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Precision Radiomic Biomarkers:
a brief introduction, some technical development,
and several clinical applications

JosÂe Raniery Ferreira Junior

Abstract

Computer tools have been part of the clinical routine on a daily basis for radiological

image interpretation. However, they are limited to quantifying basic information about

the lesions that a medical examination may present, like a nodule size or mass volume.

Radiomic biomarkers emerged in this context to address this problem by quantifying the

images massively and characterizing them comprehensively to allow the precision phe-

notyping needed in the current personalized medicine era. Thus, this book chapter in-

troduces some robust radiomic biomarkers identified in the past few years for different

pathological imaging patterns of diseases from two critical human systems, i.e., respi-

ratory and musculoskeletal. The text initiates with the primary motivation for radiomic

biomarker development, discovery, and validation. The following sections present a quick

background with the basic theory for the remainder of the manuscript. Finally, the chapter

approaches the state-of-the-art radiomic precision biomarkers for three different disea-

ses and modalities of medical images: covid-19 in chest radiography, lung neoplasms in

computed tomography, and spondyloarthritis in magnetic resonance imaging.

1.1. Introduction
Medical imaging is an essential component to evaluate patients with a suspicion of several
diseases. Beyond the importance, radiological images are still mostly dependent on the
diagnostic level of specialists, and rapid imaging interpretation is not always possible as it
relies on the availability of expert physicians [Liang and Zheng 2019, Azevedo-Marques
and Ferreira Junior 2021]. Furthermore, the imaging appearance of different diseases can

21° Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)
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overlap (Figure 1.1) and mimic other body complications due to the low contrast that the
examination may have [Santos et al. 2019, Ferreira Junior et al. 2020a].

(a) (b)

Figura 1.1. Overlapping radiographic characteristics of SARS (a) and covid-19
(b). Both diseases commonly present bilateral ground-glass opacities, as shown
in the figures. Source: Author.
SARS, severe acute respiratory syndrome.
covid-19, coronavirus disease 2019.

In the face of these challenges, it is vital to include computer-based tools to aid
specialists in evaluating diseases early, as they can improve the accuracy and consis-
tency of medical image interpretation through computational support used as reference
[Ferreira Junior et al. 2017]. Radiomics has grown in this context as a quantitative ima-
ging approach that associates computer-extracted image data with clinical endpoints (Fi-
gure 1.2). This radiomic association allows a more comprehensive characterization of
underlying phenotypes, ultimately increasing the power of decision support models for
precision medicine [Tomaszewski and Gillies 2021]. In light of recent advances in tar-
get therapies, the need for an inexpensive and easily obtainable imaging approach for
phenotyping diseases has become imperative, and radiomics can provide it as is a nonin-
vasive, reproducible tool [Sacconi et al. 2017].

Radiomics emerged as a quantitative approach for personalized medicine to de-
velop medical imaging biomarkers and predictive models for clinical decision support
[Santos et al. 2019]. At first, it was based on the extraction of hand-designed features
from previously segmented images with the potential to be associated with clinical out-
comes (Figure 1.3). During this initial moment, traditional statistical methods, such as
test-retest, stability, univariate inference tests, and multivariate regression models, asses-
sed the radiomics associations [Aerts et al. 2014, Sacconi et al. 2017, Ferreira Junior et al.
2020b]. Then, radiomics studies with multivariate analyses started focusing on artificial
intelligence and machine learning methods to improve the predictive power of the ima-
ging biomarkers. Some of the machine-learning models studied were standard Bayesian
methods, artificial neural networks, and decision trees [Leger et al. 2017, Dawes et al.
2017, Kickingereder et al. 2016].

The main applications of radiomics during those early phases were on the oncolo-
gical domain for predicting genomic mutations and tumor staging, for instance, [Kickin-
gereder et al. 2016, Aerts et al. 2014, Sacconi et al. 2017, Ferreira Junior et al. 2021d].
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Figura 1.2. Possibilities of clinical endpoints to be investigated through radio-
mics and medical imaging quantification. Source: Author.

However, literature has shown radiomics could be expanded to analyze other diseases
from a wide range of medical specialties. Such as cardiology to predict patient survival,
myocardial tissue alterations, and right ventricular failure; and neurology for the charac-
terization of attention deficit hyperactivity disorder [Dawes et al. 2017, Baeûler et al.
2018, Sun et al. 2017].

