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Abstract

Systems-of-Information Systems (SolS) refer to collections of software systems that be-
came able to deliver innovative functionalities as well as meet new business opportunities
due to novel connections formed with information systems. The software architecture of
SolS plays an important role in their success since they are frequently associated with
essential quality attributes, such as sustainability, performance, and reliability. Aiming
to study the software architecture of SolS, additional types of models can be explored for
predicting its runtime behavior and structure. Through examples with formal and semi-
formal notations, we discuss the advantages and limitations of selected techniques for the
description of high level models of SolS, namely SysML, SosADL, and DEVS. Finally, we
outline directions for future work on tailored architectural models for practitioners and
researchers dealing with SolS analysis and design.

2.1. Introduction

Systems-of-Information Systems (SolS) can be considered as a category of Systems-of-
Systems (SoS) that also comprise one or more information systems (IS) (Graciano Neto,
Oquendo, & Nakagawa, 2017), which in turn are software systems that collect (or re-
trieve), process, store, and distribute information (Laudon & Laudon, 2015; Tomicic-
Pupek, Dobrovic, & Furjan, 2012). In this sense, other types of systems can be con-
stituents of a SolS, such as drones, cyber-physical systems, and other SoS. The main
purpose of a SolS is to support novel connections among its constituent systems so as to
accomplish one or more business objectives, which can be materialized as flexible and
inter-organizational business processes crosscutting a subset of constituent systems that
are not exclusively IS (Majd, Marie-Hélene, & Alok, 2015; Saleh & Abel, 2015; Graciano
Neto, Cavalcante, Hachem, & Santos, 2017).

The architecture description encompasses the set of artifacts used for document-
ing software architectures (ISO/IEC/IEEE 42010, 2011). As an abstraction of the system,
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one or more models can be selected to support different tasks throughout system’s anal-
ysis and design. For instance, models can be useful for explaining complex parts of
the design to non-technical stakeholders, thus contributing for knowledge dissemination
among stakeholders (Farenhorst & Boer, 2009). Moreover, models can also be useful for
assessing the suitability of architectural decisions since an early stage of the system’s life
cycle (Capilla, Nakagawa, Zdun, & Carrillo, 2017). Given the complexity of each project,
different viewpoints can be selected that will focus the attention of the reader to a single
aspect or portion of the system. Therefore, it is important to carefully plan which mod-
els will be created so as to promote the readability and changeability of the architectural
description without compromising the project’s timeline.

The openness and dynamism that are intrinsic to systems-of-systems present ad-
ditional challenges for researchers and practitioners dealing with their description. As
part of a SoS, a constituent system can operate and evolve independently from other con-
stituents, possibly fulfilling parallel tasks whilst being part of the SoS (Maier, 1998).
Specially if constituents’ operation is concealed from other systems or the SoS itself, ar-
chitects will need tailored means for ensuring that constituents behave as expected and
that certain properties are preserved (Fitzgerald, Bryans, & Payne, 2012). Connections
that are formed when a constituent is added to the SoS play an important role in the def-
inition of interactions that can take place at run-time, such as negotiation, orchestration,
or choreography. For this reason, we often refer to connections among constituents as
mediators (Issarny & Bennaceur, 2013), which are considered as first class entities of SoS
architectures.

In this scenario, architects dealing with the description of SolS will need to select
architectural models that will help them to make informed design decisions since an early
stage of the system’s life cycle. These selections can indicate the need for novel architec-
tural models aiming to better understand SoS dynamic evolution, interface mismatches,
and quality characteristics at a higher abstraction level (Batista, 2013). While a litera-
ture review reported several languages for describing SoS software architectures (Guessi,
Graciano Neto, et al., 2015), there is still no consensus on which models or notations
would be more appropriate for this task. Thus, the first step to create tangible artifacts for
describing SolS architectures is to understand the advantages and limitations of specific
models and notations.

This chapter investigates the process of creating architectural descriptions for
SolS. First, Section 2.2 presents the main characteristics of SolS, pointing out key as-
pects of their design that are important for researchers and practitioners. Then, Section
2.3 introduces architectural descriptions of SolS, discussing selected viewpoints and no-
tations that can be useful for communication and evaluation. In Section 2.4, we further
describe three instances of SolS, examining how different models have supported in their
analysis and design. Finally, in Section 2.5, we outline future directions for tailoring
notations and architectural models to the particular needs of SolS stakeholders.

2.2. Characterization of Systems-of-Information Systems

As a SoS, a SolS shares the following well-defined characteristics (Maier, 1998): (i) con-
stituent systems retain their operational independence, performing other tasks indepen-
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dently from the SoS; (i1) constituent systems retain their managerial independence so that
they can be owned by organizations other than the one running the SoS; (iii) constituent
systems are distributed, exchanging relevant information with other systems in order to
achieve the SoS mission; (iv) the SoS can be evolutionary developed in response to indi-
vidual or collective changes in its constituent systems; and (v) the SoS presents emergent
behaviors that are the result of new interactions between its constituent systems. Remark-
able instances of SolS encompass smart cities (Graciano Neto, Paes, et al., 2017), space
systems (Graciano Neto, Manzano, Rohling, Volpato, & Nakagawa, 2018), and military
systems (Paes, Graciano Neto, Moreira, & Nakagawa, 2019). These examples are further
discussed in Section 2.4 to exemplify different notations.

