84

Capitulo

Introducao ao Git e GitHub: Controle de Versao
na Pratica

Deyvison Samuel Gomes do Nascimento, Maria Vitoria da Silva Araujo, Ma-
ria Yasmin Oliveira Mélo, M.e Maykol Livio Sampaio Vieira Santos

Resumo

O minicurso " Introducdo ao Git e GitHub ”tem como objetivo apresentar, de forma acessi-
vel e prdtica, os fundamentos do controle de versdo por meio das ferramentas Git, GitHub
e GitHub Desktop. Destinado a estudantes iniciantes na drea de tecnologia, o curso visa
capacitar os participantes a utilizarem essas ferramentas essenciais tanto no contexto
académico quanto no mercado de trabalho. Com carga hordria total de trés horas, o
conteiido abordard desde a criacdo de uma conta no GitHub, a utilizacdo dos principais
comandos e fluxos de trabalho, além do envio e atualizacdo de projetos em repositorios
remotos. A metodologia adotada combina exposigdes tedricas com atividades prdticas
em laboratdrio, permitindo que os participantes acompanhem passo a passo o funcio-
namento das ferramentas e desenvolvam autonomia na utilizacdo do versionamento de
codigo. Ao final, espera-se que os alunos estejam aptos a criar e gerenciar seus proprios
repositorios, colaborar em projetos em equipe e compreender a logica do controle de
versoes distribuido, consolidando uma base sélida para prdticas modernas de desenvol-
vimento.

Palavras-chave: Git, GitHub, Versionamento de Cédigo, GitHub Desktop

Abstract

The short course ”Introduction to Git and GitHub” aims to present, in an accessible and
practical way, the fundamentals of version control through the tools Git, GitHub, and
GitHub Desktop. Designed for beginner students in the field of technology, the course
seeks to enable participants to use these essential tools both in academic settings and in

Deyvison Samuel Gomes do Nascimento (apresentador) é estudante do curso de Tecnologia em Andlise e Desenvolvimento de 1
Sistemas pelo Instituto Federal do Piaui (IFPI) campus Piripiri.

Maria Vitdria da Silva Aratijo € estudante do curso de Tecnologia em Andlise e Desenvolvimento de Sistemas pelo IFPI campus
Piripiri.

Maria Yasmin Oliveira Mélo (apresentadora) é estudante do curso de Tecnologia em Andlise e Desenvolvimento de Sistemas pelo
IFPI campus Piripiri.

Maykol Livio Sampaio Vieira Santos (orientador) é professor de Informatica no IFPI campus Piripiri e Mestre em Tecnologia e
Gestdo em EAD pela UFRPE (UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO).



85

the job market. With a total duration of three hours, the content will cover everything
from creating a GitHub account, using the main commands and workflows, to sending
and updating projects in remote repositories. The methodology combines theoretical ex-
planations with hands-on lab activities, allowing participants to follow the step-by-step
operation of the tools and develop autonomy in using code versioning. By the end of the
course, students are expected to be able to create and manage their own repositories,
collaborate on team projects, and understand the logic of distributed version control, es-
tablishing a solid foundation for modern development practices.

Keywords: Git, GitHub, Code Versioning, GitHub Desktop

5.1. Introducao

O Git surgiu em 2005, criado por Linus Torvalds apés a ruptura com o BitKeeper como
um sistema de controle de versao distribuido, rapido, seguro e adequado a fluxos de traba-
lho colaborativos. Sua eficiéncia, confiabilidade e suporte a branches tornaram-no padrao
mundial no desenvolvimento de software. J4 o GitHub, langado em 2008, expandiu o uso
do Git ao oferecer uma interface web intuitiva e recursos sociais, como forks, pull requests
e issues, transformando-se em um espago central de hospedagem e colaboracdo de cddigo.
Com a aquisi¢ao pela Microsoft em 2018, a plataforma ganhou ainda mais infraestrutura e
integracdo com servigos em nuvem, consolidando-se como a maior comunidade de desen-
volvedores do mundo. Hoje, Git e GitHub sao essenciais para a organizacdo, seguranga e
produtividade no desenvolvimento de software, além de impulsionarem praticas moder-
nas de colaborag@o, DevOps e aprendizado em programacio [Git-SCM, 2025; Microsoft,
2018].

5.1.1. Historia do Git

Antes do Git, alguns sistemas ja buscavam controlar versdes de cddigo, como o Source
Code Control System (SCCS), criado em 1972, que registrava alteracdes de forma se-
quencial, mas tinha limitacdes e funcionava apenas em Unix. Mais tarde, em 1986, o
Concurrent Versions System (CVS), trouxe o conceito de repositério compartilhado e per-
mitiu colaborago entre varios desenvolvedores, embora apresentasse falhas em operaces
de merge e dificuldades no gerenciamento de arquivos [Rochkind, 1975; Spinellis, 2005;
Grune, 1986; Free Software Foundation, 1993].

Apesar dos avangos, esses sistemas eram centralizados, ou seja, dependiam de
um servidor Unico para armazenar o cédigo. Esse modelo gerava problemas como a
dependéncia total do servidor — que, em caso de falha, interrompia o trabalho — e
a limitacdo na colaboracdo em larga escala, mostrando a necessidade de solu¢des mais
flexiveis e robustas [Loeliger & McCullough, 2012; Tech-in-Japan, 2021].

5.1.2. Linux e BitKeeper

Nos anos 1990, o Linux Kernel ja era um dos maiores projetos colaborativos de software,
mas até 2002 as contribui¢des eram integradas manualmente, com patches enviados por e-

2



86

mail, em um processo lento e sujeito a erros. Para resolver essas limita¢des, a comunidade
passou a utilizar o BitKeeper, um sistema distribuido que permitia a cada desenvolvedor
manter uma cépia completa do repositdrio, facilitando o trabalho offline e a integracdo
em larga escala. Essa adog¢do representou um grande avanco em relagdo a modelos cen-
tralizados como o Subversion (SVN) [Pro Git — git-scm.com].

No entanto, o BitKeeper era proprietdrio e, em 2005, o acordo que permitia seu
uso gratuito pela comunidade do Linux Kernel foi encerrado. Isso gerou um impasse, ja
que depender de uma tecnologia fechada colocava em risco a continuidade do projeto. Foi
nesse cendrio que Linus Torvalds decidiu criar uma nova ferramenta, livre e distribuida,
capaz de atender as necessidades do Linux Kernel: o Git [Pro Git, s.d.; LWN.net, s.d.].