More recently, research groups have started using deep-learning networks to po-
tentially improve the associative performance [Kermany et al. 2018, Liang and Zheng
2019, Lu et al. 2019]. Those networks are mainly based on deep convolutional neural
networks (CNNs) as they are capable of processing high dimensional arrays, like medical
images [LeCun et al. 2015, Santos et al. 2019]. However, as those methods characterize
the images implicitly (creating the so-called black-box), they will not be further described
in this book chapter.

In this manuscript, some theory and practice on robust quantitative biomarker dis-
covery will be introduced to highlight the valuable role that radiomics has in precision

ROI Segmentation Feature Extraction Associative Analysis

Shape
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(Histogram)

Second-order
(Texture)

Higher-order
(Spectrum)

Radiomic Features

Clinical Outcomes

Figura 1.3. Standard investigative pipeline for radiomics. Source: Author.
ROI, region of interest.
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medicine. To do that, the state-of-the-art of quantitative precision biomarkers in three
different pathological imaging domains will be approached: (I) covid-19 in chest radio-
graphy (XR) images, (II) lung neoplasms in computed tomography (CT) scans, and (III)
spondyloarthritis in magnetic resonance imaging (MRI).

1.2. Background
1.2.1. Digital radiology images

A standard medical image from the radiology workflow is digitally an n-dimensional dis-
cretized matrix where each index identifies a point of interest in the human body. Radio-
graphy, for instance, is a two-dimensional matrix with indexes of rows and columns, and
the value of each image point (i.e., pixel) corresponds to a gray intensity (Figure 1.4). For
example, the grayscale varies 256 levels considering an 8-bit image, from 0 indicating
black, 1 to 254 indicating different shades of gray (from dark to light tones), until 255
indicating complete white.

1920 columns

1080 rows

0 1 ... 1918 1919

0

1

...

1078

1079

Figura 1.4. Digital XR image representation. Source: Author.

Radiological images as acquired have uniform spacing between pixels and are
commonly obtained in the form of a volume of parallel scans, as in the example of CT
and MRI. The resulted acquired image is projected in an anatomical plane: coronal, axial,
or sagittal (Figure 1.5). The physical distance between the images from a volume is called
slice thickness, and each point of the image volume becomes a voxel.

Axial Sagittal CoronalSagittal

Axial

Coronal

Figura 1.5. Anatomical planes for medical image projection after acquisition.
Source: Author licensed under CC BY-SA 4.0. Adapted from Brainscandude / CC
BY-SA 3.0 and Slashme / CC BY-SA 4.0.
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1.2.2. Image segmentation

Segmentation is a key process for medical image processing, leading to major complica-
tions in pattern recognition when presenting low efficiency. Image segmentation aims to
identify areas correlated with each other in order to separate a volume of interest (VOI)
[Ferreira Junior et al. 2021b].

Methods of medical image segmentation generally use basic properties of gray
level discontinuity or similarity [Gonzalez and Woods 2007]. The former approach sepa-
rates regions according to rough changes on gray intensities, like in the boundaries. The
latter strategy is based on comparing gray levels, such as thresholding, the most funda-
mental technique for segmentation [Ferreira Junior 2019].

Image thresholding is defined as an operation in which an input image is transfor-
med to an output image, as follows:

g(i, j) =
{

f (i, j) if T1 ≤ f (i, j)≤ T2,
0 if f (i, j)< T1 or f (i, j)> T2,

(1)

where f is the input image, g is the output image, i, j are points of the image matrix, and
Tn are threshold values. The threshold is the gray level determined as reference for the
comparison between the voxels’ intensities (Figure 1.6). In the case of Equation 1.1, the
values T1 and T2 correspond to a threshold interval, where voxels with intensity out of
that gray level range correspond to the image background, and hence, are excluded; while
voxels with intensity within the range correspond to the VOI, thus they remained in the
segmented output image.

T1 = 25 and T2 = 230 T1 = 50 and T2 = 200 T1 = 75 and T2 = 170

Figura 1.6. Examples of output generated after applying different gray level th-
resholds for brain image segmentation. Source: Author.

