
Capı́tulo

5
Introdução ao Git e GitHub: Controle de Versão
na Prática

Deyvison Samuel Gomes do Nascimento, Maria Vitória da Silva Araújo, Ma-
ria Yasmin Oliveira Mélo, M.e Maykol Lı́vio Sampaio Vieira Santos

Resumo

O minicurso ”Introdução ao Git e GitHub”tem como objetivo apresentar, de forma acessı́-
vel e prática, os fundamentos do controle de versão por meio das ferramentas Git, GitHub
e GitHub Desktop. Destinado a estudantes iniciantes na área de tecnologia, o curso visa
capacitar os participantes a utilizarem essas ferramentas essenciais tanto no contexto
acadêmico quanto no mercado de trabalho. Com carga horária total de três horas, o
conteúdo abordará desde a criação de uma conta no GitHub, a utilização dos principais
comandos e fluxos de trabalho, além do envio e atualização de projetos em repositórios
remotos. A metodologia adotada combina exposições teóricas com atividades práticas
em laboratório, permitindo que os participantes acompanhem passo a passo o funcio-
namento das ferramentas e desenvolvam autonomia na utilização do versionamento de
código. Ao final, espera-se que os alunos estejam aptos a criar e gerenciar seus próprios
repositórios, colaborar em projetos em equipe e compreender a lógica do controle de
versões distribuı́do, consolidando uma base sólida para práticas modernas de desenvol-
vimento.
Palavras-chave: Git, GitHub, Versionamento de Código, GitHub Desktop

Abstract

The short course ”Introduction to Git and GitHub”aims to present, in an accessible and
practical way, the fundamentals of version control through the tools Git, GitHub, and
GitHub Desktop. Designed for beginner students in the field of technology, the course
seeks to enable participants to use these essential tools both in academic settings and in

Deyvison Samuel Gomes do Nascimento (apresentador) é estudante do curso de Tecnologia em Análise e Desenvolvimento de
Sistemas pelo Instituto Federal do Piauı́ (IFPI) campus Piripiri.
Maria Vitória da Silva Araújo é estudante do curso de Tecnologia em Análise e Desenvolvimento de Sistemas pelo IFPI campus
Piripiri.
Maria Yasmin Oliveira Mélo (apresentadora) é estudante do curso de Tecnologia em Análise e Desenvolvimento de Sistemas pelo
IFPI campus Piripiri.
Maykol Lı́vio Sampaio Vieira Santos (orientador) é professor de Informática no IFPI campus Piripiri e Mestre em Tecnologia e
Gestão em EAD pela UFRPE (UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO).

1

84



the job market. With a total duration of three hours, the content will cover everything
from creating a GitHub account, using the main commands and workflows, to sending
and updating projects in remote repositories. The methodology combines theoretical ex-
planations with hands-on lab activities, allowing participants to follow the step-by-step
operation of the tools and develop autonomy in using code versioning. By the end of the
course, students are expected to be able to create and manage their own repositories,
collaborate on team projects, and understand the logic of distributed version control, es-
tablishing a solid foundation for modern development practices.
Keywords: Git, GitHub, Code Versioning, GitHub Desktop

5.1. Introdução
O Git surgiu em 2005, criado por Linus Torvalds após a ruptura com o BitKeeper como
um sistema de controle de versão distribuı́do, rápido, seguro e adequado a fluxos de traba-
lho colaborativos. Sua eficiência, confiabilidade e suporte a branches tornaram-no padrão
mundial no desenvolvimento de software. Já o GitHub, lançado em 2008, expandiu o uso
do Git ao oferecer uma interface web intuitiva e recursos sociais, como forks, pull requests
e issues, transformando-se em um espaço central de hospedagem e colaboração de código.
Com a aquisição pela Microsoft em 2018, a plataforma ganhou ainda mais infraestrutura e
integração com serviços em nuvem, consolidando-se como a maior comunidade de desen-
volvedores do mundo. Hoje, Git e GitHub são essenciais para a organização, segurança e
produtividade no desenvolvimento de software, além de impulsionarem práticas moder-
nas de colaboração, DevOps e aprendizado em programação [Git-SCM, 2025; Microsoft,
2018].

5.1.1. História do Git

Antes do Git, alguns sistemas já buscavam controlar versões de código, como o Source
Code Control System (SCCS), criado em 1972, que registrava alterações de forma se-
quencial, mas tinha limitações e funcionava apenas em Unix. Mais tarde, em 1986, o
Concurrent Versions System (CVS), trouxe o conceito de repositório compartilhado e per-
mitiu colaboraço entre vários desenvolvedores, embora apresentasse falhas em operaçes
de merge e dificuldades no gerenciamento de arquivos [Rochkind, 1975; Spinellis, 2005;
Grune, 1986; Free Software Foundation, 1993].

Apesar dos avanços, esses sistemas eram centralizados, ou seja, dependiam de
um servidor único para armazenar o código. Esse modelo gerava problemas como a
dependência total do servidor — que, em caso de falha, interrompia o trabalho — e
a limitação na colaboração em larga escala, mostrando a necessidade de soluções mais
flexı́veis e robustas [Loeliger & McCullough, 2012; Tech-in-Japan, 2021].

5.1.2. Linux e BitKeeper

Nos anos 1990, o Linux Kernel já era um dos maiores projetos colaborativos de software,
mas até 2002 as contribuições eram integradas manualmente, com patches enviados por e-

2

85



mail, em um processo lento e sujeito a erros. Para resolver essas limitações, a comunidade
passou a utilizar o BitKeeper, um sistema distribuı́do que permitia a cada desenvolvedor
manter uma cópia completa do repositório, facilitando o trabalho offline e a integração
em larga escala. Essa adoção representou um grande avanço em relação a modelos cen-
tralizados como o Subversion (SVN) [Pro Git — git-scm.com].