5.1.3. Criacao do Git

Quando perdeu o acesso ao BitKeeper, Linus Torvalds decidiu criar seu préprio sistema
de controle de versdo distribuido. Para isso, estabeleceu alguns requisitos fundamentais
que orientariam o desenvolvimento da nova ferramenta: precisava ser rapido, superando
os sistemas existentes; deveria ser distribuido, garantindo que cada desenvolvedor tivesse
uma cépia completa do repositério em sua miquina; tinha que ser seguro, assegurando a
integridade dos dados; e, por fim, precisava oferecer bom suporte a fluxos de trabalho nao
lineares, lidando de forma eficiente com branches e merges [i-Programmer].

Pouco tempo depois, Linus transferiu a manutencdo do projeto para Junio C. Ha-
mano, que rapidamente se destacou na comunidade e até hoje atua como mantenedor
principal do Git, liderando seu desenvolvimento continuo e garantindo sua evolugdo ao
longo dos anos [Pro Git, s.d.].

5.1.4. Evolucao

Ap6s sua criagdo em 2005, o Git evoluiu rapidamente, recebendo melhorias constantes e
conquistando uma comunidade cada vez maior. Em 2007, ele comecou a se popularizar
fora do desenvolvimento do kernel Linux, chamando a aten¢ao de outros projetos de soft-
ware livre. No ano seguinte, em 2008, surgiu o GitHub, uma plataforma que revolucionou
a forma de usar o Git ao oferecer uma interface web simples e recursos como issues, pull
requests e colaboragdo social. Essa combinagao foi decisiva para a popularizacao do Git
em escala global [Pro Git, s.d.; GitHub, 2025].

A partir de 2010, grandes empresas de tecnologia, como Google, Microsoft, Fa-
cebook e Twitter, passaram a adotar o Git como ferramenta padrdo em seus fluxos de
desenvolvimento, o que consolidou sua posi¢do como principal sistema de controle de
versao distribuido. Em 2018, a Microsoft adquiriu o GitHub, fortalecendo ainda mais o
ecossistema em torno do Git e demonstrando a importancia estratégica dessa ferramenta
para o desenvolvimento de software moderno [Microsoft, 2018; Wired, 2018].



87

5.1.5. Por que o Git se tornou o padrao?

O Git se consolidou como padrao no desenvolvimento de software por adotar um mo-
delo distribuido, no qual cada cépia do repositério funciona como um backup com-
pleto e independente, permitindo trabalho mesmo sem conexao a um servidor central.
Sua performance também é um destaque, pois operacdes locais como commit, branch
e merge sdo executadas de forma muito rdpida em comparagdo com sistemas anteriores
[i-Programmer; Pro Git — git-scm.com].

Outro diferencial € o suporte a branches leves, que facilita fluxos paralelos e co-
laborativos, além da forte €nfase em seguranca, com uso de algoritmos de hash como
SHA-1 e SHA-256 para proteger a integridade do histérico. O crescimento de platafor-
mas como GitHub, GitLab e Bitbucket criou um ecossistema robusto de colaboragao, o
que consolidou o Git como o sistema de controle de versdo mais utilizado no mundo
[GitLab, 2025; Git, 2025; Rewind, 2024].

5.2. Historia do GitHub

Em 2008, surgiu o GitHub, fundado por Tom Preston-Werner, Chris Wanstrath, PJ Hyett
e, posteriormente, Scott Chacon, que entrou para contribuir com a documentagdao. O
objetivo inicial da plataforma era combinar o poder do Git com funcionalidades sociais,
criando um espago que facilitasse o processo de hospedar, revisar e colaborar em projetos,
tanto de c6digo aberto quanto privados [Founding; PSL Models; Medium; WIRED].

O grande diferencial do GitHub estava em sua interface web amigavel, que per-
mitia navegar pelos repositérios de forma simples e intuitiva. Além disso, introduziu
recursos que se tornaram padrio na colaboracdo de software, como forks, pull requests e
issues, transformando o fluxo de trabalho dos desenvolvedores. Outro aspecto inovador
foi a criag@o de perfis e métricas para programadores, funcionando como uma espécie de
“rede social para desenvolvedores”, o que estimulou ainda mais a colaboracdo e a visibi-
lidade dentro da comunidade de software [Timeline; WIRED].

5.2.1. Crescimento inicial

A partir de 2010, o GitHub deixou de ser apenas um espago para projetos de cédigo
aberto e passou a atrair empresas e grandes corporacdes, que enxergaram na plataforma
uma forma eficiente de organizar e gerenciar fluxos de desenvolvimento. Nesse con-
texto, a plataforma evoluiu para hospedar ndo apenas repositérios publicos, mas também
projetos privados, o que ampliou significativamente seu alcance no mercado corporativo
[Encyclopedia Britannica; GitHub, 2014].

O crescimento foi exponencial, com milhdes de desenvolvedores migrando para
o GitHub, que se tornou o padrdo de facto em hospedagem e colaboracdo em projetos
de software. O modelo baseado em forks, pull requests e issues consolidou-se como re-
feréncia global, influenciando inclusive plataformas concorrentes. Esse movimento mar-
cou a transi¢do do GitHub de uma ferramenta voltada majoritariamente para a comuni-

4



88

dade de cédigo aberto para uma infraestrutura essencial no desenvolvimento de software
em escala global, utilizada tanto por programadores independentes quanto por grandes
empresas de tecnologia [Wired, 2012; Wired, 2013].

Em 2018, o GitHub foi adquirido pela Microsoft por US$ 7,5 bilhdes, em uma das
maiores negociacdes do setor de tecnologia daquele periodo. A compra gerou desconfianga
inicial na comunidade de c6digo aberto, que historicamente via a Microsoft com certo
receio [Microsoft, 2018; TechCrunch, 2018]. Sob a gestdo da Microsoft, a plataforma
recebeu novos investimentos, expandiu sua infraestrutura e fortaleceu a integragdo com
servigos como o Azure e outras ferramentas do ecossistema Microsoft. Longe de perder
relevancia, o GitHub continuou crescendo e consolidou-se ainda mais como o principal
espaco de colaboragdo em software no mundo, reunindo milhdes de desenvolvedores e
empresas em torno do desenvolvimento aberto e compartilhado [TechCrunch, 2018; Wi-
red, 2018].