Thresholding is appropriate for very distinct gray intensities between the VOI and
background. However, it fails when there is a low contrast in the image, resulting in
similar gray levels within the VOI [Ferreira Junior et al. 2020a]. In these particular
cases, it is necessary to address this problem using region-oriented approaches, such as
region growing methods and convolutional neural networks [Ferreira Junior et al. 2021d,
Ferreira Junior et al. 2021c]. But those techniques will not be further described in this
book chapter due to space constraints.
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1.2.3. Radiomic feature extraction

The process to extract radiomic features is basically the calculation of quantitative me-
asures in a segmented image to represent the visual content. Feature extraction algo-
rithms perform mathematical procedures to characterize the VOIs differently, such as
histograms, matrices, transforms, geometrical elements, among others [Tomaszewski and
Gillies 2021]. Traditionally, these hand-engineered features describe four primary ima-
ging levels: (I) first-order, characterizing the distribution of intensities in a gray-level
histogram; (II) second-order, describing voxel spatial relationships in a gray-level ma-
trix; (III) higher-order, depicting the image spectrum in the frequency domain; and (IV)
shape, characterizing geometric and size-related components of a VOI [Ferreira Junior
et al. 2020b].

Features from the first imaging order

First-order features are calculated from a gray-level histogram representing a particular
VOI (Figure 1.7). These intensity features describe the distribution of voxels’ values from
the VOI individually without concern for spatial relationships [Santos et al. 2019].

Figura 1.7. Example of an intensity histogram from a cropped CT image of the
lung with 256 gray levels. Source: Author.

The first-order features are regular histogram-computed statistical measures, like
mean, variance, standard deviation, coefficient of variation, energy, entropy, mean abso-
lute deviation, root mean squared, skewness, and kurtosis. Equations 1.2-1.11 list some
first-order measures:

mean (µ) =
1
n

n

∑
i=1

xi, (2)

variance (v) =
1
n

n

∑
i=1

(xi −µ)2, (3)
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standard deviation (σ ) =
√

v, (4)

coefficient of variation =
σ
µ
, (5)

energy (or uniformity) =
n

∑
i=1

x2
i , (6)

entropy =−
n

∑
i=1

xi log2 xi, (7)

mean absolute deviation =
1
n

n

∑
i=1

|xi −µ|, (8)

root mean squared =

√√√√
n
∑

i=1
x2

i

n
, (9)

skewness =

1
n

n

∑
i=1

(xi −µ)3

σ3 , (10)

kurtosis =

1
n

n

∑
i=1

(xi −µ)4

σ4 , (11)

where x is a histogram of n gray levels.

Those statistical measures are important because they can quantify the image den-
sity, like the mean. The standard deviation, variance, coefficient of variation, and mean
absolute deviation are dispersion measures and they describe how much the gray levels
differ from the mean intensity. While the energy and the root mean squared are measures
of magnitude, the entropy can characterize the randomness and variations present in the
image, measuring the average amount of information required to encode the image va-
lues. Skewness and kurtosis are the histogram central moments and they mainly quantify
the asymmetry and sharpness degrees, respectively, around the mean [Zwanenburg et al.
2020, Aerts et al. 2014].

Features from the second imaging order

Histogram-based features normally are not enough to fully describe the VOI. As previ-
ously stated, those first-order measures do not consider spatial relationships, which are
crucial for distinguishing similar textural images, such as the ones in Figure 1.1.

On the other hand, second-order features can describe intrinsic characteristics of
the image texture using advanced statistical mechanisms. Although there is no consensus
about the formal definition of image texture, it can be defined as the repetition of patterns
of even minor variations in a VOI [Ferreira Junior 2019]. In medical imaging, that is
essential due to the tiniest details at a molecular level that the image may portray.
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Several approaches can analyze the images and recognize different texture pat-
terns. Probably the most known in literature is the so-called gray-level co-occurrence
matrix (GLCM) [Haralick et al. 1973]. The co-occurrence matrices obtain from the VOI
the occurrence probability of pairs of voxel intensities i, j given a distance d and an ori-
entation θ for the x,y dimensions and an orientation φ for the z dimension. The GLCM
computes in two-dimensional arrays the occurrence of individual intensity pairs in slice
by slice manner. The final matrix is the summation of appearances in all image slices.
The GLCM tridimensional version directly computes the occurrence of individual inten-
sity pairs in the entire VOI [Ferreira et al. 2017].