Modeling SoS goals requires the identification of global objectives and how in-
dividual constituent systems can be assigned to these goals in order to achieve the SoS
mission (Silva, Cavalcante, & Batista, 2017). Thus, new constituent systems allow the
SoS to offer an unique range of functionality that could not be offered by any of its con-
stituents alone (Maier, 1998). In the context of SolS, a constituent system contributes
with a set of capabilities that can be exploited for achieving specific goals, i.e., activi-
ties partitioned into smaller operational tasks that can be distributed to IS constituents
matching these capabilities (Graciano Neto, Horita, et al., 2018). Due to SolS business
oriented nature, an internal business process defining the sequence and interdependence
between a set of well defined activities is required to govern the SoS operation and the
exchange of information between constituents (Graciano Neto et al., 2017). Therefore,
the particular characteristics of SolS brings additional implications to their design, such
as (Saleh & Abel, 2015): (i) addressing information and knowledge exchange between
IS; (ii) controlling the impact of interrelationships between SolS that have other SolS as
constituents; (iii) taking responsibility for the information that is generated by the SolS;
and (iv) addressing information interoperability as a key concern.

In this scenario, a shared notation for the specification of SolS goals must enable
the representation of business processes, specially since constituents can be owned by
other organizations which can change over time as new constituents join the SolS (Gra-
ciano Neto, Horita, et al., 2018). For instance, mKAOS is a pioneering language specially
designed to support missions modeling for SoS and can be considered the state-of-the-art
notation for that purpose (Silva et al., 2017). Therefore, SolS architectures must also be
designed to cope with adverse run-time scenarios given that constituents are not necessar-
ily known at design time. Finally, SolS architectures must also address the interoperability
between constituents at a higher abstraction level, specially considering the operational
and managerial independence of constituents.

2.3. Architecture Descriptions

Software architectures comprise the fundamental structure of a software system, its el-
ements, the relationship with other elements and to the environment, and the principles
governing its design and evolution over time (Bass, Clements, & Kazman, 2012; ISO/-
IEC/IEEE 42010, 2011). As tangible artifacts expressing software architectures, archi-
tecture descriptions provide concrete ways for accessing systems qualities, sharing ar-
chitectural knowledge, and preventing software systems’ decay (Clements et al., 2011;
Kruchten, 2009).
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To disseminate best practices regarding the content of such artifacts, the ISO/IEC/-
IEEE 42010 (2011) standard establishes the main elements that compose an architecture
description. For instance, it establishes that an architecture description should present a
set of architecture views, each of which showing the software architecture from a spe-
cific architecture viewpoint. Architecture viewpoints select which languages, notations,
methods, and model kinds can be used for creating, interpreting, and using a view. In this
sense, a model kind is a broad concept encompassing diverse techniques used in archi-
tectural models, such as metamodels, templates, languages, and operations. Examples of
model kinds include class diagrams, Petri nets, charts, among others.

Complex elements such as architecture frameworks, architecture styles, and Ar-
chitecture Description Languages (ADLs), are also defined by the ISO/IEC/IEEE 42010
(2011) standard. An architecture framework establishes a common practice for creating,
interpreting, analyzing, and using architecture descriptions. To this end, frameworks such
as the “4+1” Views (Kruchten, 1995) and Views & Beyond (Clements et al., 2011) select
which viewpoints, model kinds, stakeholders, and concerns should be framed by archi-
tecture descriptions targeting a particular domain or stakeholder community. In turn, an
architecture style selects common model kinds and concerns for a particular class of soft-
ware architectures. The term notation is used interchangeably in this work as a reference
to ADLs, defined by the ISO/IEC/IEEE 42010 (2011) standard as any form of expression
used in architecture descriptions. The main difference between programming languages
and ADLs is that the latter enables the representation of software systems at a higher ab-
straction level, i.e., in terms of components, connectors, and configurations (Medvidovic
& Taylor, 2000). Nonetheless, ADLs can also target a particular domain or set of con-
cerns. In this regard, it can also be referred to as a domain specific language (Nielsen,
Larsen, Fitzgerald, Woodcock, & Peleska, 2015).

To date, there are 124 known languages' for the description of software architec-
tures in academia and industry. In this scenario, it is useful to distinguish ADLs based on
formalism level, namely (Bass et al., 2012): (i) formal, comprising notations with precise
(often mathematically based) syntax and semantics; (ii) semi-formal, comprising nota-
tions with defined syntax but lack of defined semantics; and (iii) informal, comprising
free style models with ad-hoc syntax and/or semantics. In this scenario, UML is a semi-
formal language since new profiles can define a new semantics for existing elements of
the language.

The choice for a given notation can be justified based on its suitability for the
intended use of architecture descriptions. For instance, practitioners can prefer ADLSs
that support the specification of both functional and non-functional properties, have a
defined semantics to support automated analyses, and both graphical and textual repre-
sentations for easing the communication among stakeholders (Lago, Malavolta, Muccini,
Pelliccione, & Tang, 2015). Correspondences such as refinements, constraints, and de-
pendencies can be defined to enforce consistency between elements of the architecture
description. In particular, known inconsistencies should also be recorded by the archi-
tect so as to be properly addressed in subsequent stages of the system design. Therefore,
it is important to keep record in the description about the rationale behind the selection

! Architectural description languages, http://www.di.univagq.it/malavolta/al/
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and/or creation of specific views as well as design alternatives and decisions that shaped
the resulting software architecture.

In this context, the customization of architecture descriptions for a particular
project or stakeholder community is in line with recommended best practices. In a previ-
ous study, we investigated the main building blocks of three notations for the description
of SoS architectures (Guessi, Cavalcante, & Oliveira, 2015). While we could see similar
building blocks in ADLs for SoS and monolithic systems, we noticed specific challenges
rising from SoS dynamism and openness. For instance, the architectural configuration
of an SoS that we also refer to as a coalition must represent the connections between
constituents and mediators. However, the coalition presents a combined behavior that is
greater than the merely sum of its parts, and this behavior can only be observed at run-
time. Moreover, the operational and managerial independence of constituents requires
requires a dynamic response of the SoS, e.g., reorganizing its architectural configuration
with the remaining constituents and/or creating new mediators to incorporate new ones.
Therefore, it is important to take into account these characteristics of SoS when selecting
architectural viewpoints and notations for SolS. Following, we discuss the advantages and
limitations of selected viewpoints and notations in light of SolS characteristics.