5.2.2. Status atual e impacto

Atualmente, o GitHub é a maior plataforma de hospedagem de cédigo do mundo, reu-
nindo mais de 100 milhdes de repositdrios e cerca de 90 milhdes de desenvolvedores
registrados. A plataforma atende tanto projetos de cddigo aberto, que impulsionam a
inovagdo coletiva, quanto empresas privadas, que utilizam seus recursos para gerenciar
fluxos de desenvolvimento em larga escala [Encyclopedia Britannica].

O GitHub tornou-se peca central na cultura DevOps e nos processos de Integracio
Continua e Entrega/Deploy Continuo(CI/CD), permitindo integracdo continua, automacao
e colaboracdo global de software. Além disso, consolidou-se também como um hub edu-
cacional, oferecendo iniciativas como o GitHub Student Developer Pack, cursos e agdes
voltadas ao incentivo do aprendizado de programacao, contribuindo para a formacao de
novas geracoes de desenvolvedores [GitHub, 2025; GitHub, 2025].

5.3. Importancia do Git/GitHub hoje

O Git é uma das ferramentas mais importantes no desenvolvimento de software atual-
mente, pois funciona como um sistema de controle de versdo distribuido. Ele registra
todo o histérico de modificacdes feitas em um projeto, permitindo que desenvolvedores
acompanhem cada altera¢do no codigo, retornem a versdes anteriores quando necessario e
entendam como o sistema evoluiu ao longo do tempo. Esse recurso evita perdas de traba-
lho e garante maior seguranga no processo de desenvolvimento, além de permitir que cada
programador mantenha em sua maquina uma cépia completa do repositério com todo o
histérico do projeto [Pro Git Book — Chacon & Straub, Apress, 2014; Atlassian — What is
Git?].

Outro ponto central € a colaborac@o. O Git facilita o trabalho em equipe, permi-
tindo que vérios desenvolvedores atuem simultaneamente em um mesmo projeto sem que
suas mudancas interfiram umas nas outras. Essa caracteristica torna o fluxo de trabalho



89

mais agil, estruturado e produtivo. Em resumo, o Git ndo é apenas uma ferramenta para
salvar versdes de cédigo, mas um verdadeiro pilar do desenvolvimento moderno, garan-
tindo organizacdo, seguranca e eficiéncia no ciclo de criacdo de software [HostRagons,
2025; Pro Git Book — Chacon & Straub, Apress, 2014].

O GitHub é uma das plataformas mais relevantes do ecossistema tecnolégico, fun-
cionando como um espago central para hospedagem, colaboragido e compartilhamento de
c6digo. Baseado no Git, ele amplia suas funcionalidades ao oferecer uma interface pratica
na nuvem e ferramentas que apoiam tanto projetos individuais quanto grandes iniciativas
globais. Um dos seus principais diferenciais é o incentivo a colaboragdo: milhdes de
desenvolvedores e organizagdes utilizam recursos como pull requests, issues e discussi-
ons para propor melhorias, revisar alteracdes e resolver problemas em conjunto. Esse
ambiente participativo transformou o GitHub em um ponto de encontro para projetos de
impacto mundial, como o Linux, o React e o Visual Studio Code [GitHub Docs — About
GitHub; Coursera — What is GitHub?].

Além disso, a plataforma integra praticas modernas de DevOps e CI/CD, permi-
tindo configurar fluxos automadticos de testes, validacdo e implantacdo, o que aumenta
a eficiéncia e a qualidade das entregas. O GitHub também tem grande importancia na
educagdo, com iniciativas como o Student Developer Pack, que oferece ferramentas pro-
fissionais gratuitas e incentiva estudantes a aprenderem de forma prética como funciona o
desenvolvimento colaborativo. Assim, o GitHub consolidou-se como mais que um repo-
sitério de cédigo: € um ecossistema essencial para colaboragdo, inovagado e aprendizado
em escala global [DEV Community — How GitHub Improves Security and CI/CD Work-
flows, 2024; GitHub, 2025].

5.4. Conceitos Iniciais

Os conceitos basicos de Git e GitHub giram em torno do controle de versio e da colaboracio
em projetos de software. O Git é um sistema que registra todas as alteracdes feitas
em arquivos, permitindo acompanhar o histdrico, restaurar versdes anteriores e traba-
lhar com ramificagdes para testar novas ideias sem comprometer a versao principal. Ja
o GitHub € uma plataforma online que utiliza o Git como base, mas adiciona ferramen-
tas de colaborag@o, como revisao de codigo, gerenciamento de tarefas e integracdo com
automacdes. No uso pratico, o fluxo bésico envolve criar ou clonar um repositério, re-
gistrar mudancas com commits, enviar e receber atualizacdes de um repositério remoto e
gerenciar branches para desenvolvimento paralelo. Assim, Git e GitHub juntos oferecem
organizacdo, seguranga e eficiéncia no desenvolvimento individual ou em equipe[Chacon
& Straub, 2014; GitHub Docs, 2025; GeeksforGeeks, 2023].

5.4.1. O que é controle de versao?

O controle de versdo é um sistema que registra e gerencia todas as alteracdes feitas em
arquivos de um projeto ao longo do tempo, permitindo retornar a versdes anteriores,



90

acompanhar a evolugdo e desfazer erros. Além de organizacdo, ele facilita o trabalho
em equipe, ja que véarios desenvolvedores podem atuar de forma simultdnea sem sobres-
crever o trabalho uns dos outros. Com o uso de ramificacdes (branches), cada membro
pode testar solu¢des em separado e depois integra-las de forma segura ao projeto principal
[Earth Data Science — Version Control Introduction; Atlassian — Git branching explained].

O GitHub, por sua vez, leva os beneficios do Git para a nuvem, oferecendo hospe-
dagem de repositdrios e ampliando as possibilidades de colabora¢do. Além de comparti-
lhar cédigo, a plataforma fornece recursos como pull requests, gerenciamento de tarefas,
permissdes de acesso, integracdo com ferramentas de automacao e suporte a projetos de
qualquer escala. Dessa forma, Git e GitHub tornaram-se pilares do desenvolvimento mo-
derno, garantindo organizacao, eficiéncia e qualidade em equipes de diferentes tamanhos
[GitHub Docs — About GitHub; Everhour Blog — Why GitHub is important in modern
development (2025)].

