢ao deve ser concluida dentro de um prazo
maximo garantido. Para assegurar essa previsibilidade, os engenheiros analisam métricas
como o Pior Caso de Tempo de Execucao (WCET). O sistema de airbag de um veiculo,
por exemplo, ndo pode depender de um "tempo médio" de resposta; ele deve acionar em
milissegundos, sempre.

Além disso, a interacdo com o mundo fisico é a principal razdo de ser de um
sistema embarcado. Ele utiliza sensores para perceber o ambiente (medindo temperatura,
pressdo, movimento) e atuadores para agir sobre ele (acionando motores, luzes, valvulas).
Esse acoplamento direto com o hardware exige um ciclo de desenvolvimento e verificagao
distinto, que frequentemente inclui técnicas como testes de Hardware-in-the-Loop (HIL),
onde o sistema real é testado em um ambiente que simula suas interagdes fisicas. Essa
abordagem contrasta com a computacao tradicional, que foca em interfaces mais abstratas
entre o usudrio e o software [Akesson et al. 2020, Pereira et al. 2017, Garousi et al. 2018].

Em suma, a identidade dos sistemas embarcados deriva de seu carater dedicado,
que impde um forte vinculo entre hardware e software. As restricdes de custo, energia e
tamanho, a necessidade de determinismo temporal e a integragdo direta com o ambiente
fisico orientam todas as escolhas de arquitetura, as praticas de desenvolvimento e as
técnicas de validacdo, distinguindo-os fundamentalmente dos computadores de uso geral.
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4.2.3. A Arquitetura Tipica: Hardware e Software

A arquitetura de um sistema embarcado € caracterizada por uma integracio eficiente entre
seus componentes de hardware e software, projetada para otimizar a fungdo especifica do
dispositivo. Embora as implementagdes variem enormemente, uma estrutura fundamental
pode ser identificada na maioria dos projetos.

O nucleo de processamento do sistema é geralmente um microcontrolador (MCU)
ou um System-on-Chip (SoC). O MCU pode ser entendido como o "cérebro" do dispositivo,
pois integra em um tnico circuito a Unidade Central de Processamento (CPU), a memoria
(tanto a volatil, RAM, quanto a ndo-voldtil, Flash) e uma variedade de periféricos. Esses
periféricos incluem timers para o controle de tempo, portas de Entrada/Saida de Propdsito
Geral (GPIO), conversores analdgico-digitais (ADC) e controladores para protocolos de
comunicagdo como I2C e SPI, que permitem ao MCU interagir com outros componentes
eletronicos.

Para perceber o ambiente, o sistema utiliza sensores. Eles funcionam como os
"sentidos" do dispositivo, capturando dados do mundo fisico e convertendo-os em sinais
elétricos que o microcontrolador pode processar. Exemplos incluem acelerdmetros que
medem movimento, microfones que captam som ou termistores que medem a temperatura.
Para agir sobre o ambiente, o sistema emprega atuadores, que podem ser vistos como
os "musculos". Componentes como motores, LEDs, telas ou relés recebem comandos
elétricos do microcontrolador e os convertem em agdes fisicas, como movimento, luz ou
som. Juntos, sensores e atuadores formam um ciclo de controle que pode ser de malha
aberta (apenas executa uma a¢do) ou de malha fechada (reage continuamente as mudancas
percebidas pelos sensores) [Kopetz 2022, Akdur et al. 2018].

No ambito do software, o firmware é o programa especializado que orquestra
todos esses componentes de hardware. Frequentemente escrito em linguagens de baixo
nivel como C ou C++, que oferecem controle direto sobre o hardware, o firmware é
responsével por inicializar os periféricos, ler os dados dos sensores, executar a 16gica da
aplicacdo e enviar os comandos apropriados para os atuadores. Para sistemas que precisam
gerenciar multiplas tarefas com garantias de tempo, pode-se utilizar um (RTOS), como
0 FreeRTOS. Um RTOS € um sistema operacional minimalista cujo principal objetivo
€ garantir o determinismo temporal, ou seja, a capacidade de executar tarefas dentro de
prazos rigorosamente definidos.

Essa arquitetura evidencia um conceito central da drea: o co-design de hardware e
software. As decisdes tomadas em uma 4rea impactam diretamente a outra. Por exemplo, a
escolha de um sensor de baixo custo e menor precisdo pode exigir algoritmos de filtragem
mais complexos no software para compensar o ruido. Inversamente, um hardware mais
poderoso pode simplificar o firmware. A anélise desses trade-offs entre laténcia, consumo
de energia e complexidade € uma habilidade critica no desenvolvimento de sistemas
embarcados e um aspecto fundamental para ilustrar a otimizag@o integrada em projetos
educacionais [Akdur et al. 2018, Micco et al. 2018].
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4.3. Apresentando a Placa de Desenvolvimento BitDogLab

Ap6s a exploracdo dos fundamentos tedricos dos sistemas embarcados, esta se¢do direciona
o foco para a ferramenta de hardware que servird como nosso laboratdrio pratico: a placa
de desenvolvimento BitDogLab. Criada para ser uma porta de entrada acessivel ao universo
da eletronica e da programacdo de baixo nivel, a BitDogl.ab materializa os conceitos de
hardware e software em uma plataforma interativa. Iniciaremos com uma visdo geral de
sua concepcao e filosofia educacional e, em seguida, faremos uma andlise detalhada dos
periféricos integrados que utilizaremos em nosso estudo de caso.