The texture features provided by the GLCM are computed by calculating the fol-
lowing measures (Equations 1.12-1.34) on the produced matrix:

autocorrelation =
n

∑
i, j=1

i jMi j, (12)

cluster prominence =
n

∑
i, j=1

(i+ j−µx −µy)
4Mi j, (13)

cluster shade =
n

∑
i, j=1

(i+ j−µx −µy)
3Mi j, (14)

contrast =
n

∑
i, j=1

(i− j)2Mi j, (15)

correlation =
1

σxσy

n

∑
i, j=1

(i−µx)( j−µy)Mi j, (16)

difference average (or dissimilarity) =
n−1

∑
k=0

kMi− j,k, (17)

difference entropy =−
n−1

∑
k=0

Mi− j,klog2Mi− j,k, (18)

difference variance =
n−1

∑
k=0

(k−dissimilarity)2Mi− j,k, (19)

energy (or uniformity or angular second moment) =
n

∑
i, j=1

M2
i j, (20)

IMC1 =

−
n
∑

i, j=1
Mi jlog2Mi j +

n
∑

i, j=1
Mi jlog2(MiM j)

−
n
∑

i=1
Milog2Mi

, (21)

IMC2 =

√
1− exp(−2(−

n

∑
i, j=1

MiM jlog2MiM j +
n

∑
i, j=1

Mi jlog2Mi j)), (22)
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inverse difference =
n

∑
i, j=1

Mi j

1+ |i− j| , (23)

inverse difference normalized =
n

∑
i, j=1

Mi j

1+ |i− j|
n

, (24)

inverse difference moment =
n

∑
i, j=1

Mi j

1+(i− j)2 , (25)

inverse difference moment normalized =
n

∑
i, j=1

Mi j

1+ (i− j)2

n2

, (26)

inverse variance = 2
n

∑
i, j=1

Mi j

(i− j)2 , i ̸= j, (27)

joint average =
n

∑
i, j=1

iMi j, (28)

(joint or sum) entropy =−
n

∑
i, j=1

Mi jlog2Mi j, (29)

joint maximum (or max probability) = max(Mi j), (30)

(joint) variance (or sum of squares) =
n

∑
i, j=1

(i− joint average)2Mi j, (31)

sum average = 2× joint average, (32)

sum entropy =−
2n

∑
k=2

Mi+ j,klog2Mi+ j,k, (33)

sum variance (or cluster tendency) =
2n

∑
k=2

(k− sum average)2Mi+ j,k, (34)

where i, j is the gray-level pair, Mi j is an element of the GLCM (here computed from a
two-dimensional array), n is the number of different gray levels, µx,µy are mean values
in the x,y directions, σx,σy are standard deviation values in the x,y directions, and IMC
is the informational measure of correlation.

Inverse difference and inverse difference moment were also referred simply as ho-
mogeneity, but this nomenclature is deprecated. Those two features and their normalized
versions measure the local homogeneity of the image. Energy analogously is a measure
of uniform imaging patterns, in which a greater value implies that there are more inten-
sity pairs in the image that neighbor each other at higher frequencies. On the other hand,
features of entropy are measures of the randomness/variability in neighborhood inten-
sity values. The difference variance measures heterogeneous patterns that place higher
weights on differing intensity pairs that deviate more from the mean. Contrast is also
a measure of the local intensity variation, where a larger value correlates with a grea-
ter disparity in intensity values among neighboring voxels. The IMC metrics quantify
the texture complexity evaluating the correlation between the probability distributions th-
rough mutual information. Autocorrelation is a measure of the magnitude of the texture
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fineness and coarseness. The features of cluster prominence, shade, and tendency emulate
the human perception, and they measure the skewness of the GLCM, where higher values
imply greater asymmetry about the mean. The correlation shows the linear dependency of
gray levels to their respective voxels in a region. The difference average and sum average
measure the relationship between occurrences of pairs. But the former relates similar and
differing intensities, and the latter relates lower with higher intensity values [Zwanenburg
et al. 2020, Van Griethuysen et al. 2017, Yip et al. 2017, Phillips et al. 2017].