5.4.2. Diferenca entre Git e GitHub

O Git é um sistema de controle de versao distribuido que funciona localmente, permitindo
registrar todas as altera¢des de um projeto, acompanhar o histérico completo de versdes,
restaurar estados anteriores e criar ramificacdes (branches) sem comprometer a versiao
principal. Cada alteragao inclui informacdes sobre autor, data e modifica¢des realizadas,
garantindo rastreabilidade e organizag¢do do projeto. Por ser distribuido, cada colabora-
dor possui uma cépia completa do repositério, podendo trabalhar offline e sincronizar
alteracdes apenas quando necessdrio [Stack Overflow — Git is a revision control system;
GeeksforGeeks — Differences Between Git and GitHub].

O GitHub ¢ uma plataforma online que hospeda repositérios Git na nuvem, ofere-
cendo armazenamento centralizado e recursos de colaborac¢do, como pull requests, issues,
controle de permissdes e integracdo com automacdo via GitHub Actions. Ele reline uma
comunidade global de desenvolvedores, permitindo que equipes de qualquer tamanho tra-
balhem de forma organizada e colaborativa. Apesar de depender de conexd@o a internet
e de uma conta na plataforma, o GitHub nao substitui o Git, que continua responsivel
pelo controle de versdes local e distribuido, podendo ser usado também com outras plata-
formas como GitLab, Bitbucket ou servidores privados [GitHub Docs — How do Git and
GitHub work together?; DataCamp — Git vs GitHub: Key differences explained; HubSpot
— Git vs GitHub].

5.5. Desenvolvimento

Quanto ao desenvolvimento, este serd realizado de forma isolada em alguns momentos.
Inicialmente, no item 1.5.1, serdo apresentados os conceitos basicos da instalagdo da
ferramenta GitHub Desktop. Em seguida, no item 1.5.2, serd introduzida a criagdo e a
sincronizacdo de repositorios na mesma ferramenta, além da inclusdo de outros elemen-
tos, como o .gitignore € 0 README.md. Posteriormente, haverd ainda uma subsecao,



91

denominada 1.5.3, na qual serd apresentada a colaboracdo por meio de branches com o
GitHub Desktop [GitHub 2025].
5.5.1. Instalacao e Configuracao inicial do GitHub Desktop

Quanto a instalacdo da aplicacdo GitHub Desktop, esta pode ser realizada atualmente no
macOS 11.0 ou posterior e no Windows 10 (64 bits) ou versdo posterior [GitHub 2025].
Para efetuar a instalacdo da aplicagdo, o usudrio deve seguir os seguintes procedimentos:

1. Acesse a pagina de download do GitHub Desktop).

2. Clique em Baixar para Windows, ou baixar para MacOS.

GitHub
Desktop "

Download GitHub Desktop

Download for Windows (64bit)

Try beta features and help improve Prefer the MSI?
e rele: Need
h

Figura 5.1. Pagina de descarregamento da ferramenta GitHub Desktop. Fonte:
Proprio Autor.

3. Na pasta Downloads do computador, o usudrio deve clicar duas vezes no arquivo
de instalacdo do GitHub Desktop.

Downloads

O GitHubDesktopSetup-x64 (1).exe

Download concluido

Figura 5.2. Exemplo de criacao de commit no GitHub Desktop com mensagem
clara e objetiva. Fonte: Préprio Autor.

4. GitHub Desktop serd executado apds a instalagdo ser concluida.

Ap6s a instalacdo da aplicagdo em sua maquina, serd necessdria a criacdo de uma
conta no GitHub ou no GitHub Enterprise, a fim de que o usudrio possa trocar dados entre
seus repositdrios locais e remotos [GitHub 2025]. Para que o usudrio comum se inscreva
em uma conta pessoal, devem ser seguidos os seguintes passos:



92

1. Navegue até a pagina https://github.com/.

2. Clique em Cadastra-se no GitHub.

Crie e lance software em uma
unica plataforma colaborativa

Junte-se & plataforma de desenvolvimento de software com IA mais
usada no mundo.

Experimente o GitHub Copilot

Figura 5.3. Exemplo de criacao de commit no GitHub Desktop com mensagem
clara e objetiva. Fonte: Proprio Autor.

3. Preencha as informagdes de cadastro da pdgina, ou como alternativa, clique em
Continue with Google para se inscrever usando uma conta do Google.

Create your free account Sign up for GitHub

Explore GitHub res for individuals and organizations.
G Continue with Google
See what's Inclu

@

Figura 5.4. Exemplo de criacao de commit no GitHub Desktop com mensagem
clara e objetiva. Fonte: Proprio Autor.

4. Continue seguindo os prompts indicados pela plataforma para finalizar a criacio de
sua conta pessoal. Vale ressaltar que durante a inscricdo serd solicitado ao usudrio
a verificag@o de e-mail para fins de seguranca.

Com relagdo a interface da aplicacdo proposta, que serd devidamente apresentada
no decorrer do texto, temos a seguinte captura de tela ilustrando a tela inicial dessa fer-
ramenta. Ao visualiza-la, nota-se um evidente minimalismo, com uma interface bastante
enxuta, além da auséncia de tradugdo para o portugués brasileiro, onde toda a interface é
exibida em lingua inglesa.



93

Figura 5.5. Tela inicial do GitHub Desktop. Fonte: Préprio autor.

5.5.2. Criando e Sincronizando Repositorios com GitHub Desktop

Embora o Git possa ser utilizado por meio da linha de comando, muitas equipes e inici-
antes preferem ferramentas visuais que simplifiquem sua utilizacdo. O GitHub Desk-
top ¢ uma dessas solucdes, oferecendo uma interface grafica intuitiva para a criacdo,
sincronizacdo e gerenciamento de repositdrios, sem abrir mao das funcionalidades es-
senciais do versionamento.

5.5.2.1. Criacao do repositorio local

No GitHub Desktop, o usudrio pode criar um novo repositério local diretamente pelo
menu File - New Repository. Nesse momento, sdo definidos alguns parametros essenciais:

1. Name: corresponde ao nome do repositdrio. E recomendavel utilizar nomes signi-
ficativos e descritivos que facilitem a identificacdo do projeto.