4.3.1. Visao Geral da Placa

A BitDogl.ab é uma placa educacional versitil, construida sobre o Raspberry Pi Pico,
que visa democratizar o ensino de sistemas embarcados por meio de um ecossistema
open-source. Seu objetivo principal é fomentar o aprendizado progressivo em progra-
macao, eletronica e sistemas ciber-fisicos, ao proporcionar um ambiente sinestésico
que integra elementos visuais, auditivos e interativos. A plataforma incentiva a modi-
ficacdo colaborativa, permitindo que usudrios copiem, fabriquem e aprimorem o design,
0 que a torna ideal para projetos educacionais que enfatizam a inovagao e a colaboracdo
[Fruett et al. 2024, Community 2025].

A versatilidade para a prototipagem rdapida € um dos pilares do projeto. A Bit-
Doglab oferece suporte a versdes de montagem manual (through-hole) e de montagem
em superficie (SMD), com todos os arquivos de design, incluindo esquematicos e layouts,
disponiveis no formato KiCad. Isso facilita a fabricacdo personalizada e o estudo apro-
fundado de seu circuito. A placa é programada principalmente em MicroPython, com
firmwares especificos que jd incluem bibliotecas para o controle de todos os periféricos
integrados. O nicleo da placa, o microcontrolador RP2040, com seus dois nticleos ARM
Cortex-MO+, 264 kB de SRAM e o subsistema de I/O Programavel (P1O), habilita a experi-
mentagdo com processamento paralelo e a criagio de protocolos de comunicagao customiza-
dos, permitindo que os projetos evoluam de simples jogos educativos a sistemas de senso-
riamento ambiental de forma 4gil [Foundation 2021, Community 2025, Industries 2025].

4.3.2. Periféricos Integrados: Visao Geral dos Componentes

A Figura 4.1 apresenta as duas faces da placa BitDogLab, destacando a riqueza de com-
ponentes que a tornam um laboratdrio portétil completo para experimentagdo pratica. Ao
integrar sensores e atuadores diretamente no circuito, a placa elimina a necessidade de
montagens complexas em protoboards, permitindo que o estudante foque na l6gica de
programacdo e na interacdo com o hardware desde o inicio.

A vista frontal (Subfigura 4.1a) concentra os componentes de intera¢cdo com o
usudrio:

* Display OLED: Uma tela grafica para exibir informacdes, menus e animagdes.

* Matriz de LEDs: Um conjunto de LEDs RGB enderegaveis (WS2812B) para
feedback visual dindmico.

* Joystick Analdgico: Permite a entrada de dados em dois eixos (X e Y), ideal para
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controle de movimento.
» Botoes de Usuario: Entradas digitais para comandos discretos.

* Microfone MEMS: Um sensor para capturar som ambiente e criar aplicacdes
reativas a ruidos.

* Buzzer Piezoelétrico: Um atuador para gerar feedback sonoro e melodias simples.

Matriz de LEDS RGB 5x5

Buzzer Botdo
BOOTSEL
B RP PicoW
Botdo
Microfone LED RGB
FeEmbarca central
Display OLED
128x64
r L edifi € o)
4 X O]
Joystick com El- 2% g
botdo - S | o) 9|
Botlo RESET ei:::.::;‘: IdDec Bateria il com chave liga-deslig:
(a) Placa BitDogLab (vista frontal) (b) Placa BitDoglLab (vista reversa)

Figure 4.1: Visdes da Placa BitDogLab

O verso da placa (Subfigura 4.1b) abriga os circuitos de suporte, como o sistema
de alimentacdo, o médulo de carregamento para bateria de Li-ion e o botao bootsel, que
facilita a gravacao de um novo firmware através de uma simples interface de arrastar e
soltar.

4.3.3. Periféricos Integrados: Analise Técnica

A Figura 4.1, apresentada anteriormente, serve como base para esta andlise detalhada
dos periféricos integrados da BitDogLab. A seguir, descrevem-se os principais compo-
nentes com foco em suas caracteristicas técnicas — como protocolos de comunicagao,
resolucdes e consumos de energia — e sua relevancia para projetos educacionais em
sistemas embarcados, promovendo a compreensdo pratica de conceitos como ADC, PWM
e I2C.