A second alternative for texture analysis is based on the gray-level run-length ma-
trix (GLRLM) [Tang 1998, Galloway 1975]. The run-length matrix tracks the frequencies
of sequencies with different lengths of the same gray level at a predetermined orientation.
The GLRLM is interesting for image characterization in that fine textures have more short
sequencies with similar gray levels, and rough textures have more long sequencies with
different intensities [Davnall et al. 2012]. Analogously to the GLCM, the following attri-
butes (Equations 1.35-1.50) can be calculated to form the GLRLM texture features:

short run emphasis =

n
∑
i

l
∑
j

p(i, j|θ)
j2

n
∑
i

l
∑
j

p(i, j|θ)
, (35)

long run emphasis =

n
∑
i

l
∑
j

j2 p(i, j|θ)

n
∑
i

l
∑
j

p(i, j|θ)
, (36)

gray level non-uniformity =

n
∑
i
(

l
∑
j

p(i, j|θ))2

n
∑
i

l
∑
j

p(i, j|θ)
, (37)

gray level non-uniformity normalized =

n
∑
i
(

l
∑
j

p(i, j|θ))2

(
n
∑
i

l
∑
j

p(i, j|θ))2
, (38)

run length non-uniformity =

l
∑
j
(

n
∑
i

p(i, j|θ))2

n
∑
i

l
∑
j

p(i, j|θ)
, (39)

run length non-uniformity normalized =

l
∑
j
(

n
∑
i

p(i, j|θ))2

(
n
∑
i

l
∑
j

p(i, j|θ))2
, (40)
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run percentage =

n
∑
i

l
∑
j

p(i, j|θ)

v
, (41)

gray level variance =
n

∑
i

l

∑
j

q(i, j|θ)(i−
n

∑
i

l

∑
j

q(i, j|θ)i)2, (42)

run variance =
n

∑
i

l

∑
j

q(i, j|θ)( j−
n

∑
i

l

∑
j

q(i, j|θ) j)2, (43)

run entropy =−
n

∑
i

l

∑
j

q(i, j|θ)log2(q(i, j|θ)), (44)

low gray level run emphasis =

n
∑
i

l
∑
j

p(i, j|θ)
i2

n
∑
i

l
∑
j

p(i, j|θ)
, (45)

high gray level run emphasis =

n
∑
i

l
∑
j

i2 p(i, j|θ)

n
∑
i

l
∑
j

p(i, j|θ)
, (46)

short run low gray level emphasis =

n
∑
i

l
∑
j

p(i, j|θ)
i2 j2

n
∑
i

l
∑
j

p(i, j|θ)
, (47)

short run high gray level emphasis =

n
∑
i

l
∑
j

p(i, j|θ)i2
j2

n
∑
i

l
∑
j

p(i, j|θ)
, (48)

long run low gray level emphasis =

n
∑
i

l
∑
j

p(i, j|θ) j2

i2

n
∑
i

l
∑
j

p(i, j|θ)
, (49)

long run high gray level emphasis =

n
∑
i

l
∑
j

p(i, j|θ)i2 j2

n
∑
i

l
∑
j

p(i, j|θ)
, (50)

where p(i, j|θ) is an element of the GLRLM, q(i, j|θ) is an element of the normalized
GLRLM, i is a gray intensity, j is the frequency of i, θ is the orientation, and n, l,v are
the number of gray levels, run lengths, and voxels, respectively, in the image.
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Short and long run emphasis measure run distributions in the image. The short
run emphasis is a measure in which a greater value is indicative of shorter run lengths
and more fine textural patterns. The long run emphasis is a measure in which a greater
value is indicative of extended run lengths and more coarse structural textures. Gray level
non-uniformity and its normalized version measure the similarity of gray-level intensities
in the image, where a lower value correlates with a greater similarity in intensities. The
run length non-uniformity and its normalized version measure the similarity of run lengths
throughout the image, with a lower value indicating more homogeneity among run lengths
in the image. Run percentage measures the coarseness of the texture, and its higher values
indicate a larger portion of the ROI consists of short runs and a more fine texture. The
features of gray level and run variances measure the variance in gray level intensity for the
runs and the variance in runs for the run lengths, respectively. Run entropy is a measure of
uncertainty/randomness of run lengths and gray levels, in which a higher value indicates
more heterogeneity in the texture patterns. The features of low and high gray level run
emphasis measure the distribution of gray levels with a higher value indicating a greater
concentration of low and high gray-level values, respectively, in the image. Finally, the
features of short/long run low/high gray level emphasis measure the joint distribution
of run lengths with the gray-level values [Van Griethuysen et al. 2017, Phillips et al.
2017, Davnall et al. 2012].