2.3.1. Selected Notations and Viewpoits

Several ADLs have been used to document and evaluate SoS (Guessi, Graciano Neto, et
al., 2015; Klein & van Vliet, 2013), including semi-formal and formal languages, such as
UML?, SysML?, and CML (Woodcock et al., 2012). UML and SysML are general pur-
pose languages, the latter is considered an extension of the former. Both languages have
been used in SoS descriptions (e.g., Mittal and Risco Martin (2013), Bryans, Payne, Holt,
and Perry (2013), Andrews, Payne, Romanovsky, Didier, and Mota (2013), Dahmann
et al. (2017)), despite missing first class constructs for mediators and coalitions of SoS
architectures (Guessi, Cavalcante, & Oliveira, 2015). For instance, the block definition
diagram of the SysML can represent multiple systems. Nonetheless, it does not support
representing dynamic properties, such as emergent behaviors, since it is a static model
(Guessi, Graciano Neto, et al., 2015). CML is a formal language especially conceived for
SoS formal specification, focusing on the verification of emergent behaviors but not on
their validation (Fitzgerald, Foster, Ingram, Larsen, & Woodcock, 2013).

Other languages have been used for describing SoS, for instance, the Composable
Adaptive Software Systems (COMPASS) (Gokhale et al., 2008) that defines a modeling
paradigm for deploying SoS via mediators. This language offers support to modeling con-
stituents, validating the syntax, semantics, and compatibility of assembled constituents,
and generating meta-data descriptors that can be used for middleware purposes. Cook,
Drusinksy, and Shing (2007) use MSC Assertions, a formal-language extension of the
UML sequence diagram superimposed with UML statecharts, to validate SoS run-time be-
haviors. Griendling and Mavris (2011) use UML in a methodology coined Architecture-
based Technology Evaluation. They identify limitations of UML for representing ex-
ecutable models that would suggest the use of Discrete Event notations instead. The

2UML, http://www.uml.org/
3SysML, http://sysml.org/
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Capability Tradeoff (ARCHITECT) UPDM is a formal language that provides UPDM
(Unified Profile for DODAF and MODAF) as a novel, consistent way for creating DoDAF
1.5 and MODAF 1.2 descriptions in UML-based tools, thus offering a compatible way for
interchanging descriptions expressed in any of the two notations (Hause, 2010b, 2010a).
Finally, bi-graph models have also been used as a formal language for representing SoS in
that nodes represent constituents and edges represent communication links between them
(Wachholder & Stary, 2015; Gassara, Bouassida, & Jmaiel, 2017; Gassara, Rodriguez,
Jmaiel, & Drira, 2017). This notation supports the description of structural properties,
which are materialized by links (i.e. system connectivity), and constituents’ behaviors,
materialized by reaction rules.

In this scenario, we observe that languages for SoS should offer support for (Guessi,
Cavalcante, & Oliveira, 2015): (i) partial descriptions of constituents, which are not nec-
essarily known at design time; (ii) environmental modeling; and (iii) dynamic architec-
tures. Aiming to overcome some of limitations found with present ADLs for the descrip-
tion of SoS, we observe several works investigating the transformation of architectural
models expressed in ADLs, such as 7-ADL, SySML, HLA, or DoDAF?, into program-
ming and/or simulation languages (e.g., Go language and Simulink®). Therefore, we
notice that SoS languages also need to bridge the gap between high level architecture
descriptions and low level simulation models.

The multitude of languages that can be used for expressing SoS architectures poses
new challenges for creating architecture descriptions given that (Guessi, Cavalcante, &
Oliveira, 2015): (1) there is no consensus regarding which languages to use for the de-
scription of SoS software architectures; (ii) there is a lack for specific guidelines about
the selection of suitable formalism levels; and (iii) there is no consensus regarding the
essential features of ADLs for the description of SoS software architectures. In particular,
the business oriented nature of SolS requires a specific viewpoint for capturing infor-
mation as well as decision flow across constituent systems. This architectural view can
use BPMN® for describing the flexible and inter-organizational processes that enable to
achieve SoS goals. However, it is also important to mention that BPMN still presents
limitations for SoIS mission design.

2.3.1.1. SosADL

SosADL is a novel formal ADL for SoS that supports the specification of abstract ar-
chitectures in which concrete constituents are not necessarily known at design-time and
abstract connectors are specified so as to be dynamically realized by the SoS in case there
is a need to incorporate new constituents and/or reassemble the ones that remained in the
colation (Oquendo, 2016b, 2016a). SosADL offers a well-defined semantics founded in
the m-calculus and a textual syntax for the specification of high level architecture models
(Oquendo, 2016a). In particular, it enables the description of coalitions, i.e., temporary
alliances among constituents that collaborate via mediators (Oquendo, 2016c¢). Thus, the

4US Department of Defense Architecture Framework (2010)
3Simulink, http://www.mathworks.com/products/simulink/
SBPMN, http://www.bpmn.org/
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behavior of coalition can be used for specifying how constituents are allowed to commu-
nicate at run-time so as to accomplish a given set of missions. The following section will
provide examples for the use of SosADL in SolS architecture description.

Figure 2.1 shows an excerpt of the main building blocks of the SosADL language,
including mediators, coalitions, and systems (i.e., constituent systems). Mediators are
first-class elements representing the communication links between constituents (Wieder-
hold, 1992). Both mediators and systems can be further specified in terms of an internal
behavior. The architecture defines policies for assembling abstract types of systems and
mediators as coalitions, e.g., enumerating abstract types of constituents that can be part
of the SoS and the interactions that can take place among them. Coalitions can be fur-
ther specified by a behavior, data types, and ports exposed to the environment or other
constituents. In this sense, ports (i.e., gates and duties) provide abstractions that support
modeling the communication between constituents and mediators. For instance, they can
receive stimuli from or act upon conditions observed in the environment, hence enabling
the interaction of the SoS with its surrounding environment. Data types can define func-
tions, which in turn can be associated with expressions.

is an arrangement of P>

< datatypes

connections P 1

Connection

behavior

i f 0+
Mediator mediates B> 2 System

SoSADL SoS
| I descrives B>,

Architecture

Figure 2.1. An excerpt of SosADL abstract syntax (Graciano Neto, 2016).