 Joystick Analégico: Este componente serve como uma entrada de controle mul-
tidirecional. Ele estd conectado a canais do Conversor Analégico-Digital (ADC)
do RP2040, que possui uma resolucao de 12 bits. Isso significa que a posi¢cdo do
joystick em cada eixo pode ser lida como um valor entre 0 e 4095, permitindo uma
deteccdo de movimento precisa e gradual, ideal para interfaces interativas como
jogos ou o controle de robds [Foundation 2021, Community 2025].
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* Botoes de Usuario: Dois botdes fisicos oferecem entradas digitais robustas para
interagdes simples, como selecionar menus ou disparar eventos. Eles sdo conectados
a pinos GPIO configurados com resistores de pull-down, o que garante um estado
l6gico estavel. O firmware pode ser programado para detectar o acionamento
desses botdes por meio de checagens continuas ou, de forma mais eficiente, através
de interrup¢des de hardware, um conceito fundamental em sistemas embarcados
[Foundation 2021, Community 2025].

* Buzzer Piezoelétrico: Mapeado para um pino GPIO especifico, este atuador sonoro
permite a geracdo de tons e melodias simples. Seu funcionamento € controlado
por modulacgdo por largura de pulso (PWM), uma técnica que o RP2040 suporta
nativamente. Ao variar a frequéncia e a largura do pulso, € possivel controlar a nota
e o volume do som, o que exemplifica a aplicacdo de conceitos de geracdo de sinais
para fornecer feedback auditivo em projetos [Foundation 2021, Community 2025].

* Microfone MEMS: A placa integra um microfone digital (MP34DTO01-M) que
utiliza uma interface PDM (Pulse Density Modulation) para se comunicar com o
microcontrolador. Com alta sensibilidade e baixo consumo de energia, este sensor é
adequado para aplicacdes de sensoriamento de dudio, como o reconhecimento de
comandos de voz simples ou a detec¢do de eventos sonoros (como uma palma) para
acionar uma a¢do no sistema [STMicroelectronics 2015, Foundation 2021].

* Tela OLED: Para a saida de informacdes visuais, a BitDogLab conta com uma tela
de matriz de pontos com resolugao de 128x64 pixels, controlada pelo driver SSD1306.
A comunica¢ao com o microcontrolador € feita via protocolo I?C, um barramento
serial comum em sistemas embarcados. A tela possui um buffer de memoria interno,
0 que permite atualizacdes eficientes, e € perfeita para exibir menus, status de
sensores ou interfaces graficas simples, tornando os projetos mais interativos e
informativos [Solomon Systech / Adafruit (mirror) 2010, Community 2025].

* LEDs RGB Enderecaveis: Um conjunto de LEDs RGB (baseados no chip WS2812B)
oferece um recurso de feedback visual altamente dindmico. Cada LED pode ser
controlado individualmente para exibir qualquer uma das 16 milhdes de cores,
através de um protocolo serial de um fio. No RP2040, o subsistema de I/O Pro-
gramdvel (PIO) € ideal para controlar esses LEDs, pois pode gerar os sinais de
temporizagdo precisos que o protocolo exige sem sobrecarregar a CPU principal
[WORLDSEMI 2013, Foundation 2021, Fruett et al. 2024].

4.4. Conceitos Essenciais de Programacao e Eletronica

Com a familiaridade estabelecida com os componentes fisicos da placa BitDogLab, esta
secdo aprofunda-se nos conceitos de programacio e eletronica fundamentais para dar vida
a esses periféricos. Para construir aplica¢des interativas e que percebem o ambiente, é
necessdrio compreender como o microcontrolador 1€ informacdes de sensores e como ele
comanda os atuadores. Ao integrar no¢des de interfaces digitais e analdgicas e gerencia-
mento de sinais, estes topicos preparam o terreno para o desenvolvimento do nosso estudo
de caso. Utilizando o microcontrolador RP2040 como referéncia, exploraremos as técnicas
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para leitura e controle de periféricos, facilitando a transicdo de conceitos tedricos para
protétipos funcionais [Foundation 2021, Fruett et al. 2024].

4.4.1. Entradas e Saidas Digitais (GPIO)

Os pinos de Entrada/Saida de Propésito Geral, conhecidos pela sigla GPIO (General-
Purpose Input/Output), constituem a interface mais fundamental entre o microcontrolador
e o mundo fisico. Eles sdo canais de comunicacdo versateis que podem ser configurados
via software para operar de duas maneiras principais: como uma **entrada**, para ler
informag¢des do ambiente, ou como uma **saida**, para controlar dispositivos externos.
O microcontrolador RP2040, presente na BitDoglab, oferece 30 desses pinos multifun-
cionais, que sdo a base para a interacdo com sensores e atuadores [Foundation 2021,
Community 2025].

No modo digital, um pino GPIO opera com apenas dois estados 16gicos: ALTO
(HIGH) ou BAIXO (LOW). O estado ALTO corresponde a uma tensao elétrica especi-
fica (3.3V no RP2040), representando o valor bindrio "1", enquanto o estado BAIXO
corresponde a OV, representando o "0".