A more recent approach for texture characterization, in comparison to the ones in
[Haralick et al. 1973, Galloway 1975, Tamura et al. 1978], is the gray level size zone
matrix (GLSZM) [Thibault et al. 2013]. A gray level zone is defined as the number of
connected voxels (with distance 1 with each other) that share the same gray level inten-
sity. Contrary to GLCM and GLRLM, the GLSZM is rotation independent, with only
one matrix calculated for all directions in the ROI [Van Griethuysen et al. 2017]. The
following attributes (Equations 1.51-1.66) can be calculated in the GLSZM to form the
features:

small area emphasis =

n
∑
i

l
∑
j

p(i, j)
j2

n
∑
i

l
∑
j

p(i, j)
, (51)

large area emphasis =

n
∑
i

l
∑
j

j2 p(i, j)

n
∑
i

l
∑
j

p(i, j)
, (52)

gray level non-uniformity =

n
∑
i
(

l
∑
j

p(i, j))2

n
∑
i

l
∑
j

p(i, j)
, (53)

gray level non-uniformity normalized =

n
∑
i
(

l
∑
j

p(i, j))2

(
n
∑
i

l
∑
j

p(i, j))2
, (54)
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size-zone non-uniformity =

l
∑
j
(

n
∑
i

p(i, j))2

n
∑
i

l
∑
j

p(i, j)
, (55)

size-zone non-uniformity normalized =

l
∑
j
(

n
∑
i

p(i, j))2

(
n
∑
i

l
∑
j

p(i, j))2
, (56)

zone percentage =

n
∑
i

l
∑
j

p(i, j)

v
, (57)

gray level variance =
n

∑
i

l

∑
j

q(i, j)(i−
n

∑
i

l

∑
j

q(i, j)i)2, (58)

zone variance =
n

∑
i

l

∑
j

q(i, j)( j−
n

∑
i

l

∑
j

q(i, j) j)2, (59)

zone entropy =−
n

∑
i

l

∑
j

q(i, j)log2(q(i, j)), (60)

low gray level zone emphasis =

n
∑
i

l
∑
j

p(i, j)
i2

n
∑
i

l
∑
j

p(i, j)
, (61)

high gray level zone emphasis =

n
∑
i

l
∑
j

i2 p(i, j)

n
∑
i

l
∑
j

p(i, j)
, (62)

small area low gray level emphasis =

n
∑
i

l
∑
j

p(i, j)
i2 j2

n
∑
i

l
∑
j

p(i, j)
, (63)

small area high gray level emphasis =

n
∑
i

l
∑
j

p(i, j)i2

j2

n
∑
i

l
∑
j

p(i, j)
, (64)

large area low gray level emphasis =

n
∑
i

l
∑
j

p(i, j) j2

i2

n
∑
i

l
∑
j

p(i, j)
, (65)
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large area high gray level emphasis =

n
∑
i

l
∑
j

p(i, j)i2 j2

n
∑
i

l
∑
j

p(i, j)
, (66)

where p(i, j) is an element of the GLSZM, q(i, j) is an element of the normalized GLSZM,
i is a gray intensity, j is the zone size of i, and n, l,v are the number of gray levels, zone
sizes, and voxels, respectively, in the image.

Analogously to the GLRLM, the small area emphasis measures the distribution of
small size zones, with a greater value indicative of more fine textures. Large area empha-
sis is a measure of the distribution of large size zones, with a greater value indicative
of more coarse textures. All GLSZM non-uniformity, percentage, variance, and entropy
features have equivalent definitions to the GLRLM measures but considering gray-level
zones, not runs. The features of low and high gray level zone emphasis measure the dis-
tribution of gray levels with a higher value indicating a greater proportion of low and high
gray-level values, respectively, and size zones in the image. Moreover, the features of
small/large area low/high gray level emphasis measure the joint distribution of smaller
and larger size zones, respectively, with the gray levels [Van Griethuysen et al. 2017].