No entanto, o BitKeeper era proprietário e, em 2005, o acordo que permitia seu
uso gratuito pela comunidade do Linux Kernel foi encerrado. Isso gerou um impasse, já
que depender de uma tecnologia fechada colocava em risco a continuidade do projeto. Foi
nesse cenário que Linus Torvalds decidiu criar uma nova ferramenta, livre e distribuı́da,
capaz de atender às necessidades do Linux Kernel: o Git [Pro Git, s.d.; LWN.net, s.d.].

5.1.3. Criação do Git

Quando perdeu o acesso ao BitKeeper, Linus Torvalds decidiu criar seu próprio sistema
de controle de versão distribuı́do. Para isso, estabeleceu alguns requisitos fundamentais
que orientariam o desenvolvimento da nova ferramenta: precisava ser rápido, superando
os sistemas existentes; deveria ser distribuı́do, garantindo que cada desenvolvedor tivesse
uma cópia completa do repositório em sua máquina; tinha que ser seguro, assegurando a
integridade dos dados; e, por fim, precisava oferecer bom suporte a fluxos de trabalho não
lineares, lidando de forma eficiente com branches e merges [i-Programmer].

Pouco tempo depois, Linus transferiu a manutenção do projeto para Junio C. Ha-
mano, que rapidamente se destacou na comunidade e até hoje atua como mantenedor
principal do Git, liderando seu desenvolvimento contı́nuo e garantindo sua evolução ao
longo dos anos [Pro Git, s.d.].

5.1.4. Evolução

Após sua criação em 2005, o Git evoluiu rapidamente, recebendo melhorias constantes e
conquistando uma comunidade cada vez maior. Em 2007, ele começou a se popularizar
fora do desenvolvimento do kernel Linux, chamando a atenção de outros projetos de soft-
ware livre. No ano seguinte, em 2008, surgiu o GitHub, uma plataforma que revolucionou
a forma de usar o Git ao oferecer uma interface web simples e recursos como issues, pull
requests e colaboração social. Essa combinação foi decisiva para a popularização do Git
em escala global [Pro Git, s.d.; GitHub, 2025].

A partir de 2010, grandes empresas de tecnologia, como Google, Microsoft, Fa-
cebook e Twitter, passaram a adotar o Git como ferramenta padrão em seus fluxos de
desenvolvimento, o que consolidou sua posição como principal sistema de controle de
versão distribuı́do. Em 2018, a Microsoft adquiriu o GitHub, fortalecendo ainda mais o
ecossistema em torno do Git e demonstrando a importância estratégica dessa ferramenta
para o desenvolvimento de software moderno [Microsoft, 2018; Wired, 2018].

3

86



5.1.5. Por que o Git se tornou o padrão?

O Git se consolidou como padrão no desenvolvimento de software por adotar um mo-
delo distribuı́do, no qual cada cópia do repositório funciona como um backup com-
pleto e independente, permitindo trabalho mesmo sem conexão a um servidor central.
Sua performance também é um destaque, pois operações locais como commit, branch
e merge são executadas de forma muito rápida em comparação com sistemas anteriores
[i-Programmer; Pro Git — git-scm.com].

Outro diferencial é o suporte a branches leves, que facilita fluxos paralelos e co-
laborativos, além da forte ênfase em segurança, com uso de algoritmos de hash como
SHA-1 e SHA-256 para proteger a integridade do histórico. O crescimento de platafor-
mas como GitHub, GitLab e Bitbucket criou um ecossistema robusto de colaboração, o
que consolidou o Git como o sistema de controle de versão mais utilizado no mundo
[GitLab, 2025; Git, 2025; Rewind, 2024].

5.2. História do GitHub
Em 2008, surgiu o GitHub, fundado por Tom Preston-Werner, Chris Wanstrath, PJ Hyett
e, posteriormente, Scott Chacon, que entrou para contribuir com a documentação. O
objetivo inicial da plataforma era combinar o poder do Git com funcionalidades sociais,
criando um espaço que facilitasse o processo de hospedar, revisar e colaborar em projetos,
tanto de código aberto quanto privados [Founding; PSL Models; Medium; WIRED].

O grande diferencial do GitHub estava em sua interface web amigável, que per-
mitia navegar pelos repositórios de forma simples e intuitiva. Além disso, introduziu
recursos que se tornaram padrão na colaboração de software, como forks, pull requests e
issues, transformando o fluxo de trabalho dos desenvolvedores. Outro aspecto inovador
foi a criação de perfis e métricas para programadores, funcionando como uma espécie de
“rede social para desenvolvedores”, o que estimulou ainda mais a colaboração e a visibi-
lidade dentro da comunidade de software [Timeline; WIRED].

5.2.1. Crescimento inicial

A partir de 2010, o GitHub deixou de ser apenas um espaço para projetos de código
aberto e passou a atrair empresas e grandes corporações, que enxergaram na plataforma
uma forma eficiente de organizar e gerenciar fluxos de desenvolvimento. Nesse con-
texto, a plataforma evoluiu para hospedar não apenas repositórios públicos, mas também
projetos privados, o que ampliou significativamente seu alcance no mercado corporativo
[Encyclopedia Britannica; GitHub, 2014].

O crescimento foi exponencial, com milhões de desenvolvedores migrando para
o GitHub, que se tornou o padrão de facto em hospedagem e colaboração em projetos
de software. O modelo baseado em forks, pull requests e issues consolidou-se como re-
ferência global, influenciando inclusive plataformas concorrentes. Esse movimento mar-
cou a transição do GitHub de uma ferramenta voltada majoritariamente para a comuni-

4

87



dade de código aberto para uma infraestrutura essencial no desenvolvimento de software
em escala global, utilizada tanto por programadores independentes quanto por grandes
empresas de tecnologia [Wired, 2012; Wired, 2013].