» Configuracao como Saida (Output): Quando um pino é configurado como saida, o
firmware pode controlar seu estado, "escrevendo” um valor ALTO ou BAIXO nele.
Essa € a base para controlar atuadores digitais. Por exemplo, para acender um LED
ou acionar o buzzer na BitDoglLab, o firmware instrui o microcontrolador a colocar
o pino correspondente em estado ALTO, fornecendo a tensdo necessdria para a acao.
E crucial, no design de circuitos, respeitar a corrente maxima que cada pino pode
fornecer (cerca de 12 mA no RP2040) para evitar danos tanto ao microcontrolador
quanto ao componente externo.

* Configuracao como Entrada (Input): Quando configurado como entrada, o pino
"escuta" o nivel de tensdo presente nele, permitindo que o microcontrolador leia
o estado de sensores digitais, como os botdes da BitDoglLab. Para detectar o
pressionamento de um botdo, o firmware monitora o estado do pino associado. A
deteccgdo pode ser feita de duas formas: por polling, onde o software verifica o estado
do pino repetidamente em um lago, ou por interrupgdes, uma técnica mais eficiente
onde o préprio hardware notifica a CPU quando uma mudanga de estado (como uma
borda de subida ou descida do sinal) ocorre.

O diagrama de pinagem, ou pinout, é a ferramenta de referéncia essencial para o
desenvolvedor de sistemas embarcados. A Figura 4.2 exibe o pinout do Raspberry Pi Pico
W, a base da nossa BitDogLab. Ele mapeia cada pino fisico a sua numeragdo de GPIO
(ex: GPO, GP1) e suas funcdes alternativas, como os canais de comunicacao I?C, SPI e os
canais do conversor ADC. A consulta a este diagrama € o primeiro passo para conectar e
programar qualquer periférico externo.

A programacdo de GPIOs em sistemas como o RP2040 € robusta, com suporte a
operacdes atdmicas que garantem o acesso seguro aos pinos mesmo em aplicagdes com
multiplas tarefas concorrentes. Em projetos educacionais com a BitDogLab, a manipulag¢ao
de GPIOs € o primeiro passo para a criagdo de aplicagdes interativas, como 0 nosso jogo



74

RP2040

 UARTOTX | 12C0SDA § SPIORX_§ =GP0 SRes™® 1 L) vBus | W rover
UARTO RX § 12C0 SCL § SPIO CSn 2 L 39 VSYS Ground
o
e 0 3 ono | Bl UART/UART (defaul)
[ i2c1sDA ] spiosck § o2 Wiepe 37 W PO PIO,and PWM
12C1SCL} SPIOTX J GP3__JEfsp e E3 avs(oun | B roc
o
Qe S 3 W sPI/SPI (defaul)
[UARTI RXE 12c0scL | spiocsn § GRS IARs'e E78 cpos ¢ anc2 | B 12¢/12C (defauly
820 3
1201 5DAJ SPlSCKE—GP6__ LN @ 8 P27 3 anctjiciscl] B Debugaing
12C1 SCL SPI0 TX GP7 10 L 3 ADCO 12C1 SDA
= -
UART1TX § I2COSDA § SPITRX § GP8 gillee © & 30
5 )
| UART1 RX ] 12c0SCL § SPi1CSn §GPO_KFip @ © 2y P22 | Infineon 43439
| onD RERRIe = 28 D)
(=}
12C1 SDA § SPI1 SCK GP10  mlise® O 27 12C0 SCL
a
15— 2N (3 P20 |
Sz e o P GP1o 1 SeioTx | I2cTscL |
12C0 SCL GPI3RTEe S 23 GP18_§ SPI0SCK | 12C1 SDA |
T - 2 IS
o
(1201 S0A | SPi1ScK §—GPi4— EERL e X GP17 1 SPi0 Csn | 12C0SCL | UARTORX]
20- 23 . (il P16 |

o]
z
S

Figure 4.2: Diagrama de pinagem (pinout) do Raspberry Pi Pico W, base da BitDogLab.
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de reacgdo, e para o controle de periféricos mais complexos, como os LEDs RGB, que
utilizam o subsistema de I/O Programavel (PIO) para gerar os protocolos de comunicac¢io
necessarios [Foundation 2021, WORLDSEMI 2013, Fruett et al. 2024].

4.4.2. Garantindo Sinais Estaveis: Resistores Pull-up e Pull-down

Ao trabalhar com entradas digitais, como botdes, um dos desafios mais comuns é garantir
que o microcontrolador realize uma leitura de sinal estdavel e previsivel. Um pino GPIO
configurado como entrada, quando néo estd conectado a um nivel de tensio definido (nem
3.3V nem 0V), entra em um estado de "flutuacdo". Neste estado, o pino se comporta como
uma pequena antena, suscetivel a captar ruidos elétricos do ambiente, o que pode levar
o microcontrolador a interpretar valores 1l6gicos aleatdrios (0Os e 1s), resultando em um
comportamento erratico da aplicag¢do [Instruments 2021, Foundation 2021].