2. Description: campo opcional que permite resumir o objetivo do projeto. Essa
descri¢do auxilia colaboradores a compreenderem rapidamente a finalidade do re-
positorio.

3. Local path: define o diretério do computador onde o repositdrio serd armazenado.
Manter uma estrutura organizada facilita o gerenciamento de multiplos projetos.

4. Initialize this repository with a README: ao marcar essa op¢do, o repositério
¢ criado ja contendo um arquivo README . md. Esse documento funciona como a
apresentacdo inicial do projeto, trazendo informac¢des como objetivos, instru¢des
de instalacdo e exemplos de uso.

10



94

5. Git ignore: permite escolher um modelo pré-definido de arquivos a serem ignora-
dos pelo Git, evitando que itens desnecessarios sejam versionados. Por exemplo, ao
selecionar Node, pastas como node_modules/ ndo serdo incluidas no controle
de versao.

6. License: possibilita definir a licenga do projeto, indicando como o cédigo pode ser
utilizado por terceiros. A escolha da MIT License é comum em projetos de codigo
aberto por permitir ampla reutilizagdo e modificagdo com poucas restri¢des.

Create a new repository

Name
PortfolioWebsite
Description
Projeto de site pessoal para apresentagao de portfolio, desenvolvi
Local path
C:\Users\Yasmim Melo\Documents\Projetos Choose...
Initialize this repository with a README
Gitignore

Node

License

MIT License v

The repository will be created at C:\Users\Yasmim Melo\Docume
nts\Projetos\PortfolioWebsite

Create repository Cancel

Figura 5.6. Tela criacao de um novo repositorio. Fonte: Proprio autor.

Apds o preenchimento desses campos, basta selecionar Create repository para
gerar o repositorio local ja configurado, pronto para receber commits e posteriormente ser
publicado no GitHub.

5.5.2.2. Adicao de arquivos ao repositorio

Ap6s a criacdo do repositério, o GitHub Desktop direciona o usudrio para a tela principal
do projeto. Nela, inicialmente, nao ha alteragdes registradas (No local changes), mas o
sistema ja oferece duas opcdes fundamentais de interagdo com o repositdrio recém-criado:

1. Abrir o repositorio em um editor externo: O GitHub Desktop possibilita abrir o
repositério diretamente em um editor de cddigo, como o Visual Studio Code. Essa
funcionalidade agiliza a edicao dos arquivos do projeto, dispensando a necessidade
de navegar manualmente até a pasta no sistema. O acesso pode ser feito por meio
do botdo Open in Visual Studio Code, disponivel na interface principal.

2. Visualizar os arquivos do repositorio no explorador de arquivos: Caso o usuirio
deseje acessar a pasta do projeto diretamente no sistema operacional, pode utilizar a

11



95

opcao Show in Explorer. Essa funcionalidade abre a estrutura de diretérios onde o
repositorio foi criado, possibilitando a inclusdo de novos arquivos ou a organiza¢ao
manual do projeto.

Figura 5.7. Tela inicial apds a criacao do repositorio. Fonte: Préprio autor.

Uma vez que arquivos novos sejam adicionados a pasta do repositério ou que
arquivos existentes sejam modificados, o GitHub Desktop detecta automaticamente essas
mudangas. O usudrio, entdo, podera selecionar quais arquivos deseja incluir no préximo
commit, garantindo que apenas as alteracdes relevantes sejam registradas no histérico do
projeto.

5.5.2.3. Commits com mensagens claras

No GitHub Desktop, cada alterag@o registrada no repositdério precisa ser acompanhada
de uma mensagem de commit. Esse procedimento € essencial para manter o histérico do
projeto organizado e facilitar a colaboragdo.

1. Area de mudancas detectadas (Changes): Sempre que um arquivo é adicionado,
modificado ou removido no repositério, o GitHub Desktop exibe essas alteragdes
na aba Changes. O usudrio pode revisar cada modificacdo antes de confirma-la.

2. Selecao dos arquivos para o commit: Apenas os arquivos marcados na lista de
mudancas serdo incluidos no commit. Isso permite que o desenvolvedor escolha
apenas o que € relevante para registrar no histérico, evitando alteracdes desne-
cessarias.

3. Campo Summary (mensagem obrigatéria): E o titulo do commit, que deve ser
curto e direto. Resume a finalidade da alteragdo em uma unica frase, como por
exemplo:

12



96

feat: adicionar secdo de contato
fix: corrigir erro no formuldrio de login

4. Campo Description (mensagem opcional): Permite adicionar uma explicacdo
mais detalhada sobre o commit. E titil para descrever o contexto da mudanga, o
motivo da implementagdo ou observagdes para outros colaboradores.

5. Realizar o commit: Apds preencher os campos, o usudrio deve clicar no botdo
Commit to branch. A alteracdo serd registrada no histérico local do repositério e
ficard disponivel para ser enviada ao GitHub posteriormente.

Mensagens claras e objetivas garantem que o histérico do projeto seja compre-
ensivel, facilitando futuras consultas, revisdes e colaboragdes entre desenvolvedores.

ﬂ feat: criar arquivo index.html

Adicionado arquivo index.html com
estrutura basica de documentacao
HTML, incluindo titulo, cabecalho e
paragrafo de exemplo.

Commit 1 file to main

Figura 5.8. Exemplo de criacao de commit no GitHub Desktop com mensagem
clara e objetiva. Fonte: Proprio Autor.

5.5.3. Sincronizacio com o GitHub

Ap6s realizar commits no repositorio local, € necessario garantir que as alteragdes fiquem
disponiveis também no repositdrio remoto no GitHub. Da mesma forma, ao trabalhar em
equipe, ¢ importante manter o repositério local sempre atualizado com as contribuigdes
de outros colaboradores. O GitHub Desktop oferece recursos que facilitam esse processo
de envio e recebimento de alteragdes.

1. Publicacao inicial do repositorio: Clique no botdo Publish repository para criar
automaticamente um repositério remoto no GitHub, vinculado ao seu repositério
local.

13



97

* Antes de publicar, verifique se ja existem commits locais, pois, caso contrario,
o botdo ndo terd alteracdes para enviar.