2.4. Case Studies on SolS architecture description

We discuss in this section about the architectural models that have been created for SolS
in three different domains, namely smart cities, space systems, and the military. These
models are expressed in SosADL and SysML although other languages have also been
used in specific parts of these projects. We explain the rationale for using other languages
in the description of each case.

SosADL was used to create models of two different viewpoints: (i) a constituent’

"We have selected this term instead of Components and Connectors (Clements et al., 2011) due to the fact
that this viewpoint also maps the behavior of constituents
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viewpoint, which focuses on each individual constituents of a coalition as well as their in-
ner properties (e.g., expected inward and outward connections, behavior, functions, etc.);
and (ii) a coalition viewpoint, framing the communication links between constituents and
mediators that makes it possible to accomplish the SoS mission. Despite mapping the
behavior in both viewpoints, these models are still static, i.e., they are created at design
time to explore the run-time behavior of a coalition.

2.4.1. Smart city SolS

A smart city is a dynamic environment comprising IS that work together to provide effi-
cient and effective services that help to increase the quality of life of citizens (Rech, Pis-
tauer, & Steger, 2018), such as government IS and healthcare IS (Pelliccione et al., 2016).
In this scenario, the smart city is a SolS that potentially involves several constituents that
can be, themselves, SoS and SolS, such as cyber-physical systems-of-systems (CPSoS)
(Engell, Paulen, Reniers, Sonntag, & Thompson, 2015; Diaz, Pérez, Pérez, & Garba-
josa, 2016), smart houses, smart buildings, smart traffic control, smart grids (for power
distribution), smart factories, as well as emergency response systems (Santos, Oliveira,
Duran, & Nakagawa, 2015). These constituents are all part of a complex system network,
in which systems could compete for shared resources whilst adhering to an overarching,
high level business process. Therefore, the collaboration among constituents becomes
essential to achieve the SolS mission, e.g., ensure public security, reduce traffic, monitor
imminent flash floods, and manage crisis events.

The authors have been involved in the study of a Flood Monitoring SoS (FMSoS)
(Guessi, Oquendo, & Nakagawa, 2016; Graciano Neto, Paes, et al., 2017; Graciano Neto,
2018), one of the constituents of the smart city SolS that can also relay information to
the constituent dealing with emergency and crisis management. FMSoS deploys several
sensors to monitor real time conditions of rivers that cross urban areas particularly prone
to flooding. At a high abstraction level, FMSoS can be described as having five different
types of constituents, namely: (i) smart sensors, which are embedded systems distributed
throughout the river extension that collect data about water level; (ii) gateways, which
gather data from other constituents and relay them to external systems; (iii) crowd sourc-
ing systems, which are mobile applications used by citizens to warn authorities about
the water level in locations outside the range of smart sensors; (iv) drones, which are un-
manned automated vehicles used by the authority monitoring the water level from the sky,
taking pictures of the river and notifying agents of the emergency and crisis management
team; and (v) drone bases, which are fixed stands for drones’ departure and arrival that
can be used for recharging their batteries and uploading collected data.

The simulation of the FMSoS is generated from its SosADL description. It in-
cludes 42 sensors, nine crowd sourcing systems, and 18 drones. A drone must have its
own base, totaling 18 drone bases that transmit collected data through a 3G gateway.
There are also 18 gateways distributed along the river bank. In total, there are 20 gate-
ways that can be used to gather data within the coalition and relay these data to external
systems (Graciano Neto, Paes, et al., 2017). Listing 2.1 shows an excerpt of the descrip-
tion of a smart sensor in SoSADL. The complete description is not shown to improve the
readability of this example. From this listing, we can notice that the gate energy of-
fers two environment connections, i.e., connections to the external environment, in Lines
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11 and 12. The first connection, named threshold, reads the minimum energy level
required for resuming the sensor operation, and the power connection is used to read
the battery level of the sensor. Thereby, the description of a connection must specify a
name and data type for the information that can be transmitted by the communication
channel. Therefore, a SoS architect can use the environment modifier to explicitly deter-
mine what constituents, mediators, and coalitions are able to read from and transmit to
the environment.

Listing 2.1. A specification of a Sensor in SoOSADL.

//’with’ imports declarations suppressed
// Description of Sensor as a System Abstraction
library WsnSensor is {
system Sensor( lps:Coordinate ) is {
// Declaration of local types hidden
gate measurement is {
connection pass is in { MeasureData }
environment connection sense is out { MeasureData }

XN B W=

9 }

10 gate energy is {

11 environment connection threshold is in { Energy }
12 environment connection power is in { Energy }

13 }

14 }

15 1}

Figure 2.2(a) shows the SosADL description of the FMSoS expected behavior,
which is named coalition. The coalition can be any composition of sensors,
gateways, and transmitters (a type of mediator) (Lines 7-9). The binding
(Lines 11-23) defines how these elements can be connected, which could then enable
the warning behavior of the SolS. The main policy of this behavior states that between
each pair of sensors (i.e., isensorl and i sensor?2), there must be a transmitter, which
in turn will forward data from its input connection f romSensors to either the next sen-
sor or to the next gateway by means of its output connection t owardsGateway, if the
transmitter actually mediates a sensor and a gateway. Therefore, the interactions that will
take place at run-time can be tailored to the types of elements that actually exist in a
concrete coalition.