Para resolver este problema, utilizamos resistores de pull-up ou pull-down. Esses
componentes sdo0 essenciais para "ancorar” o pino de entrada a um estado 1l6gico padrao
quando o circuito esta aberto (por exemplo, quando um botdo néo estd pressionado).

* Resistor de Pull-up: Um resistor de pull-up conecta o pino GPIO a uma fonte de
tensao positiva (VCC, ou 3.3V na BitDogLab). Com essa configuracdo, quando
o botdo estd solto, o pino 1& um estado légico ALTO por padrdo. Ao pressionar
o botdo, o circuito se fecha para o terra (GND), a corrente flui para o caminho de
menor resisténcia, e o pino passa a ler um estado légico BAIXO.

* Resistor de Pull-down: De forma andloga, um resistor de pull-down conecta o pino
ao terra (GND). Neste caso, o estado padrao do pino quando o botao estd solto é
BAIXO. Ao pressionar o botdo, o circuito se fecha para a fonte de tensdo (VCC), e o
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pino passa a ler um estado 16gico ALTO.

Para simplificar o design de circuitos, microcontroladores modernos como o
RP2040 incluem resistores de pull-up e pull-down internos, que podem ser habilita-
dos via software para cada pino GPIO. Na BitDoglLab, os botdes ja sdo projetados
com essa estabilizacdo. Compreender este conceito é vital em projetos educacionais,
pois ensina sobre a importancia da estabilidade de sinais e como prevenir falhas de
leitura, uma das fontes mais comuns de bugs em sistemas embarcados [Instruments 2021,
Community 2025, Foundation 2021].

4.4.3. Lendo o Mundo Analégico: O Conversor ADC

Enquanto os pinos GPIO em modo digital sdo perfeitos para ler estados discretos (lig-
ado/desligado, pressionado/solto), o mundo fisico €, em sua maior parte, analdgico.
Grandezas como temperatura, intensidade de luz e a posi¢ao de um joystick ndo variam
em saltos, mas sim de forma continua. Para que um microcontrolador, que opera no
dominio digital, possa interpretar esses sinais, ele precisa de um tradutor: o Conversor
Analégico-Digital, ou ADC (Analog-to-Digital Converter).

O ADC € um periférico fundamental que mede uma tensao analdgica continua em
um pino e a converte em um valor numérico digital que o software pode processar. A
precisdo dessa conversdo € definida pela resolu¢do do ADC, medida em bits. O RP2040,
por exemplo, possui um ADC de 12 bits, o que significa que ele pode representar a faixa
de tensdo de entrada (de 0 a 3.3V) em 212 ou 4096, niveis distintos. Na pratica, isso
permite leituras muito precisas de sensores como o joystick da BitDoglLab, onde um
pequeno movimento pode ser detectado como uma mudanga sutil no valor digital lido
[Foundation 2021, Kester 2009].

Outro pardmetro crucial € a taxa de amostragem, que define quantas vezes por
segundo o ADC realiza uma conversdo. Para reconstruir um sinal analégico de forma fiel
no dominio digital, a teoria da comunicagdo estabelece que a taxa de amostragem deve
ser pelo menos o dobro da frequéncia maxima do sinal que se deseja medir, um principio
conhecido como Teorema de Nyquist-Shannon [Shannon 1948].

No contexto da BitDogLab, o ADC € a ponte que permite ao firmware ler a posicao
exata do joystick e a intensidade do som captado pelo microfone. No entanto, a aquisi¢do de
dados analégicos no mundo real apresenta desafios, como o ruido elétrico, que pode causar
flutuagdes nas leituras. Para mitigar isso, técnicas de software, como a aplicacdo de médias
moveis (moving average) ou oversampling, sdo frequentemente utilizadas para filtrar o
ruido e obter um valor mais estdvel e preciso. A compreensio desses conceitos e técnicas é
essencial para o desenvolvimento de sistemas embarcados que interagem de forma confidvel
com o ambiente [STMicroelectronics 2009, Lee and Levin 2025, Fruett et al. 2024].

4.5. Estudo de Caso: Construindo um Jogo de Velocidade

Este estudo de caso aplica os conceitos tedricos e praticos discutidos anteriormente em
um projeto interativo e educativo, utilizando a placa BitDogLab para desenvolver o jogo
"Ligeirinho" — uma aplicacdo de medi¢do de tempo de reacido que integra programacao
embarcada, interfaces digitais e analdgicas, e periféricos sensoriais. Baseado no microcon-
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trolador RP2040, o projeto exemplifica o co-design hardware-software, com foco em en-
tradas/saidas GPIO, gerenciamento de sinais, temporizacdo e feedback multimodal (visual,
auditivo e tétil). Essa implementacgao pratica refor¢a principios de sistemas embarcados,
como determinismo temporal e eficiéncia energética, enquanto promove experimentagao
em contextos STEAM, alinhando-se a abordagens educacionais que incentivam a prototi-
pagem rdpida e a depuracdo iterativa [Fruett et al. 2024, Alves 2025, Foundation 2021].