* E possivel configurar a visibilidade do repositério como piblica (visivel a
todos) ou privada (restrita).

* Apds a publicacio, o repositério ja estard disponivel online e pronto para ser
compartilhado.

Figura 5.9. Tela para publicagao do repositorio. Fonte: Préprio autor.

2. Envio de alteracoes (Push): Sempre que novos commits forem criados no repo-
sitério local, utilize o botdo Push origin para enviar essas mudancas ao GitHub,
mantendo o repositdrio remoto atualizado.

3. Verificacao de atualizacoes (Fetch): Para checar se ha novas alteracdes feitas por
outros colaboradores no repositorio remoto, clique em Fetch origin.

4. Baixar alteracoes remotas (Pull): Caso sejam encontradas novidades, o botao mu-
dard para Pull origin. Clique nele para baixar e aplicar as alteragdes no repositorio
local.

5. Historico e conflitos: Apés o pull, os novos commits aparecerdo no histérico do
GitHub Desktop. Caso haja conflitos entre alteracdes locais e remotas, serd ne-
cessdrio resolvé-los antes de concluir a sincronizagao.

5.5.3.1. Clonagem de repositorios existentes

Projetos ja hospedados no GitHub podem ser clonados facilmente pelo GitHub Desktop,
utilizando a opcao File - Clone Repository. Esse recurso cria uma copia completa do

14



98

repositério remoto no computador, incluindo todos os arquivos, histérico de commits e
branches, permitindo que o usudrio contribua diretamente no projeto.

1. Acessar a opcao de clonagem: No menu superior do GitHub Desktop, clique em
File - Clone Repository. Uma nova janela serd exibida para inserir os dados do
repositorio.

2. Escolher a origem do repositorio: E possivel selecionar um repositdrio disponivel
em sua conta do GitHub, em uma organizacdo da qual participa ou inserir manual-
mente a Uniform Resource Locator (URL) de um repositdrio publico.

3. Definir o diretorio local: Escolha a pasta em seu computador onde deseja ar-
mazenar o repositdrio clonado. Essa serd a versao local, totalmente vinculada ao
repositério remoto.

4. Concluir a clonagem: Ap6s confirmar, o GitHub Desktop fard o download de to-
dos os arquivos e historico. O projeto serd aberto automaticamente na tela principal,
pronto para receber commits, pulls e pushes.

5. Comecar a contribuir: A partir desse momento, o usudrio jd pode editar arquivos,
criar novas branches e enviar contribuigdes, com o GitHub Desktop cuidando da
sincroniza¢do com o repositério remoto.

5.5.3.2. Inclusao de .gitignore e README.md

O GitHub Desktop permite que arquivos auxiliares, como .gitignore ¢ README.md, se-
jam incluidos ja4 no momento da criagdo do repositério ou adicionados posteriormente.
Esses arquivos cumprem fungdes importantes: o .gitignore define quais arquivos e pas-
tas devem ser ignorados pelo versionamento (como logs, dependéncias ou arquivos tem-
porérios), enquanto o README.md serve como documentacdo inicial do projeto, apre-
sentando sua finalidade, instru¢des de uso e informagdes basicas para colaboradores.

1. Durante a criacao do repositorio: Ao selecionar File - New Repository, é possivel
marcar as opg¢Oes para gerar automaticamente um arquivo README.md e um .gi-
tignore. O .gitignore pode ser configurado a partir de modelos prontos, de acordo
com a linguagem ou tecnologia utilizada no projeto (por exemplo, Node.js, Python,
Java).

2. Adicao posterior dos arquivos: Caso nio sejam criados no inicio, esses arquivos
podem ser adicionados manualmente no diretério local do projeto. O GitHub Desk-
top detectard as novas inclusdes, permitindo que sejam versionadas em um commit.

15



99

3. Funcao de cada arquivo: O .gitignore garante que apenas arquivos relevantes se-
jam controlados pelo Git, evitando polui¢do do repositério com dados temporarios
ou especificos do ambiente do desenvolvedor. O README.md é exibido automa-
ticamente na pagina inicial do repositério no GitHub, funcionando como cartao de
visita do projeto e facilitando a compreensdo por novos colaboradores.

4. Beneficios: A inclusdo desses arquivos contribui para a organizagido do projeto,
melhora a colaboracio entre desenvolvedores e reduz problemas de versionamento.

5.5.3.3. Compreensao do histérico de mudancas

O GitHub Desktop apresenta um histérico visual de todos os commits realizados no re-
positério, permitindo que o usudrio acompanhe a evolugdo do projeto de maneira clara
e organizada. Esse recurso mostra, em ordem cronoldgica, cada alteracdo registrada, in-
cluindo o autor, a data, a mensagem do commit e os arquivos modificados. Dessa forma,
torna-se mais facil realizar auditorias, revisdes de cddigo e identificar eventuais regressoes
que possam ter sido introduzidas.

1. Acessar a aba de historico: Na tela principal do GitHub Desktop, ao lado da
lista de alteracOes pendentes, encontra-se a aba History. Ali sdao exibidos todos os
commits ja registrados no repositério atual.

2. Visualizar detalhes de cada commit: Ao selecionar um commit no histérico, a
interface mostra os arquivos alterados e, em alguns casos, até o contetido exato das
modificagdes realizadas (adi¢des e remocdes). Isso facilita a andlise de mudancas
especificas, sem a necessidade de recorrer a linha de comando.

3. Identificar a autoria e a data das mudancas: Cada commit apresenta informagdes
sobre quem o realizou e em que momento. Essa funcionalidade é fundamental
em projetos colaborativos, pois permite rastrear responsabilidades e compreender o
contexto das alteragdes.

4. Facilitar auditorias e revisoes: Com a visualizacdo cronoldgica, € possivel au-
ditar o progresso do projeto, revisar decisdes tomadas em commits passados e até
encontrar o ponto em que um problema foi introduzido no cédigo.

5.5.4. Colaboraciao de Branches com o Github Desktop

Uma branch é como uma “linha paralela” do projeto. Ela permite que vocé trabalhe em
algo novo (uma funcionalidade, corre¢do de bug ou teste) sem mexer no codigo principal,
que normalmente estd na branch main. Pense nela como uma cdpia do projeto em que
vocé pode fazer alteragGes a vontade, sem risco de quebrar o que j funciona.