As previously mentioned, the SosADL description is a static model for the run-
time behavior of constituents and coalitions. Therefore, we have implemented an au-
tomated model transformation from SosADL to Discrete Event System Specification
(DEVS) (Zeigler, Kim, & Prachofer, 2000) aiming to run these models in the MS4MES, a
simulation environment. Figure 2.2(b) shows an excerpt of a DEVS simulation model for
one of the possible scenarios that satisfy the former architecture description. In particu-
lar, it shows a coupled model, i.e., a model that defines how constituent systems (which
are further described by atomic models) may exchange data with each other, produc-
ing an emergent behavior for the coalition as a whole. The DEVS simulation requires a
stimuli generator, an artificial entity that has been introduced to the coupled model for
autonomously producing stimuli that emulate the SoS environment (Graciano Neto, Paes,
et al., 2017; Graciano Neto, 2018). In this example, this system emulates the handover of

8MS4ME, http://ms4dsystems.com/
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sos WsnMonitoringSos is {
architecture WnsMonitoringSosArchitecture( ) is {
//gates definition conveniently hidden

i

T ST

behavior coalition is compose {

sensors is sequence { Sensor }
gateway is sequence { Gateway }
transmitters is sequence { Transmitter }

ca ~ o

® 0

=

} binding {

[

TR

relay gateway::notification::alert to warning::alert
14 and relay gateway::request to request and forall {

e
L

15
16| isensorl in sensors, isensor2 in sensors suchthat exists {
17 itransmitter in transmitters suchthat( isensorl <>

15| isensor2 ) implies unify one { itransmitter::fromSensors }

19| to one { isensorl::measurement::measure } and unify

20| one { itransmitter::towardsGateway } to one { isensor2::measurement::pass }

21| xor unify one {itransmitter::towardsGateway } to one { gateway::notification::measure }

23 .
24 } From the top perspective, FloocdMonitoring is made of StimulusGenerator, Sensorl,
75 } - torl, Mediater?, Media and
26 ¥
27 From the Lop perspective, stor sends lp
’ From the top perspective,
From the top perspective,
(a) From the top perspective,

From the top perspective, ©

From the top perspective, &

From the top perspective,

From the top perspective,

From the top perspective,

From the top perspective, !
From the top perspective,

From the top perspective, !
From the top perspective, 3

From the top parspactive, Sensorl sends Coordinate !
From the top perspactive, r2 sends C !
(b) Frem the top perspective, 3 r? sends O !
From the top perspactive, ri sends C !
Frem the Lop perspective, 7 ri sends O !
Frem the top perspective, rd sends Coord !
From the Cop perspective, teway sends Coordinate te Med
From the Lop perspective, L sends Coordinate to Med
From the Lop perspective, Sensorl sends L
From the Lop perspective, 17 mends !
From the top perspective, Zensord sends !
|

From the top perspective, fensord sends ne

From the top perspective, Mediatcrl sends me
From the top perspective, Medistcor: sends

From the top perspective, Mediatc:? sends

From the top perspective, Mediatord sends me,

From the top perspactive, Sensor? sends neasure to Mediator2!
From the top perspective, Zensorl sends nmeasure to

Figure 2.2. A SosADL coalition description mapped to a DEVS simulation model.

real world data, such as the 1ps coordinates obtained by a GPS and the water level col-
lected by a smart sensor, between sensors towards the gateway. The interactions between
constituents and connectors are created by iterating on the set of sensors and transmitters
in the coalition, creating one interaction for each element of the unification segments in
the SosADL description. Figure 2.3 shows a screenshot of a smaller instance of this sim-
ulation running in the MS4ME environment. The simulation supports the observation of
emergent behaviors in the coalition, offering an animated view of the architecture descrip-
tion that was originally represented in SosADL. In particular, this simulation can be used
to study the roles of individual constituent systems, provided and required interfaces, and
data flow across the coalition. Details on the transformation from SosADL to DEVS are
further discussed by Graciano Neto, Garcés, et al. (2018).

38



M5 MS4 Modeling Environment (MS4 Me) =08 E5R| X
File Edit Design Run Window M54 Store Help Run Search

= &* - v 5l @~ ShowSESTree | Openlavafile | Simulate Now | Merge All | PruneSES into PES
[5 [ Simulation Viewer | (5 DEVS Modeling
[ Simulation Viewer &% [ -]=8
simulation Models {¥ FloodMonitering
(8] Sensor2 Simulation Status
[e] Sensor2 fOutMeasure: MeasureData Step Complete
[&] Sensord StimulusGenerator? coordinate: Coordinate
[€] StimulusGenerator (s2) % Abscissa Time 280
[€] Sensorl vane Last Event 270
y: Ordinate
[E] Mediator3 e Next Event 20
(€] Mediator StimulusGenerator timestamp: 2015-11-23 01:48:11-02 Iterations 8
[€] StimulusGenerator2 s2) owner: sensor-4
[&] StimulusGenerator3 depth: Depth
[€] StimulusGeneratord Eelen Transitions 8
[€] Gateway P Internal 129
imulusGenerator
[E] Mectintnrd
e . feutheasure: MeasureData Lizre %
User-Defined Variables coordinate: Coordinate ensord Confluent i
Name Value x Abscissa foutSense: RawData (sensed)
value: 3 coordinate: Coordinate -
y: Ordinate 2 Abscissa Models
value 7 value: 2 Atomic 13
timestamp: 2015-11-23 01:48:11-02 1 Ordinate
owner: sensor-1 value 4 Coupled 2
depth: Depth timestamp: 2015-11-23 02031102
value 59 depth: Depth
value 57
. [+
« e f
‘ ) Restart Pauss B Run  fp View B0 Step BB Runto.. B} Refresh View ‘D Display Ports [ ] Display Connections
B Console 52 whi| = Brriv=8

M5 gracianoneto@gmail.com

Figure 2.3. Screenshot of the Flood Monitoring SoS model in DEVS running in MS4ME.