4.5.1. Definicao do Escopo e Légica do Jogo

O fluxo 16gico segue uma estrutura sequencial com estados bem definidos: (i) inicializa¢ao
e exibicdo de mensagem de prontiddo no display OLED; (ii) detec¢do de pressdo no
botdo A para iniciar; (iii) fase de preparagdo com LED verde aceso e atraso randdmico
(1-5 segundos); (iv) ativacdo da fase de reacdo com LED vermelho, buzzer e inicio
de temporizador; (v) captura de tempo ao pressionar B, com cdlculo de laténcia em
milissegundos; (vi) exibicdo do resultado no OLED e reset para nova rodada. Essa
légica incorpora mecanismos de debouncing para estabilidade de sinais e interrupcdes
para respostas deterministicas, destacando restricdes de tempo real soft (onde atrasos
degradam a experiéncia, mas ndo causam falhas criticas). O escopo enfatiza acessibilidade,
utilizando firmware em C com SDK do RP2040, e incentiva extensdes como multiplayer ou
integracdo com sensores adicionais para explorar trade-offs em complexidade e consumo
[Alves 2025, Foundation 2021, Kopetz 2022].

4.5.2. Implementacao Pratica do Firmware

A implementagdo do firmware para o "Ligeirinho" é realizada em linguagem C utilizando
0 SDK 2.1.0 do Raspberry Pi Pico, com configuracio via CMakeL.ists.txt para compilar o
executdvel e vincular bibliotecas essenciais (pico_stdlib, hardware_timer, hardware_pwm,
hardware_clocks, hardware_i2c). Esse arquivo gerencia o processo de build de forma
cross-platform, definindo padrdes de C/C++ (C11 e C++17), importando o SDK via
pico_sdk_import.cmake e inicializando-o com pico_sdk_init(). Ele também especifica
0 board como pico_w (para suporte Wi-Fi, embora ndo usado aqui, permitindo ex-
tensoes futuras), ativa saidas de depuracdo via USB/UART (pico_enable_stdio_usb e
pico_enable_stdio_uart) e gera outputs extras como .uf2 para upload bootloader [Pi 2025,
Foundation 2021, Alves 2025].

Um trecho chave extraido do CMakeLists.txt ilustra a adicdo do executdvel e
vinculagdo de bibliotecas, destacando a integracdo com periféricos do RP2040 (timers,
PWM, clocks e I2C para OLED):

# Adiciona o arquivo-fonte correto
add_executable (Ligeirinho Ligeirinho.c inc/ssd1306_1i2c.c)

# Define o nome e a versdo do programa
pico_set_program_name (Ligeirinho "Ligeirinho")
pico_set_program_version(Ligeirinho "0.1")

# Ativa saida USB para depuracgao
pico_enable_stdio_uart (Ligeirinho 0)

pico_enable_stdio_usb (Ligeirinho 1)

# Adiciona bibliotecas necesséarias
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target_link_libraries(Ligeirinho pico_stdlib hardware_timer
hardware_pwm hardware_clocks hardware_i2c)

# Inclui diretdérios do projeto
target_include_directories (Ligeirinho PRIVATE ${CMAKE_CURRENT_LIST_DIR
})

# Gera arquivos adicionais necessarios para o Pico
pico_add_extra_outputs (Ligeirinho)

Listing 4.1: Configuragdo do ambiente de compilacdo para o projeto Ligeirinho com o
SDK do Raspberry Pi Pico

Aqui, add_executable compila os fontes principais (Ligeirinho.c e a biblioteca
OLED ssd1306_i2c.c), enquanto target_link_libraries vincula médulos hardware para
suporte a timers (medi¢do de reacdo), PWM (controle de LEDs e buzzer), clocks (gerencia-
mento de frequéncia) e I2C (display). A ativagdo de stdio USB facilita depurag@o via serial,
crucial para testes educativos, e pico_add_extra_outputs gera bindrios como .uf2 para
upload direto, promovendo iteracdes rdpidas sem ferramentas externas. Essa configuracio
exemplifica boas praticas em co-design, onde o build reflete restricdes embarcadas como
memoria limitada (via stdlib minimalista) e determinismo temporal (via hardware_timer
para WCET baixo) [Pi 2025, Akdur et al. 2018].