Em 2018, o GitHub foi adquirido pela Microsoft por US$ 7,5 bilhões, em uma das
maiores negociações do setor de tecnologia daquele perı́odo. A compra gerou desconfiança
inicial na comunidade de código aberto, que historicamente via a Microsoft com certo
receio [Microsoft, 2018; TechCrunch, 2018]. Sob a gestão da Microsoft, a plataforma
recebeu novos investimentos, expandiu sua infraestrutura e fortaleceu a integração com
serviços como o Azure e outras ferramentas do ecossistema Microsoft. Longe de perder
relevância, o GitHub continuou crescendo e consolidou-se ainda mais como o principal
espaço de colaboração em software no mundo, reunindo milhões de desenvolvedores e
empresas em torno do desenvolvimento aberto e compartilhado [TechCrunch, 2018; Wi-
red, 2018].

5.2.2. Status atual e impacto

Atualmente, o GitHub é a maior plataforma de hospedagem de código do mundo, reu-
nindo mais de 100 milhões de repositórios e cerca de 90 milhões de desenvolvedores
registrados. A plataforma atende tanto projetos de código aberto, que impulsionam a
inovação coletiva, quanto empresas privadas, que utilizam seus recursos para gerenciar
fluxos de desenvolvimento em larga escala [Encyclopedia Britannica].

O GitHub tornou-se peça central na cultura DevOps e nos processos de Integração
Contı́nua e Entrega/Deploy Contı́nuo(CI/CD), permitindo integração contı́nua, automação
e colaboração global de software. Além disso, consolidou-se também como um hub edu-
cacional, oferecendo iniciativas como o GitHub Student Developer Pack, cursos e ações
voltadas ao incentivo do aprendizado de programação, contribuindo para a formação de
novas gerações de desenvolvedores [GitHub, 2025; GitHub, 2025].

5.3. Importância do Git/GitHub hoje
O Git é uma das ferramentas mais importantes no desenvolvimento de software atual-
mente, pois funciona como um sistema de controle de versão distribuı́do. Ele registra
todo o histórico de modificações feitas em um projeto, permitindo que desenvolvedores
acompanhem cada alteração no código, retornem a versões anteriores quando necessário e
entendam como o sistema evoluiu ao longo do tempo. Esse recurso evita perdas de traba-
lho e garante maior segurança no processo de desenvolvimento, além de permitir que cada
programador mantenha em sua máquina uma cópia completa do repositório com todo o
histórico do projeto [Pro Git Book – Chacon & Straub, Apress, 2014; Atlassian – What is
Git?].

Outro ponto central é a colaboração. O Git facilita o trabalho em equipe, permi-
tindo que vários desenvolvedores atuem simultaneamente em um mesmo projeto sem que
suas mudanças interfiram umas nas outras. Essa caracterı́stica torna o fluxo de trabalho

5

88



mais ágil, estruturado e produtivo. Em resumo, o Git não é apenas uma ferramenta para
salvar versões de código, mas um verdadeiro pilar do desenvolvimento moderno, garan-
tindo organização, segurança e eficiência no ciclo de criação de software [HostRagons,
2025; Pro Git Book – Chacon & Straub, Apress, 2014].

O GitHub é uma das plataformas mais relevantes do ecossistema tecnológico, fun-
cionando como um espaço central para hospedagem, colaboração e compartilhamento de
código. Baseado no Git, ele amplia suas funcionalidades ao oferecer uma interface prática
na nuvem e ferramentas que apoiam tanto projetos individuais quanto grandes iniciativas
globais. Um dos seus principais diferenciais é o incentivo à colaboração: milhões de
desenvolvedores e organizações utilizam recursos como pull requests, issues e discussi-
ons para propor melhorias, revisar alterações e resolver problemas em conjunto. Esse
ambiente participativo transformou o GitHub em um ponto de encontro para projetos de
impacto mundial, como o Linux, o React e o Visual Studio Code [GitHub Docs – About
GitHub; Coursera – What is GitHub?].

Além disso, a plataforma integra práticas modernas de DevOps e CI/CD, permi-
tindo configurar fluxos automáticos de testes, validação e implantação, o que aumenta
a eficiência e a qualidade das entregas. O GitHub também tem grande importância na
educação, com iniciativas como o Student Developer Pack, que oferece ferramentas pro-
fissionais gratuitas e incentiva estudantes a aprenderem de forma prática como funciona o
desenvolvimento colaborativo. Assim, o GitHub consolidou-se como mais que um repo-
sitório de código: é um ecossistema essencial para colaboração, inovação e aprendizado
em escala global [DEV Community – How GitHub Improves Security and CI/CD Work-
flows, 2024; GitHub, 2025].

5.4. Conceitos Iniciais
Os conceitos básicos de Git e GitHub giram em torno do controle de versão e da colaboração
em projetos de software. O Git é um sistema que registra todas as alterações feitas
em arquivos, permitindo acompanhar o histórico, restaurar versões anteriores e traba-
lhar com ramificações para testar novas ideias sem comprometer a versão principal. Já
o GitHub é uma plataforma online que utiliza o Git como base, mas adiciona ferramen-
tas de colaboração, como revisão de código, gerenciamento de tarefas e integração com
automações. No uso prático, o fluxo básico envolve criar ou clonar um repositório, re-
gistrar mudanças com commits, enviar e receber atualizações de um repositório remoto e
gerenciar branches para desenvolvimento paralelo. Assim, Git e GitHub juntos oferecem
organização, segurança e eficiência no desenvolvimento individual ou em equipe[Chacon
& Straub, 2014; GitHub Docs, 2025; GeeksforGeeks, 2023].

5.4.1. O que é controle de versão?

O controle de versão é um sistema que registra e gerencia todas as alterações feitas em
arquivos de um projeto ao longo do tempo, permitindo retornar a versões anteriores,

6

89



acompanhar a evolução e desfazer erros. Além de organização, ele facilita o trabalho
em equipe, já que vários desenvolvedores podem atuar de forma simultânea sem sobres-
crever o trabalho uns dos outros. Com o uso de ramificações (branches), cada membro
pode testar soluções em separado e depois integrá-las de forma segura ao projeto principal
[Earth Data Science – Version Control Introduction; Atlassian – Git branching explained].