2.4.2. Space SolS

Space systems are indispensable to modern life, finding applications in telecommunica-
tions, space, climate, and natural resources monitoring, early warning systems, and na-
tional and sea coast surveillance’ (Graciano Neto, Manzano, et al., 2018). Since a Space
SoS also comprises some software-intensive IS, it can also be considered a SolS. The
goals of the Space SolS are explicitly expressed in terms of a business process, i.e., a
well-defined sequence of inter-dependent activities distributed among its constituent sys-
tems. Approximately 800 constituents (both on the ground and in the space) can accom-
plish important goals of this SolS, such as global telecommunication capabilities, global
position services (GPS), weather forecast, and military observation (Yamaguti, Orlando,
& Pereira, 2009; Graciano Neto, Horita, et al., 2018; Graciano Neto, Manzano, et al.,
2018).

Figure 2.4 illustrates the main constituents of the Space SolS spread over the
Brazilian territory. The Space SolS is composed of the following different types of con-
stituents (Graciano Neto, Manzano, et al., 2018; Graciano Neto, Horita, et al., 2018) .
Satellites are the main constituents of a Space SolS. Each satellite is divided into sev-
eral subsystems, having an onboard computer, power system, propulsion system, altitude
control, communication system, sensors, infrared cameras, solar panels, batteries, and re-
action control system. A satellite establishes contact with systems on the ground when
it overflies a ground station, collecting data from constituents such as Data Collection
Platforms (DCP) and capturing photographs from strategic locations, such as Amazon
forest. Additional goals for a Space SoS may include: (i) monitoring of deforestation and
fires; (i1) telecommunications to support Internet and TV; (iii) scientific missions, such
as study of solar behavior and planetary exploration; (iv) river monitoring in the event of

9Brazilian National Program of Space Activities (2012-2021), https://goo.gl/7Th9ETV
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environment disasters; and (v) detection of tsunamis and hurricanes. Other constituents
illustrated in this figure are:

Py
SI/VDA

Figure 2.4. lllustration of a Brazilian Space SolS for information exchange via
satellites (INPE, 2019).

1. Command and Control Center (C2): an IS located in Sao José dos Campos. It
generates goal requests to be accomplished by the SolS;

2. Satellite: a synchronous polar orbit satellite that takes photographs of the Earth
every five days.

3. Ground Station: an IS located in Cuiab4 that receives and handovers data to satel-
lites, temporarily storing data and location of these satellites;

4. Remote Sensing Data Center: an IS that receives, stores, processes, and dis-
tributes images and data from remote sensors;

5. Data Collection Platform (DCP): a cyber-physical system whose electronic sen-
sors measure environmental variables, such as precipitation, atmospheric pressure,
solar radiation, temperature, air humidity, dew point, wind direction and speed, and
detects variations in water body level!?. They are positioned so as to cover the
entire Brazilian territory and are of particular necessity to monitor remote regions
where no other communication technology is available, such as in the center of
the Amazon rainforest. Therefore, these systems can relay collected information to

10Simge website, http://www.simge.mg.gov.br/simge/sobre-o-simge
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overflying satellites, which in turn will hand over that information to ground sta-
tions in their path until finally reaching their final destination and thus fulfilling the
Space SolS goal to monitor remote areas within the national territory.

Goals of the Space SolS adhere to a well defined business process (Graciano Neto,
Manzano, et al., 2018). The process for acquiring environmental data, for instance, is
composed of many activities performed by different constituent systems (Graciano Neto,
Horita, et al., 2018). The SolS involves governmental institutions and enterprises of the
business sector and DCPs owners. The Command and Control constituent is operated by
expert users. This constituent supports the elaboration of operational plans and distribute
commands to Ground Stations, which configure antennas and rotors, establish links with
satellites, and send commands to be performed by the satellites accordingly. Data is
captured by DCPs spread all over the country territory and transmitted back to overflying
satellites orbiting the Earth.

The process of taking photographs is similar, substituting the task of obtaining
data from DCPs by the task of taking photographs with monitoring cameras and other sen-
sor devices. These processes are inherently flexible and inter-organizational since many
institutions that own constituents cooperate with each other to fulfill the SolS goal. As
new DCPs, satellites, and IS may join this SolS at run-time, the Space SolS architecture
is inherently dynamic, even if changes to its constituents do not occur frequently. Indeed,
there is usually a fixed set of systems (including IS) that contribute for achieving the SolS
mission, guided by a business process. Despite other types of systems involved (such as
satellites and DCPs), ISs that compose the SolS also follow their own business processes,
serving SolS missions on demand.

The second author has modeled the Space SolS architecture with a C2 center,
a data center, a ground station, six satellites, and 249 DCP stations (totaling 258 con-
stituents). The orbits were defined according to a study on the constellation of satellites
(Carvalho, Santos Lima, Santos Jotha, & Aquino, 2013). Maximum and average contact
times, maximum and average revisit times, percentage of satisfactory revisits, and the
average number of contacts per day were recorded during the preparation for simulation
(Manzano, Graciano Neto, & Nakagawa, 2019). The complete architectural description
of this coalition in SosADL and DEVS is externally available'!. Following the same ratio-
nale for the model in Listing 2.1, Listing 2.2 shows a simplified version of an architectural
description in SosADL of one of the satellites involved in the Brazilian Space SolS. The
Satellite Amazonia handles several types of data. As it can be seen, the satellite can
manage Images that represent photographs captured from the Brazilian territory (Line
2), Telecommands (Lines 5-7), which are instructions/assignments of activities that
are received from ground experts to determine satellite operation, and many other types
of data (Lines 8-18). The surrounding environment of the satellite is also modelled and
monitored via external gates and their respective connections that sense the environment
(Lines 21-26). Other types of gates also exist to capture images via camera (Lines 28-30),
send data to the ground station (Lines 32-34), offer GPS services and to locate itself in the
space (Lines 36-38), and its internal behavior (Lines 40-85). Its behavior comprises con-
tinually checking battery levels (Lines 47-57). When it is not charging, the satellite may

Space SolS architecture description, http://www.inf.ufg.br/~valdemarneto/projects/spacesos.html
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open solar panels to recharge!?; wait for instructions (t e lecommands) from the ground
(Lines 59-73); provide GPS location (Lines 75-78); and receive and send images when
the ground station is within range and it is overflying a specific location (Lines 75-82).