16



100

Figura 5.10. Exemplo da tela de historicos. Fonte: Proprio autor.

5.5.4.1. Criando uma branch no GitHub Desktop

1. Abra o GitHub Desktop e selecione o repositério em que quer trabalhar.

2. No topo, clique no botdo “Current Branch” (ou “Branch atual”).

©) Fle Bt View Repostoy Bunch Help

Figura 5.11. Exemplo da tela de Branch atual. Fonte: Proprio autor.

3. Clique em "New Branch” (ou “Nova branch”).

17



101

Figura 5.12. Exemplo da tela de nova Branch. Fonte: Préprio autor.

4. Dé um nome significativo para a branch, como correcao-bug-login ou nova-funcionalidade.

Figura 5.13. Exemplo da tela de colocar nome na branch. Fonte: Proprio autor.

5. Clique em “Create Branch” (Criar Branch).

18



102

Openin Visual Studio Code
Shift - A

View thefles of your repositoryin Exploer
Cut - Shif+ F

Open the repository page on Github in your browser
Cul - Shift - 6

Figura 5.14. Exemplo da tela de branch nomeada. Fonte: Proprio autor.

6. O GitHub Desktop troca automaticamente para a nova branch. Tudo o que vocé
alterar agora serd registrado nela, e nao na branch principal.

7. Clique em “Current Branch”.

3+ Choose 3 branch to merge into test

Figura 5.15. Exemplo da tela de lista das atuais branches. Fonte: Proprio autor.

8. Voce vera a lista de todas as branches do repositdrio.

9. Clique na branch que deseja usar e o GitHub Desktop vai automaticamente mudar
o foco para ela.

19



103

Figura 5.16. Exemplo da tela de selecao de repositorio. Fonte: Préprio autor.

10. Agora, qualquer alteracdo serd feita na branch selecionada.

5.5.4.2. O que é e como fazer o merge?

O merge € o processo de unir as alteracdes feitas em uma branch secunddria (por exemplo,
nova-funcionalidade) de volta para a branch principal (main). Isso garante que tudo o que
vocé desenvolveu separadamente passe a fazer parte do cédigo principal. Para realizarmos
um merge no GitHub Desktop, serdo desenvolvidos os seguintes passos:

1. No GitHub Desktop, clique em “Current Branch” e selecione a branch principal
(main).

Figura 5.17. Exemplo da tela de Branch principal. Fonte: Préprio autor.

2. Vi no menu Branch (na parte superior) e clique em “Merge into Current Branch”.

20



104

Figura 5.18. Exemplo da tela de Branch Merge. Fonte: Proprio autor.

3. Selecione a branch que contém as alteracdes (exemplo: nova-funcionalidade).

Figura 5.19. Exemplo da tela de Branch alterac6es adicionada a brach principal.
Fonte: Préprio autor.

4. O GitHub Desktop vai tentar unir automaticamente as mudancas.

5.5.5. Como resolver conflitos simples e como o GitHub Desktop mostra o conflito

Um conflito de merge acontece quando duas branches alteram a mesma linha de um ar-
quivo e o Git ndo consegue escolher qual versao manter. Nesses casos, o GitHub Desktop
mostra uma mensagem de conflito e lista os arquivos afetados para que o usudrio resolva
manualmente. Ja para sincronizar alteracdes, o processo envolve usar Fetch origin para
verificar atualizacdes no repositério remoto, Push origin para baixa-las e Push origin para
enviar seus commits locais, garantindo que todos os colaboradores trabalhem na versao
mais atualizada [GitHub Docs; Coderefinery, 2025].

21



105

Um conflito acontece quando duas branches modificam a mesma linha de um
arquivo ou mexem em partes que o Git nao consegue decidir sozinho qual versdo manter.
Quando hd conflito, o GitHub Desktop exibe uma mensagem como “This branch has
conflicts that must be resolved”. Ele vai listar os arquivos problemadticos e vocé precisa
abrir esses arquivos para resolver.

5.5.6. Sincronizar alteracoes com o GitHub

No GitHub Desktop, para manter seu repositorio local alinhado com o remoto, vocé nor-
malmente comeca clicando em “Fetch origin”: isso verifica se hd mudancas no GitHub
que ainda ndo foram baixadas para sua maquina. Se existir algo novo, vocé€ pode entao
usar “Pull origin”, que baixa essas alteragdes e as incorpora ao seu repositdrio local
[GitHub Docs; coderefinery.github.io].

Quando vocé faz modifica¢des no seu computador, primeiro salva essas mudancas
com um commit, depois usa “Push origin” para enviar aquelas alteragcdes ao repositorio
no GitHub para que outros colaboradores também possam vé-las. Se existirem commits no
repositorio remoto que vocé ainda ndo possui localmente, o GitHub Desktop normalmente
pede que voce faga um fetch antes de permitir o push, para evitar conflitos ou divergéncias
de historico [GitHub Docs].

5.6. Vantagens e Desvantagens

Quanto as vantagens e desvantagens da utilizagdo de ferramentas como o GitHub Desk-
top, apresentam-se a seguir as formas pelas quais podem ser benéficas ao usudrio, bem
como alguns pontos negativos observados em seu uso.

5.6.1. Vantagens

No tocante as vantagens em relacdo a interface de linha de comando, especialmente para
o publico-alvo menos familiarizado com o Git, destacam-se os seguintes beneficios:

1. Trabalho colaborativo.
2. Controle de conflitos.
3. Plataforma gratuita (até certo nivel).

5.6.2. Desvantagens

Quanto as desvantagens encontradas nesta ferramenta, embora poucas, podem ser citadas
algumas:

1. Curva de aprendizado inicial.
2. Dependéncia de internet (para uso do GitHub).

3. Conflitos podem ser complexos de resolver.

22



106

5.7. Boas Praticas no Uso do Git e GitHub

O uso de sistemas de controle de versdo, como o Git, e de plataformas de hospedagem
e colaboracdo, como o GitHub, é essencial no desenvolvimento de software moderno.
Além de permitir o rastreamento das alteracdes no cddigo, essas ferramentas fomentam
a colaboracdo eficiente entre equipes e garantem maior qualidade no produto final. No
entanto, para que se obtenha o miximo de beneficios, é necessario adotar boas praticas
que padronizem o fluxo de trabalho e reduzam problemas futuros. A seguir, destacam-se
algumas recomendac¢des fundamentais.