O cédigo integra conceitos da Secdo 1.4, como GPIOs para entradas/saidas digitais
(botdes e LEDs), resistores pull-up internos para estabilidade de sinais, e PWM para
controle de brilho e dudio, evitando estados de flutuacdo e garantindo respostas precisas. A
seguir, apresentam-se trechos comentados do arquivo Ligeirinho.c, destacando a aplicagéo
prética na BitDogLab [Alves 2025, Foundation 2021, Community 2025].

Primeiro, a inicializacdo de hardware e periféricos demonstra o uso de GPIOs
como entradas com pull-up (para botdes, prevenindo flutuacdo conforme Secdo 1.4.2) e
saidas PWM para LEDs e buzzer (controlando duty cycle para eficiéncia energética):

// Inicializa a interface I2C para o display OLED
i2c_init (i2cl, ssd1306_1i2c_clock % 1000);
gpio_set_function (I2C_SDA, GPIO_FUNC_I2C);
gpio_set_function (I2C_SCL, GPIO_FUNC_I2C)
gpio_pull_up(I2C_SDA);
gpio_pull_up(I2C_SCL);

I

// Inicializa o display OLED e exibe mensagem inicial
ssd1306_1init ();
display_text ("PRESSIONE A PARA COMECAR!");

//Configura os botd como entradas com pull-up interno
gpio_init (BUTTON_START) ;

gpio_init (BUTTON_STOP) ;

gpio_set_dir (BUTTON_START, GPIO_IN);

gpio_set_dir (BUTTON_STOP, GPIO_IN);

gpio_pull_up (BUTTON_START) ;

gpio_pull_up (BUTTON_STOP) ;

S

// Inicializa os LEDs para PWM
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pwm_init_led (LED_GREEN) ;

pwm_init_led (LED_RED) ;

// Inicialmente, ambos os LEDs estdo desligados
pwm_set_gpio_level (LED_GREEN, O0);
pwm_set_gpio_level (LED_RED, O0);

// Inicializa o buzzer com PWM
pwm_init_buzzer (BUZZER) ;

Listing 4.2: Inicializagd@o de periféricos da BitDogLab para o jogo Ligeirinho

Aqui, gpio_pull_up aplica resistores internos (aprox. 50-80k€2) para estabilidade,
enquanto pwm_init_led/buzzer configura slices PWM com wrap fixo (1000 para LEDs,
ajustavel para buzzer), ilustrando controle de saidas digitais moduladas para feedback
sensorial [Instruments 2021, Foundation 2021].

Em seguida, a 16gica de debouncing e interrupg¢des para botdes integra deteccdo de
bordas e temporizacao, evitando ruidos em entradas digitais:

bool debounce_button (uint gpio)

{
static uint32_t last_time = 0;
uint32_t current_time = to_ms_since_boot (get_absolute_time());

if (current_time - last_time < 50)
{

return false;

last_time = current_time;
return gpio_get (gpio) == 0;

// Configura a interrupgdo para o botdo B (BUTTON_STOP)
gpio_set_irg enabled_with_callback (BUTTON_STOP, GPIO_IRQ_EDGE_FALL,
true, &gpio_callback);

Listing 4.3: Implementacdo de debouncing e interrup¢do para botdes no jogo Ligeirinho

Essa funcao debounce_button filtra pressdes rdpidas (<50ms), complementando
pull-ups para sinais estdveis, enquanto interrupgdes (EDGE_FALL) garantem respostas em
tempo real sem polling constante, otimizando consumo [Foundation 2021, Instruments 2021].

A fase de jogo utiliza timers absolutos para medi¢@o precisa e rand() para atraso
aleatdrio, aplicando conceitos de tempo real:

void start_game ()

{
// ... (preparacdo com LED verde via PWM)
pwm_set_gpio_level (LED_GREEN, LED_ON) ;

uint delay_ms = 1000 + (rand() % 4000);
for (uint i = 0; 1 < delay_ms / 10; i++)

{

sleep_ms (10);
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if (gpio_get (BUTTON_STOP) == 0)
{
false_start_detected = true;
break;

// ... (ativacdo de LED vermelho, buzzer e timer)
pwnm_set_gpio_level (LED_GREEN, O0);
pwnm_set_gpio_level (LED_RED, LED_ON);

buzzer_beep (3000, 300);

start_timer () ;

reaction_phase = true;

// Callback de interrupcdo para botdao B
void gpio_callback (uint gpio, uint32_t events)
{
if (gpio == BUTTON_STOP && game_running && reaction_phase)
{
reaction_time = get_absolute_time();
button_b_pressed = true;

Listing 4.4: Logica principal e controle do jogo Ligeirinho

Finalmente, o loop principal e cdlculo de tempo unem esses elementos, com
exibi¢do via OLED (usando I?C, embora ndo haja ADC explicito aqui, o framework
suporta extensdes analdgicas como joystick para variagdes):

while (true)
{
if (debounce_button (BUTTON_START))
{
if (!game_running)
{
start_game () ;