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Listing 2.2. Excerpt of a satellite modelled in SosADL.

system SatelliteAmazonia3( lps:Coordinate ) is {

datatype Image is tuple { name:String, extension:String, content:Binary }
datatype CollectedImages is sequence { Image }

datatype Telecommand is tuple { id:integer, date:Calendar, orbitId:integer,
name:String, instruction:integer, coordinateToBeMonitored:Coordinate

}

datatype Binary

datatype Orbit

datatype Power

datatype SatelliteHeight

datatype SatelliteTemperature

datatype Latitude is Double

datatype Longitude is Double

datatype SatellitePosition is tuple { x:Latitude, y:Longitude }

datatype Coordinate is tuple { x:Latitude, y:Longitude }

datatype Establish

datatype Distance

gate satelliteState is {
environment connection power is in { Power }
environment connection orbit is in { Orbit }
environment connection temperature is in { Integer }
environment connection height is in { Integer }

}

gate camera is {
environment connection image is in { Image }

}

gate telemetry is {
connection telemetry is out { Image }

}

gate location is {
environment connection coordinateSatellite is in { SatellitePosition } connection
coordinate is out { SatellitePosition }

}

behavior main is {
value telecommandl : Telecommand = any
value powerThreshold : Power = 20 //battery threshold in 20 percent.
value imagel : Image = any
value powerNow : Power = any
value distanceMax:Distance = 5

repeat {
via satelliteState::power receive powerNow
if (powerNow > powerThreshold) then {

value powerNow = powerNow - 10
} else {

value powerNow = 100
}
choose {

via establish::establishConnectionGS receive establish
if (establish = 1) then {

via operation::telecommand receive telecommand
}

} or {

12This is not specified in this listing.
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61 via establish::establishConnection receive establish

62 if (establish = 1) then {

63 choose {

64 via notification::terrestrialMeasurereceive terrestrialData
65 do terrestrialDataBuffer::append(terrestrialData)

66 } or {

67 via notification::aquaticMeasure receive aquaticData

68 do aquaticDataDataBuffer::append(aquaticData)

69 }

70 }

71 } or {

72 via location::coordinateSatellite receive satellitePosition
73 via location::coordinateSatellite send satellitePosition

74 }

75 if (distance (satellitePosition, telecommand::coordinateToBeMonitored)
76 <= distanceMax) then {

77 via camera::image receive imagel

78 via telemetry::telemetry send imagel

79 via camera::image receive imagel

80 do collectedImages: :append (imagel)

81 via telemetry::telemetry send imagel

82 }

83 }

84 }

85 1}

Listing 2.3 shows an excerpt of the description of the Space SolS in SosADL.
Constituents and mediators have all been identified for that architecture (Lines 4-13). In
this version, we can observe Data Center, Command and Control, Ground Station, Satel-
lite, some mediators, and one DCP. Bindings (Lines 15-33) show part of the description
that determine how output connections can be linked to predefined input connections for
pairing constituents in the Space SolS. Then, DEVS simulation models of this architec-
ture have been created based on this description. In this case, the simulation enabled to
visualize goals as inter-organizational and potentially flexible business processes.

Listing 2.3. Excerpt of a Space SolS architecture modelled in SosADL.

sos spaceSoSArchitecture is {

1

2 architecture spaceSoSArchitecture( ) is {

3 behavior coalition is compose {

4 dataCenterCP is DataCenter

5 commandAndControlSJC is CommandAndControl

6 groundStation is GroundStation

7 satellite is SatelliteAmazonia3

8 mediatorl is MediatorDataCenterToC2

9 mediator2 is MediatorC2ToGround

10 mediator3 is MediatorGroundToSatellite

11 mediator4 is MediatorGroundToDataCenter

12 pcd31980 is PCDTerrestre

13 mediatorPcdl is MediatorPCDtoSatellite

14 }

15 binding

16 {

17 unify one { dataCenterCP::telemetryrequirement::request } to one
18 { mediatorl::transmit::request }

19 and
20 unify one { mediatorl::transmit::request } to
21 one { commandAndControlSJC::requests::request } and
22
23 unify one { commandAndControlSJC::requests::operation }
24 to one { mediator2::operation } and
25 unify one { mediator2::transmit::operation }
26 to one { groundStation::operation::operation } and
27
28
29 unify one { groundStation::sendData::telemetry }
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30 to one { mediator4::transmit::telemetry } and
31 unify one { mediator4::transmit::telemetry } to
32 one { dataCenterCP::datarequirement::telemetry } and

2.4.3. SysGAaz

We also investigate the description of a real military SolS of the Brazilian Navy, named
SySGAaz. This SolS monitors the Blue Amazon, i.e., a region that extends along the
Brazilian coast boarder, comprising 350 nautical miles (Paes et al., 2019). The Blue
Amazon is equivalent in size to the Amazon rainforest (4.5 million km?), but concentrates
95% of the Brazilian foreign trade flow and 80% of the Brazilian oil reserves.

Many public organizations participate in the operation of this SySGAaz, including
the Federal Regulatory Agency, the Brazilian Army, as well as organizations from the pri-
vate sector. This SolS interfaces with all of these entities aiming to minimize information
exchange and coordinate missions with the Brazilian Navy. Paes et al. (2019) indicate
three essential types of systems of naval operations: (i) Command and Control Naval
System (SisNC2); (ii) Operational Intelligence System (SIOp), and (iii) Maritime Traffic
Information System (SISTRAM). SisNC2 is a planning, monitoring, and decision support
system for the Maritime Operations Theater Commander (TOM). SIOp plans, executes,
and controls naval operations at various levels, interacting with others systems to pro-
vide information and knowledge to Operational Intelligence Center (CEIOP). Moreover,
SisNC2 aggregates regionally collected information from Brazilian Navy units, external
organizations, and military organizations to obtain knowledge in specific areas, such as
acoustic and electronic warfare, direction finding and maritime traffic control maritime.
Finally, SISTRAM handles the maritime traffic control of merchant ships in the Brazilian
coast.