O GitHub, por sua vez, leva os benefı́cios do Git para a nuvem, oferecendo hospe-
dagem de repositórios e ampliando as possibilidades de colaboração. Além de comparti-
lhar código, a plataforma fornece recursos como pull requests, gerenciamento de tarefas,
permissões de acesso, integração com ferramentas de automação e suporte a projetos de
qualquer escala. Dessa forma, Git e GitHub tornaram-se pilares do desenvolvimento mo-
derno, garantindo organização, eficiência e qualidade em equipes de diferentes tamanhos
[GitHub Docs – About GitHub; Everhour Blog – Why GitHub is important in modern
development (2025)].

5.4.2. Diferença entre Git e GitHub

O Git é um sistema de controle de versão distribuı́do que funciona localmente, permitindo
registrar todas as alterações de um projeto, acompanhar o histórico completo de versões,
restaurar estados anteriores e criar ramificações (branches) sem comprometer a versão
principal. Cada alteração inclui informações sobre autor, data e modificações realizadas,
garantindo rastreabilidade e organização do projeto. Por ser distribuı́do, cada colabora-
dor possui uma cópia completa do repositório, podendo trabalhar offline e sincronizar
alterações apenas quando necessário [Stack Overflow – Git is a revision control system;
GeeksforGeeks – Differences Between Git and GitHub].

O GitHub é uma plataforma online que hospeda repositórios Git na nuvem, ofere-
cendo armazenamento centralizado e recursos de colaboração, como pull requests, issues,
controle de permissões e integração com automação via GitHub Actions. Ele reúne uma
comunidade global de desenvolvedores, permitindo que equipes de qualquer tamanho tra-
balhem de forma organizada e colaborativa. Apesar de depender de conexão à internet
e de uma conta na plataforma, o GitHub não substitui o Git, que continua responsável
pelo controle de versões local e distribuı́do, podendo ser usado também com outras plata-
formas como GitLab, Bitbucket ou servidores privados [GitHub Docs – How do Git and
GitHub work together?; DataCamp – Git vs GitHub: Key differences explained; HubSpot
– Git vs GitHub].

5.5. Desenvolvimento
Quanto ao desenvolvimento, este será realizado de forma isolada em alguns momentos.
Inicialmente, no item 1.5.1, serão apresentados os conceitos básicos da instalação da
ferramenta GitHub Desktop. Em seguida, no item 1.5.2, será introduzida a criação e a
sincronização de repositórios na mesma ferramenta, além da inclusão de outros elemen-
tos, como o .gitignore e o README.md. Posteriormente, haverá ainda uma subseção,

7

90



denominada 1.5.3, na qual será apresentada a colaboração por meio de branches com o
GitHub Desktop [GitHub 2025].

5.5.1. Instalação e Configuração inicial do GitHub Desktop

Quanto à instalação da aplicação GitHub Desktop, esta pode ser realizada atualmente no
macOS 11.0 ou posterior e no Windows 10 (64 bits) ou versão posterior [GitHub 2025].
Para efetuar a instalação da aplicação, o usuário deve seguir os seguintes procedimentos:

1. Acesse a página de download do GitHub Desktop).

2. Clique em Baixar para Windows, ou baixar para MacOS.

Figura 5.1. Página de descarregamento da ferramenta GitHub Desktop. Fonte:
Próprio Autor.

3. Na pasta Downloads do computador, o usuário deve clicar duas vezes no arquivo
de instalação do GitHub Desktop.

Figura 5.2. Exemplo de criação de commit no GitHub Desktop com mensagem
clara e objetiva. Fonte: Próprio Autor.

4. GitHub Desktop será executado após a instalação ser concluı́da.

Após a instalação da aplicação em sua máquina, será necessária a criação de uma
conta no GitHub ou no GitHub Enterprise, a fim de que o usuário possa trocar dados entre
seus repositórios locais e remotos [GitHub 2025]. Para que o usuário comum se inscreva
em uma conta pessoal, devem ser seguidos os seguintes passos:

8

91



1. Navegue até a página https://github.com/.

2. Clique em Cadastra-se no GitHub.

Figura 5.3. Exemplo de criação de commit no GitHub Desktop com mensagem
clara e objetiva. Fonte: Próprio Autor.

3. Preencha as informações de cadastro da página, ou como alternativa, clique em
Continue with Google para se inscrever usando uma conta do Google.

Figura 5.4. Exemplo de criação de commit no GitHub Desktop com mensagem
clara e objetiva. Fonte: Próprio Autor.

4. Continue seguindo os prompts indicados pela plataforma para finalizar a criação de
sua conta pessoal. Vale ressaltar que durante a inscrição será solicitado ao usuário
a verificação de e-mail para fins de segurança.

Com relação à interface da aplicação proposta, que será devidamente apresentada
no decorrer do texto, temos a seguinte captura de tela ilustrando a tela inicial dessa fer-
ramenta. Ao visualizá-la, nota-se um evidente minimalismo, com uma interface bastante
enxuta, além da ausência de tradução para o português brasileiro, onde toda a interface é
exibida em lı́ngua inglesa.

9

92



Figura 5.5. Tela inicial do GitHub Desktop. Fonte: Próprio autor.

5.5.2. Criando e Sincronizando Repositórios com GitHub Desktop

Embora o Git possa ser utilizado por meio da linha de comando, muitas equipes e inici-
antes preferem ferramentas visuais que simplifiquem sua utilização. O GitHub Desk-
top é uma dessas soluções, oferecendo uma interface gráfica intuitiva para a criação,
sincronização e gerenciamento de repositórios, sem abrir mão das funcionalidades es-
senciais do versionamento.