}
sleep_ms (300);

if (game_running && reaction_phase && button_b_pressed)
{
uint32_t elapsed_time = get_elapsed_time();
pwm_set_gpio_level (LED_RED, O0);
stop_buzzer (0, NULL);

char buffer([20];
sprintf (buffer, "Tempo: $.1f ms", (float)elapsed_time);
display_text (buffer);

sleep_ms (5000) ;
// Reset estados
game_running = false;
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reaction_phase = false;
/ /
/1

display_text ("PRESSIONE A PARA COMECAR!");

}

Listing 4.5: Loop principal do jogo Ligeirinho para controle de botdes e exibi¢do de
resultados

Essa estrutura aplica GPIOs, pull-ups e timers da Secao 1.4, com PWM para atu-
adores, promovendo depuracio via hardware-in-the-loop [Alves 2025, Garousi et al. 2018].

4.5.3. Analise e Execucio do Projeto

Ao executar o firmware na BitDoglab (compilado e carregado via USB em modo boot-
loader), o comportamento esperado inicia com a mensagem "PRESSIONE "A" PARA
COMECAR!" no OLED. Pressionar o botdo A acende o LED verde (brilho 50% via
PWM), seguido de atraso aleatério; em seguida, o LED vermelho acende com beep
no buzzer (3000Hz por 300ms), iniciando o timer. Pressionar B captura o tempo (ex.:
"Tempo: 250.0 ms" exibido), desliga LEDs e reseta apds 5s. Queimas de largada piscam
o LED vermelho trés vezes com mensagem "MUITO CEDO!". Essa execugao destaca
estabilidade de sinais (sem flutuagGes gracas a pull-ups e debouncing) e determinismo
temporal (laténcias <Ims via interrup¢des), com consumo eficiente ( S0mA em operacio).
Incentiva-se experimentacao: ajuste delays para simular hard real-time, integre joystick
via ADC para controles analdgicos, ou adicione métricas WCET para andlise de desem-
penho, fomentando iteracdes educativas e depuracdo de falhas como ruidos em botdes
[Alves 2025, Foundation 2021, Kopetz 2022, Garousi et al. 2018].

4.6. Conclusao

Este capitulo apresentou uma jornada introdutdria ao universo dos sistemas embarca-
dos, partindo dos pilares tedricos até a aplicacdo pratica dos conceitos na placa de de-
senvolvimento BitDoglab. Iniciamos com a definicdo de sistemas embarcados como
solugdes computacionais dedicadas, otimizadas para operar sob restri¢des de tempo real,
energia e custo, em contraste com a flexibilidade da computacdo de propdsito geral
[Wolf 2001, Kopetz 2022]. A andlise da arquitetura tipica destacou o acoplamento in-
trinseco entre hardware — microcontroladores, sensores e atuadores — e software —
o firmware —, enfatizando o co-design como uma estratégia essencial para balancear
requisitos funcionais e ndo-funcionais [Akdur et al. 2018, Micco et al. 2018].

A apresentacdo da BitDoglab como uma ferramenta educacional open-source
demonstrou sua versatilidade para a prototipagem répida. A exploracio de seus periféricos
integrados permitiu a aplicagdo pratica de conceitos fundamentais, como o uso de pinos
GPIO para o controle de entradas e saidas digitais, a aplicagdo de resistores de pull-up/down
para garantir a estabilidade de sinais e a utilizacdo do conversor ADC para a leitura de
sensores analégicos [Foundation 2021, Fruett et al. 2024, Instruments 2021]. O estudo de
caso com o jogo "Ligeirinho" consolidou esses aprendizados, ao exigir a implementagdo
de uma légica com temporizacdo precisa, feedback multimodal (visual e sonoro) e um
ciclo de depuragdo interativo, ilustrando a integragdo hardware-software em um contexto
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STEAM acessivel [Alves 2025, Garousi et al. 2018].

A integracdo entre hardware e software emerge, portanto, como o cerne do de-
senvolvimento de sistemas embarcados. O projeto "Ligeirinho" exemplifica essa sin-
ergia, onde a escolha de usar PWM para controlar a intensidade dos LEDs e os tons
do buzzer, ou o protocolo I2C para se comunicar com a tela OLED, sdo decisdes coor-
denadas que influenciam diretamente o firmware. Essa experi€ncia pratica prepara os
aprendizes para os desafios da industria, que incluem a conformidade com normas de
seguranca (como a ISO 26262) e a andlise de falhas, além de fomentar a criatividade
para a prototipagem de novos sistemas ciber-fisicos [Pereira et al. 2017, Pasricha 2022].
A BitDoglab, com seu design colaborativo, oferece um ponto de partida ideal para a
experimentagdo, incentivando o aprendizado continuo em 4reas como robdtica, automacao
e dispositivos interativos, alinhando-se as demandas de um campo em constante evolu¢do
[Fruett et al. 2024, Industries 2025, Sztipanovits et al. 2005].
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