Another approach vastly used for texture analysis and image characterization is
the neighborhood intensity difference matrix (NIDM) [Amadasun and King 1989]. This
matrix is actually a one-column array that tracks the average difference between voxel
intensities and their neighbors according to a distance. The main advantage of the NIDM
is that it examines spatial relationships between three or more voxels at once, not just
pairs like the GLCM [Lubner et al. 2017, Yang et al. 2016]. The NIDM attributes are
listed in Equations 1.67-1.71:

coarseness =

[
n

∑
i

P(i)S(i)

]−1

, (67)

contrast=

[
1

Na(Na −1)

n

∑
i1,i2

P(i1)P(i2)(i1 − i2)2

][
1
N

n

∑
i

S(i)

]
,P(i1) ̸= 0,P(i2) ̸= 0 (68)

busyness =

n
∑
i

P(i)S(i)

n
∑

i1,i2
i1P(i1)− i2P(i2)

,P(i1) ̸= 0,P(i2) ̸= 0, (69)

complexity =
1

Nv

n

∑
i1,i2

|i1 − i2|
P(i1)S(i1)+P(i2)S(i2)

P(i1)+P(i2)
,P(i1) ̸= 0,P(i2) ̸= 0, (70)

strength =

n
∑

i1,i2
(P(i1)+P(i2))(i1 − i2)2

n
∑
i

S(i)
,P(i1) ̸= 0,P(i2) ̸= 0, (71)

where P(i) is the occurrence probability of the gray level i, S(i) is the NIDM element, n
is the number of discretized gray levels of the image, N,Na,Nv are the number of voxels,
discretized gray levels with a > 0, and voxels with at least 1 neighbor.
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The coarseness feature is a measure of the border density, and it averages the dif-
ference between the center voxel and its neighborhood, where a higher value indicates a
lower spatial change rate and a locally more uniform texture. Contrast is a measure of
local spatial intensity change, yielding a high value when both the dynamic range and
the spatial change rate are increased. The busyness measures the ratio of spatial inten-
sity change in a region, where higher values indicate rapid changes of intensity between
voxels and the neighborhood. Complexity and strength are measures of primitive texture
components in the region, in which high values indicate the primitives are easily defi-
ned, visible, and the image is non-uniform [Van Griethuysen et al. 2017, Phillips et al.
2017, Davnall et al. 2012].

One final matrix-based approach worth mention is the gray level dependence ma-
trix (GLDM) [Sun and Wee 1983]. It quantifies intensity dependencies in an image
and describe the overall texture coarseness, in which the number of connected voxels
within a predetermined distance are dependent on the center voxel [Zwanenburg et al.
2020, Van Griethuysen et al. 2017]. Analogously to the GLSZM, the GLDM is rotation
invariant and has the following measures (Equations 1.72-1.85) calculated to form the
texture features:

small (or low) dependence (or number) emphasis =

n
∑
i

l
∑
j

p(i, j)
j2

n
∑
i

l
∑
j

p(i, j)
, (72)

large (or high) dependence (or number) emphasis =

n
∑
i

l
∑
j

j2 p(i, j)

n
∑
i

l
∑
j

p(i, j)
, (73)

gray level non-uniformity =

n
∑
i
(

l
∑
j

p(i, j))2

n
∑
i

l
∑
j

p(i, j)
, (74)

dependence non-uniformity =

l
∑
j
(

n
∑
i

p(i, j))2

n
∑
i

l
∑
j

p(i, j)
, (75)

dependence non-uniformity normalized =

l
∑
j
(

n
∑
i

p(i, j))2

(
n
∑
i

l
∑
j

p(i, j))2
, (76)

gray level variance =
n

∑
i

l

∑
j

q(i, j)(i−
n

∑
i

l

∑
j

q(i, j)i)2, (77)
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dependence variance =
n