5.5.2.1. Criação do repositório local

No GitHub Desktop, o usuário pode criar um novo repositório local diretamente pelo
menu File - New Repository. Nesse momento, são definidos alguns parâmetros essenciais:

1. Name: corresponde ao nome do repositório. É recomendável utilizar nomes signi-
ficativos e descritivos que facilitem a identificação do projeto.

2. Description: campo opcional que permite resumir o objetivo do projeto. Essa
descrição auxilia colaboradores a compreenderem rapidamente a finalidade do re-
positório.

3. Local path: define o diretório do computador onde o repositório será armazenado.
Manter uma estrutura organizada facilita o gerenciamento de múltiplos projetos.

4. Initialize this repository with a README: ao marcar essa opção, o repositório
é criado já contendo um arquivo README.md. Esse documento funciona como a
apresentação inicial do projeto, trazendo informações como objetivos, instruções
de instalação e exemplos de uso.

10

93



5. Git ignore: permite escolher um modelo pré-definido de arquivos a serem ignora-
dos pelo Git, evitando que itens desnecessários sejam versionados. Por exemplo, ao
selecionar Node, pastas como node modules/ não serão incluı́das no controle
de versão.

6. License: possibilita definir a licença do projeto, indicando como o código pode ser
utilizado por terceiros. A escolha da MIT License é comum em projetos de código
aberto por permitir ampla reutilização e modificação com poucas restrições.

Figura 5.6. Tela criação de um novo repositório. Fonte: Próprio autor.

Após o preenchimento desses campos, basta selecionar Create repository para
gerar o repositório local já configurado, pronto para receber commits e posteriormente ser
publicado no GitHub.

5.5.2.2. Adição de arquivos ao repositório

Após a criação do repositório, o GitHub Desktop direciona o usuário para a tela principal
do projeto. Nela, inicialmente, não há alterações registradas (No local changes), mas o
sistema já oferece duas opções fundamentais de interação com o repositório recém-criado:

1. Abrir o repositório em um editor externo: O GitHub Desktop possibilita abrir o
repositório diretamente em um editor de código, como o Visual Studio Code. Essa
funcionalidade agiliza a edição dos arquivos do projeto, dispensando a necessidade
de navegar manualmente até a pasta no sistema. O acesso pode ser feito por meio
do botão Open in Visual Studio Code, disponı́vel na interface principal.

2. Visualizar os arquivos do repositório no explorador de arquivos: Caso o usuário
deseje acessar a pasta do projeto diretamente no sistema operacional, pode utilizar a

11

94



opção Show in Explorer. Essa funcionalidade abre a estrutura de diretórios onde o
repositório foi criado, possibilitando a inclusão de novos arquivos ou a organização
manual do projeto.

Figura 5.7. Tela inicial após a criação do repositório. Fonte: Próprio autor.

Uma vez que arquivos novos sejam adicionados à pasta do repositório ou que
arquivos existentes sejam modificados, o GitHub Desktop detecta automaticamente essas
mudanças. O usuário, então, poderá selecionar quais arquivos deseja incluir no próximo
commit, garantindo que apenas as alterações relevantes sejam registradas no histórico do
projeto.

5.5.2.3. Commits com mensagens claras

No GitHub Desktop, cada alteração registrada no repositório precisa ser acompanhada
de uma mensagem de commit. Esse procedimento é essencial para manter o histórico do
projeto organizado e facilitar a colaboração.

1. Área de mudanças detectadas (Changes): Sempre que um arquivo é adicionado,
modificado ou removido no repositório, o GitHub Desktop exibe essas alterações
na aba Changes. O usuário pode revisar cada modificação antes de confirmá-la.

2. Seleção dos arquivos para o commit: Apenas os arquivos marcados na lista de
mudanças serão incluı́dos no commit. Isso permite que o desenvolvedor escolha
apenas o que é relevante para registrar no histórico, evitando alterações desne-
cessárias.

3. Campo Summary (mensagem obrigatória): É o tı́tulo do commit, que deve ser
curto e direto. Resume a finalidade da alteração em uma única frase, como por
exemplo:

12

95



feat: adicionar seção de contato
fix: corrigir erro no formulário de login

4. Campo Description (mensagem opcional): Permite adicionar uma explicação
mais detalhada sobre o commit. É útil para descrever o contexto da mudança, o
motivo da implementação ou observações para outros colaboradores.

5. Realizar o commit: Após preencher os campos, o usuário deve clicar no botão
Commit to branch. A alteração será registrada no histórico local do repositório e
ficará disponı́vel para ser enviada ao GitHub posteriormente.

Mensagens claras e objetivas garantem que o histórico do projeto seja compre-
ensı́vel, facilitando futuras consultas, revisões e colaborações entre desenvolvedores.

Figura 5.8. Exemplo de criação de commit no GitHub Desktop com mensagem
clara e objetiva. Fonte: Próprio Autor.

5.5.3. Sincronização com o GitHub

Após realizar commits no repositório local, é necessário garantir que as alterações fiquem
disponı́veis também no repositório remoto no GitHub. Da mesma forma, ao trabalhar em
equipe, é importante manter o repositório local sempre atualizado com as contribuições
de outros colaboradores. O GitHub Desktop oferece recursos que facilitam esse processo
de envio e recebimento de alterações.

1. Publicação inicial do repositório: Clique no botão Publish repository para criar
automaticamente um repositório remoto no GitHub, vinculado ao seu repositório
local.

13

96



• Antes de publicar, verifique se já existem commits locais, pois, caso contrário,
o botão não terá alterações para enviar.

• É possı́vel configurar a visibilidade do repositório como pública (visı́vel a
todos) ou privada (restrita).

• Após a publicação, o repositório já estará disponı́vel online e pronto para ser
compartilhado.

Figura 5.9. Tela para publicação do repositório. Fonte: Próprio autor.