5.7.1. Commits pequenos e frequentes

Um erro comum em projetos de software é acumular diversas modificacdes antes de re-
gistrar um commits. Essa prética dificulta a rastreabilidade e aumenta a probabilidade
de conflitos. O ideal é realizar commits pequenos, que representem uma alteragdo co-
esa e independente, como a correcdo de um bug especifico ou a implementagdo de uma
funcionalidade pontual. Commits frequentes facilitam a revisdo, permitem a reversao de
mudancgas sem comprometer grandes blocos de cédigo e tornam o histérico do projeto
mais legivel.

5.7.2. Mensagens de commit claras

A mensagem associada a um commit deve ser descritiva e direta, informando o que foi
alterado e, preferencialmente, o motivo. Mensagens vagas como “ajustes” ou “mudangas
finais” ndo auxiliam na compreensao do histérico do projeto. Uma boa pratica ¢ utilizar
um padrio, como:

» fix: para corregdes de erros.
* feat: para implementacdo de novas funcionalidades.

* docs: para alteragdes na documentagio.

Esse tipo de padronizacdo contribui para a manutengao futura do projeto e para a
colaboracgdo eficiente em equipe.

5.7.3. Organizacao do repositorio

A estrutura do repositério reflete a maturidade e a profissionalizacdo de um projeto. Pastas
mal organizadas ou a auséncia de documentacao dificultam a contribui¢ao de novos desen-
volvedores e prejudicam a escalabilidade do software. Recomenda-se manter um arquivo
README . md bem escrito, que apresente objetivos, instru¢des de instalacdo, dependéncias
e exemplos de uso. Além disso, separar arquivos de cédigo, testes, documentacdo e re-
cursos auxiliares em diretdrios distintos favorece a clareza e a manuten¢do do projeto.

23



107

5.7.4. Nomeacao significativa de branches

Branches (ramifica¢des) sdo fundamentais para o desenvolvimento paralelo de funci-
onalidades, corre¢des e experimentos. No entanto, nomes genéricos como “teste”’ou
“nova”dificultam a compreensao de seu propdsito. Recomenda-se adotar nomenclaturas
padronizadas, como:

* feature/login para o desenvolvimento de uma nova funcionalidade.
* bugfix/navbar para a corre¢do de um problema especifico.

* hotfix/security para correcdes criticas e imediatas.

Essa prética organiza o fluxo de trabalho e facilita o gerenciamento do ciclo de
vida das alteragdes.

5.7.5. Revisio de codigo antes do merge

O processo de code review consiste na revisao de cédigo por outros membros da equipe
antes da integracdo na branch principal, sendo um dos pilares da qualidade em projetos
colaborativos. A revisdo permite identificar erros, melhorar a legibilidade e comparti-
lhar conhecimento entre os desenvolvedores. No GitHub, esse processo € facilitado por
pull requests, que centralizam a discussao sobre uma alteracio antes de sua incorporagao
definitiva. O resultado € um c6digo mais robusto, padronizado e confidvel.

5.8. Consideracoes finais

A adog@o dessas boas préticas no uso do Git e do GitHub néo apenas melhora a qualidade
técnica do cddigo, mas também fortalece a colaboragdo e a eficiéncia dentro das equipes
de desenvolvimento. Em projetos cientificos, académicos ou corporativos, o rigor na
aplicacdo dessas préticas contribui diretamente para a reprodutibilidade, a transparéncia e
a longevidade das solugdes desenvolvidas.

Referéncias

Atlassian. (n.d.). Comparing workflows. Atlassian Git Tutorials. https://www.atlas-
sian.com/git/tutorials/comparing-workflows.

Coursera. (2023). What is Git?. Coursera. https://www.coursera.org/articles/what-
is-git.
Chacon, S., & Straub, B. (2014). Pro Git (p. 456). Springer Nature.

Earth Data Science. (n.d.). Basic Git commands. Earth Data Science Workshops.
https://earthdatascience.org/workshops/intro-version-control-git/basic-git-commands.

Encyclopaedia Britannica. (n.d.). GitHub. In Britannica. https://www.britannica.
com/technology/GitHub.

24



108

Everhour. (n.d.). What is GitHub?. Everhour Blog. https://everhour.com/blog/what-
is-github.

GitHub, Inc. (s.d.). Documentacdo do GitHub Desktop. Recuperado em 16 de
julho de 2025, de https://docs.github.com/pt/desktop.

GitHub. (2025). Instalar o GitHub Desktop. GitHub Docs. Recuperado em 8 de
setembro de 2025, de https://docs.github.com/pt/desktop/installing-and-authenticating-to-
github-desktop/installing-github-desktop.

GitHub. (2025). Criar uma conta no GitHub. GitHub Docs. Recuperado em 8 de
setembro de 2025, de https://docs.github.com/pt/get-started/start-your-journey/creating-
an-account-on-github.

Git SCM. (n.d.). Getting started: A short history of Git. Git. https://git-scm.com/bo-
ok/ms/v2/Getting-Started- A-Short-History-of-Git.

GitLab. (2025). Journey through Git’s 20-year history. GitLab Blog. https://about.
gitlab.com/blog/journey-through-gits-20-year-history.

GitHub. (2025). Git turns 20: A Q&A with Linus Torvalds. GitLab Blog.
https://github.blog/open-source/git/git-turns-20-a-qa-with-linus-torvalds.

GitHub Docs. (n.d.). About pull requests. GitHub. https://docs.github.com/pt/pull-
requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-reques-
ts/about-pull-requests.

GitHub Docs. (n.d.). About GitHub and Git. GitHub. https://docs.github.com/en/get-
started/start-your-journey/about-github-and-git.

I Programmer. (2025). Linus on Git. I Programmer. https://www.i-programmer.in-
fo/news/82-heritage/17977-1linus-on-git.html.

Mats, S. (2020). The story of GitHub: How a weekend hack became the world’s
code playground. Medium. https://stevemats.medium.com/the-story-of-github-how-a-
weekend-hack-became-the-worlds-code-playground-928010893bb1.

PSL Models. (n.d.). History of GitHub. Git Tutorial. https://pslmodels.github.io/Git-
Tutorial/content/background/GitHubHistory.html.

25