External systems of other armed forces branches as well as third party organi-
zations provide input to several scenarios and operating levels in the Brazilian Navy.
Some examples are: Operations Planning Information System (SIPLOM), Integrated Bor-
der Monitoring System (SISFRON), General Air Synthesis Transmission System (SIS-
TRASAG), and Amazon Protection System (SIPAM). SIPLOM is the main Command
and Control (C2) system of Ministry of Defense that displays location, characteristics,
and interrelations of constituted means of peace, crisis, and war operations. SISFRON is
the system of continuous monitoring of areas of interest, particularly of the border, and
integrates existing systems, based on a communications infrastructure, supported by infor-
mation security. SISTRASAG is a system of the Brazilian Aerospace Defense Command
that provides encrypted aerial information (radar images) to authorized military organiza-
tions. Finally, SIPAM integrates a comprehensive capability that supports remote weather
monitoring and surveillance of the Amazon rainforest.

Paes et al. (2019) use multiple model kinds in the description of the SySGAaz
software architecture. In particular, they select the Business Process Model and Notation
(BPMN) and Data Flow Diagram (DFD) for representing operational processes, and a
combination of UML and SysML models for materializing the coalition and constituent
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descriptions. One of the issues found with the use of multiple model kinds in this project
was the lack of compatible architectural elements, which could have led to incomplete
and inconsistent models across different notations. Therefore, if model kinds are not
carefully selected, the use of multiple model kinds can contribute for the lack of standard-
ization in the development phase. Another issue with SysML and UML is that these are
mostly descriptive and static notations, missing dynamic constructs that would support
the description of emergent behaviors in the coalition. Hence, there is still a need for a
graphical ADL that supports a holistic and comprehensive representation of the software
architecture of SoS and SolS, comprising both static and dynamic views of its structure

and behavior!3.

2.5. Conclusions and Future Work

This chapter presented our latest developments regarding the architectural description of
SolS. We have experienced different notations for the description of coalitions, behaviors,
and properties. We have also created models that allowed us to simulate the surrounding
environment of SolS at the architectural level, which is an important achievement in sys-
tems and software engineering (Graciano Neto, Paes, et al., 2017; David et al., 2013;
Igbal, Arcuri, & Briand, 2015; Cheng, Sawyer, Bencomo, & Whittle, 2009). In particu-
lar, we showed how static models that were originally expressed with SOSADL were later
transformed in DEVS dynamic models and simulated in MS4ME. From these previous
experiences, we draw a few lessons for the description of SolS, specifically:

e A textual ADL, such as SosADL, supports a static view of the structure and be-
havior of coalitions and constituents of SolS. This description still needs to be
complemented by a dynamic view, which will support the description of emer-
gent behaviors that are anticipated at design time. Simulation models and models
at run-time can be used for this purpose, helping to prevent economic losses and/or
critical errors that incur from flawed system specifications. Dynamic models can be
manually or automatically produced, depending on the feasibility of implementing
model transformations. Simulation models can be based on different paradigms,
such as discrete events or system dynamics. DEVS is a prominent option for dis-
crete events specification whilst Modelica!* is an option for system dynamics. In
particular, the goal specification is embedded in the SolS behavior;

e A graphical ADL, such as UML or SySML, supports a static view of the SolS.
These views are expressed by a set of models that capture different facets of the
SolS. Frequently, we can combine two or more graphical languages to overcome
the weaknesses of a single notation. For instance, mKAOS (Silva et al., 2017)
can be specifically selected for the graphical representation of SolS missions. De-
spite known limitations of SysML for representing process flows, block diagrams
can be used for representing constituents and their interfaces, sequence diagrams

31t is important to distinguish between the pairs structure-behavior and static-dynamic. SosADL offers
constructs to represent both structure and behavior of SoS/SolS, but it is not a dynamic language. On the
other hand, DEVS simulation models and models at run-time provide a dynamic view of the SoS/SolS
architectural descriptions.

“Modelica, https://www.modelica.org/
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for mapping process flows across constituents, and UML diagrams for refining the
architecture of each constituent, showing its required and provided interfaces that
enable its interaction with other constituents (Graciano Neto, Horita, et al., 2018).

As future work, we identify two research directions for both practitioners and
researchers dealing with SolS architectures design.

e Formalization of SolS architecture description. In this chapter, we reported our
experiences with formal and semi-formal notations for SolS description. While
SysML offers a graphical notation that helps in the communication of architectural
knowledge, the lack of formal foundations hampers its applicability for automated
analysis. In fact, concealing mismatches across architectural models can be harm-
ful specially if SoS perform a safety-critical mission. In this sense, formal nota-
tions will provide better support for automatically propagating changes throughout
subsequent stages of the development life cycle (Mens, Magee, & Rumpe, 2010),
making them more suitable for dealing with the evolutionary development of SoS
and SolS. Moreover, language developers will need to address disadvantages that
usually come from using formal notations, such as requiring high experience level
and specialized training, by concealing the use of formal languages from the user.

e Viewpoints for describing SolS software architectures. In this chapter, we ad-
dressed the description of SolS from a constituent and coalition viewpoints. Nonethe-
less, other viewpoints could be required, such as the mission viewpoint discussed
in this chapter, but there is still no consensus on an architecture framework for SoS
(Guessi, Graciano Neto, et al., 2015), which includes SolS. Thus, depending on
which set of viewpoints are needed, ADLs may need to provide support for addi-
tional sets of features, such as tailored constructs for business processes.
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