2. Envio de alterações (Push): Sempre que novos commits forem criados no repo-
sitório local, utilize o botão Push origin para enviar essas mudanças ao GitHub,
mantendo o repositório remoto atualizado.

3. Verificação de atualizações (Fetch): Para checar se há novas alterações feitas por
outros colaboradores no repositório remoto, clique em Fetch origin.

4. Baixar alterações remotas (Pull): Caso sejam encontradas novidades, o botão mu-
dará para Pull origin. Clique nele para baixar e aplicar as alterações no repositório
local.

5. Histórico e conflitos: Após o pull, os novos commits aparecerão no histórico do
GitHub Desktop. Caso haja conflitos entre alterações locais e remotas, será ne-
cessário resolvê-los antes de concluir a sincronização.

5.5.3.1. Clonagem de repositórios existentes

Projetos já hospedados no GitHub podem ser clonados facilmente pelo GitHub Desktop,
utilizando a opção File - Clone Repository. Esse recurso cria uma cópia completa do

14

97



repositório remoto no computador, incluindo todos os arquivos, histórico de commits e
branches, permitindo que o usuário contribua diretamente no projeto.

1. Acessar a opção de clonagem: No menu superior do GitHub Desktop, clique em
File - Clone Repository. Uma nova janela será exibida para inserir os dados do
repositório.

2. Escolher a origem do repositório: É possı́vel selecionar um repositório disponı́vel
em sua conta do GitHub, em uma organização da qual participa ou inserir manual-
mente a Uniform Resource Locator (URL) de um repositório público.

3. Definir o diretório local: Escolha a pasta em seu computador onde deseja ar-
mazenar o repositório clonado. Essa será a versão local, totalmente vinculada ao
repositório remoto.

4. Concluir a clonagem: Após confirmar, o GitHub Desktop fará o download de to-
dos os arquivos e histórico. O projeto será aberto automaticamente na tela principal,
pronto para receber commits, pulls e pushes.

5. Começar a contribuir: A partir desse momento, o usuário já pode editar arquivos,
criar novas branches e enviar contribuições, com o GitHub Desktop cuidando da
sincronização com o repositório remoto.

5.5.3.2. Inclusão de .gitignore e README.md

O GitHub Desktop permite que arquivos auxiliares, como .gitignore e README.md, se-
jam incluı́dos já no momento da criação do repositório ou adicionados posteriormente.
Esses arquivos cumprem funções importantes: o .gitignore define quais arquivos e pas-
tas devem ser ignorados pelo versionamento (como logs, dependências ou arquivos tem-
porários), enquanto o README.md serve como documentação inicial do projeto, apre-
sentando sua finalidade, instruções de uso e informações básicas para colaboradores.

1. Durante a criação do repositório: Ao selecionar File - New Repository, é possı́vel
marcar as opções para gerar automaticamente um arquivo README.md e um .gi-
tignore. O .gitignore pode ser configurado a partir de modelos prontos, de acordo
com a linguagem ou tecnologia utilizada no projeto (por exemplo, Node.js, Python,
Java).

2. Adição posterior dos arquivos: Caso não sejam criados no inı́cio, esses arquivos
podem ser adicionados manualmente no diretório local do projeto. O GitHub Desk-
top detectará as novas inclusões, permitindo que sejam versionadas em um commit.

15

98



3. Função de cada arquivo: O .gitignore garante que apenas arquivos relevantes se-
jam controlados pelo Git, evitando poluição do repositório com dados temporários
ou especı́ficos do ambiente do desenvolvedor. O README.md é exibido automa-
ticamente na página inicial do repositório no GitHub, funcionando como cartão de
visita do projeto e facilitando a compreensão por novos colaboradores.

4. Benefı́cios: A inclusão desses arquivos contribui para a organização do projeto,
melhora a colaboração entre desenvolvedores e reduz problemas de versionamento.

5.5.3.3. Compreensão do histórico de mudanças

O GitHub Desktop apresenta um histórico visual de todos os commits realizados no re-
positório, permitindo que o usuário acompanhe a evolução do projeto de maneira clara
e organizada. Esse recurso mostra, em ordem cronológica, cada alteração registrada, in-
cluindo o autor, a data, a mensagem do commit e os arquivos modificados. Dessa forma,
torna-se mais fácil realizar auditorias, revisões de código e identificar eventuais regressões
que possam ter sido introduzidas.

1. Acessar a aba de histórico: Na tela principal do GitHub Desktop, ao lado da
lista de alterações pendentes, encontra-se a aba History. Ali são exibidos todos os
commits já registrados no repositório atual.

2. Visualizar detalhes de cada commit: Ao selecionar um commit no histórico, a
interface mostra os arquivos alterados e, em alguns casos, até o conteúdo exato das
modificações realizadas (adições e remoções). Isso facilita a análise de mudanças
especı́ficas, sem a necessidade de recorrer à linha de comando.

3. Identificar a autoria e a data das mudanças: Cada commit apresenta informações
sobre quem o realizou e em que momento. Essa funcionalidade é fundamental
em projetos colaborativos, pois permite rastrear responsabilidades e compreender o
contexto das alterações.

4. Facilitar auditorias e revisões: Com a visualização cronológica, é possı́vel au-
ditar o progresso do projeto, revisar decisões tomadas em commits passados e até
encontrar o ponto em que um problema foi introduzido no código.

5.5.4. Colaboração de Branches com o Github Desktop

Uma branch é como uma “linha paralela” do projeto. Ela permite que você trabalhe em
algo novo (uma funcionalidade, correção de bug ou teste) sem mexer no código principal,
que normalmente está na branch main. Pense nela como uma cópia do projeto em que
você pode fazer alterações à vontade, sem risco de quebrar o que já funciona.

16

99



Figura 5.10. Exemplo da tela de históricos. Fonte: Próprio autor.

5.5.4.1. Criando uma branch no GitHub Desktop

1. Abra o GitHub Desktop e selecione o repositório em que quer trabalhar.

2. No topo, clique no botão “Current Branch” (ou “Branch atual”).

Figura 5.11. Exemplo da tela de Branch atual. Fonte: Próprio autor.

3. Clique em ”New Branch” (ou “Nova branch”).

17

100



Figura 5.12. Exemplo da tela de nova Branch. Fonte: Próprio autor.

4. Dê um nome significativo para a branch, como correcao-bug-login ou nova-funcionalidade.

Figura 5.13. Exemplo da tela de colocar nome na branch. Fonte: Próprio autor.

5. Clique em “Create Branch” (Criar Branch).

18

101



Figura 5.14. Exemplo da tela de branch nomeada. Fonte: Próprio autor.

6. O GitHub Desktop troca automaticamente para a nova branch. Tudo o que você
alterar agora será registrado nela, e não na branch principal.

7. Clique em “Current Branch”.

Figura 5.15. Exemplo da tela de lista das atuais branches. Fonte: Próprio autor.

8. Você verá a lista de todas as branches do repositório.

9. Clique na branch que deseja usar e o GitHub Desktop vai automaticamente mudar
o foco para ela.

19

102



Figura 5.16. Exemplo da tela de seleção de repositório. Fonte: Próprio autor.

10. Agora, qualquer alteração será feita na branch selecionada.

5.5.4.2. O que é e como fazer o merge?

O merge é o processo de unir as alterações feitas em uma branch secundária (por exemplo,
nova-funcionalidade) de volta para a branch principal (main). Isso garante que tudo o que
você desenvolveu separadamente passe a fazer parte do código principal. Para realizarmos
um merge no GitHub Desktop, serão desenvolvidos os seguintes passos:

1. No GitHub Desktop, clique em “Current Branch” e selecione a branch principal
(main).

Figura 5.17. Exemplo da tela de Branch principal. Fonte: Próprio autor.

2. Vá no menu Branch (na parte superior) e clique em “Merge into Current Branch”.

20

103



Figura 5.18. Exemplo da tela de Branch Merge. Fonte: Próprio autor.

3. Selecione a branch que contém as alterações (exemplo: nova-funcionalidade).

Figura 5.19. Exemplo da tela de Branch alterações adicionada a brach principal.
Fonte: Próprio autor.

4. O GitHub Desktop vai tentar unir automaticamente as mudanças.

5.5.5. Como resolver conflitos simples e como o GitHub Desktop mostra o conflito

Um conflito de merge acontece quando duas branches alteram a mesma linha de um ar-
quivo e o Git não consegue escolher qual versão manter. Nesses casos, o GitHub Desktop
mostra uma mensagem de conflito e lista os arquivos afetados para que o usuário resolva
manualmente. Já para sincronizar alterações, o processo envolve usar Fetch origin para
verificar atualizações no repositório remoto, Push origin para baixá-las e Push origin para
enviar seus commits locais, garantindo que todos os colaboradores trabalhem na versão
mais atualizada [GitHub Docs; Coderefinery, 2025].

21

104



Um conflito acontece quando duas branches modificam a mesma linha de um
arquivo ou mexem em partes que o Git não consegue decidir sozinho qual versão manter.
Quando há conflito, o GitHub Desktop exibe uma mensagem como “This branch has
conflicts that must be resolved”. Ele vai listar os arquivos problemáticos e você precisa
abrir esses arquivos para resolver.

5.5.6. Sincronizar alterações com o GitHub

No GitHub Desktop, para manter seu repositório local alinhado com o remoto, você nor-
malmente começa clicando em “Fetch origin”: isso verifica se há mudanças no GitHub
que ainda não foram baixadas para sua máquina. Se existir algo novo, você pode então
usar “Pull origin”, que baixa essas alterações e as incorpora ao seu repositório local
[GitHub Docs; coderefinery.github.io].

Quando você faz modificações no seu computador, primeiro salva essas mudanças
com um commit, depois usa “Push origin” para enviar aquelas alterações ao repositório
no GitHub para que outros colaboradores também possam vê-las. Se existirem commits no
repositório remoto que você ainda não possui localmente, o GitHub Desktop normalmente
pede que você faça um fetch antes de permitir o push, para evitar conflitos ou divergências
de histórico [GitHub Docs].

5.6. Vantagens e Desvantagens
Quanto às vantagens e desvantagens da utilização de ferramentas como o GitHub Desk-
top, apresentam-se a seguir as formas pelas quais podem ser benéficas ao usuário, bem
como alguns pontos negativos observados em seu uso.

5.6.1. Vantagens

No tocante às vantagens em relação à interface de linha de comando, especialmente para
o público-alvo menos familiarizado com o Git, destacam-se os seguintes benefı́cios:

1. Trabalho colaborativo.

2. Controle de conflitos.

3. Plataforma gratuita (até certo nı́vel).

5.6.2. Desvantagens

Quanto às desvantagens encontradas nesta ferramenta, embora poucas, podem ser citadas
algumas:

1. Curva de aprendizado inicial.

2. Dependência de internet (para uso do GitHub).

3. Conflitos podem ser complexos de resolver.

22

105



5.7. Boas Práticas no Uso do Git e GitHub
O uso de sistemas de controle de versão, como o Git, e de plataformas de hospedagem
e colaboração, como o GitHub, é essencial no desenvolvimento de software moderno.
Além de permitir o rastreamento das alterações no código, essas ferramentas fomentam
a colaboração eficiente entre equipes e garantem maior qualidade no produto final. No
entanto, para que se obtenha o máximo de benefı́cios, é necessário adotar boas práticas
que padronizem o fluxo de trabalho e reduzam problemas futuros. A seguir, destacam-se
algumas recomendações fundamentais.

5.7.1. Commits pequenos e frequentes

Um erro comum em projetos de software é acumular diversas modificações antes de re-
gistrar um commits. Essa prática dificulta a rastreabilidade e aumenta a probabilidade
de conflitos. O ideal é realizar commits pequenos, que representem uma alteração co-
esa e independente, como a correção de um bug especı́fico ou a implementação de uma
funcionalidade pontual. Commits frequentes facilitam a revisão, permitem a reversão de
mudanças sem comprometer grandes blocos de código e tornam o histórico do projeto
mais legı́vel.

5.7.2. Mensagens de commit claras

A mensagem associada a um commit deve ser descritiva e direta, informando o que foi
alterado e, preferencialmente, o motivo. Mensagens vagas como “ajustes” ou “mudanças
finais” não auxiliam na compreensão do histórico do projeto. Uma boa prática é utilizar
um padrão, como:

• fix: para correções de erros.

• feat: para implementação de novas funcionalidades.

• docs: para alterações na documentação.

Esse tipo de padronização contribui para a manutenção futura do projeto e para a
colaboração eficiente em equipe.

5.7.3. Organização do repositório

A estrutura do repositório reflete a maturidade e a profissionalização de um projeto. Pastas
mal organizadas ou a ausência de documentação dificultam a contribuição de novos desen-
volvedores e prejudicam a escalabilidade do software. Recomenda-se manter um arquivo
README.md bem escrito, que apresente objetivos, instruções de instalação, dependências
e exemplos de uso. Além disso, separar arquivos de código, testes, documentação e re-
cursos auxiliares em diretórios distintos favorece a clareza e a manutenção do projeto.

23

106



5.7.4. Nomeação significativa de branches

Branches (ramificações) são fundamentais para o desenvolvimento paralelo de funci-
onalidades, correções e experimentos. No entanto, nomes genéricos como ”teste”ou
”nova”dificultam a compreensão de seu propósito. Recomenda-se adotar nomenclaturas
padronizadas, como:

• feature/login para o desenvolvimento de uma nova funcionalidade.

• bugfix/navbar para a correção de um problema especı́fico.

• hotfix/security para correções crı́ticas e imediatas.

Essa prática organiza o fluxo de trabalho e facilita o gerenciamento do ciclo de
vida das alterações.

5.7.5. Revisão de código antes do merge

O processo de code review consiste na revisão de código por outros membros da equipe
antes da integração na branch principal, sendo um dos pilares da qualidade em projetos
colaborativos. A revisão permite identificar erros, melhorar a legibilidade e comparti-
lhar conhecimento entre os desenvolvedores. No GitHub, esse processo é facilitado por
pull requests, que centralizam a discussão sobre uma alteração antes de sua incorporação
definitiva. O resultado é um código mais robusto, padronizado e confiável.

5.8. Considerações finais
A adoção dessas boas práticas no uso do Git e do GitHub não apenas melhora a qualidade
técnica do código, mas também fortalece a colaboração e a eficiência dentro das equipes
de desenvolvimento. Em projetos cientı́ficos, acadêmicos ou corporativos, o rigor na
aplicação dessas práticas contribui diretamente para a reprodutibilidade, a transparência e
a longevidade das soluções desenvolvidas.

Referências
Atlassian. (n.d.). Comparing workflows. Atlassian Git Tutorials. https://www.atlas-
sian.com/git/tutorials/comparing-workflows.

Coursera. (2023). What is Git?. Coursera. https://www.coursera.org/articles/what-
is-git.

Chacon, S., & Straub, B. (2014). Pro Git (p. 456). Springer Nature.

Earth Data Science. (n.d.). Basic Git commands. Earth Data Science Workshops.
https://earthdatascience.org/workshops/intro-version-control-git/basic-git-commands.

Encyclopaedia Britannica. (n.d.). GitHub. In Britannica. https://www.britannica.
com/technology/GitHub.

24

107



Everhour. (n.d.). What is GitHub?. Everhour Blog. https://everhour.com/blog/what-
is-github.

GitHub, Inc. (s.d.). Documentação do GitHub Desktop. Recuperado em 16 de
julho de 2025, de https://docs.github.com/pt/desktop.

GitHub. (2025). Instalar o GitHub Desktop. GitHub Docs. Recuperado em 8 de
setembro de 2025, de https://docs.github.com/pt/desktop/installing-and-authenticating-to-
github-desktop/installing-github-desktop.

GitHub. (2025). Criar uma conta no GitHub. GitHub Docs. Recuperado em 8 de
setembro de 2025, de https://docs.github.com/pt/get-started/start-your-journey/creating-
an-account-on-github.

Git SCM. (n.d.). Getting started: A short history of Git. Git. https://git-scm.com/bo-
ok/ms/v2/Getting-Started-A-Short-History-of-Git.

GitLab. (2025). Journey through Git’s 20-year history. GitLab Blog. https://about.
gitlab.com/blog/journey-through-gits-20-year-history.

GitHub. (2025). Git turns 20: A Q&A with Linus Torvalds. GitLab Blog.
https://github.blog/open-source/git/git-turns-20-a-qa-with-linus-torvalds.

GitHub Docs. (n.d.). About pull requests. GitHub. https://docs.github.com/pt/pull-
requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-reques-
ts/about-pull-requests.

GitHub Docs. (n.d.). About GitHub and Git. GitHub. https://docs.github.com/en/get-
started/start-your-journey/about-github-and-git.

I Programmer. (2025). Linus on Git. I Programmer. https://www.i-programmer.in-
fo/news/82-heritage/17977-linus-on-git.html.

Mats, S. (2020). The story of GitHub: How a weekend hack became the world’s
code playground. Medium. https://stevemats.medium.com/the-story-of-github-how-a-
weekend-hack-became-the-worlds-code-playground-928010893bb1.

PSL Models. (n.d.). History of GitHub. Git Tutorial. https://pslmodels.github.io/Git-
Tutorial/content/background/GitHubHistory.html.

25

108