∑
i

l

∑
j

q(i, j)( j−
n

∑
i

l

∑
j

q(i, j) j)2, (78)

dependence entropy =−
n

∑
i

l

∑
j

q(i, j)log2(q(i, j)), (79)

low gray level (count) emphasis =

n
∑
i

l
∑
j

p(i, j)
i2

n
∑
i

l
∑
j

p(i, j)
, (80)

high gray level (count) emphasis =

n
∑
i

l
∑
j

i2 p(i, j)

n
∑
i

l
∑
j

p(i, j)
, (81)

small (or low) dependence low gray level emphasis =

n
∑
i

l
∑
j

p(i, j)
i2 j2

n
∑
i

l
∑
j

p(i, j)
, (82)

small (or low) dependence high gray level emphasis =

n
∑
i

l
∑
j

p(i, j)i2

j2

n
∑
i

l
∑
j

p(i, j)
, (83)

large (or high) dependence low gray level emphasis =

n
∑
i

l
∑
j

p(i, j) j2

i2

n
∑
i

l
∑
j

p(i, j)
, (84)

large (or high) dependence high gray level emphasis =

n
∑
i

l
∑
j

p(i, j)i2 j2

n
∑
i

l
∑
j

p(i, j)
, (85)

where p(i, j) is an element of the GLDM, q(i, j) is an element of the normalized GLDM,
i is the center voxel, j is a neighbouring voxel of i, and n, l are the number of gray levels
and dependency sizes, respectively, in the image.

The small dependence emphasis is a measure of the distribution of small depen-
dencies with higher values indicative of less homogeneous textures. Opposite to that,
the large dependence emphasis is a measure of the distribution of large dependencies
with a higher value indicative of more homogeneous textures. The GLDM features of
non-uniformity, variance, and entropy have equivalent definitions to the GLRLM and
GLSZM measures but considering the gray-level dependency, not runs or zones. Low
gray level emphasis measures the distribution of low intensities with a higher value in-
dicating a greater concentration of low gray-level values in the image. High gray level
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16 ©2021 SBC - Soc. Bras. de Computação



emphasis measures the distribution of the high intensities with higher values indicating
a greater concentration of high gray-level values. Small/large dependence low/high gray
level emphasis features measure the joint distribution of intensity dependences with lower
and higher gray-level values [Van Griethuysen et al. 2017].

Another textural approach was proposed in [Tamura et al. 1978]. Those attribu-
tes theorically correspond to human visual perception features, providing better descrip-
tion of the texture [Faleiros et al. 2020]. Tamura’s features are line-likeness, regularity,
roughness, contrast, granularity, and directionality, but the last three are known to better
describe the image texture. However, granularity is the most fundamental feature where
higher values indicate greater or less repeted textures. Directionality is a global property
of the image that considers the textural shape and location, without taking into account
the orientation [Tenorio et al. 2020].

A complementary strategy for texture characterization and an alternative to the
statistics-based ones previously described uses structural geometry and fractal analysis.
This approach implies several regions have a standard statistical pattern of roughness and
irregularity in different scales [Faleiros et al. 2020, Ferreira Junior 2019]. The fractal
measures represent various aspects of the image and provide essential information about
spatial heterogeneity [Kolossvary et al. 2018]. Fractal analyses can result in, for instance,
the dimension estimate that quantifies how an object fills spaces, the abundance that me-
asures the volume of space filled, and lacunarity that quantifies structural heterogeneity
within an object [Davnall et al. 2012].

Features from the higher imaging order

When first and second-order features are inefficient in image characterization, it is neces-
sary to expand the characteristic spectrum by incorporating descriptors beyond the spatial
level. Signal processing methods emerged in this context due to their ability to analyze
frequency domain properties of the image [Tomaszewski and Gillies 2021, Ferreira Ju-
nior and Cardona Cardenas 2021]. The basics to include higher-order characteristics to
the feature multi-dimensional space are applying a transform, filter, or wavelet and then
calculating standard mathematical measures on the resulting filtered image.

The most traditional approach to obtain the frequency power spectrum uses the
Fourier transform, and polar coordinates of each pixel from the transformed image [Sch-
neider et al. 2012]. The Fourier transform analyzes the frequency content disregarding
temporal and spatial locations by converting the image in the spatial domain into a set of
sine and cosine components [Davnall et al. 2012]. The identification of frequency peaks,
prominence, and location reveals information about the periodicity and directions of the
image texture [Ferreira Junior 2019].

However, computing the Fourier transform is a time-demanding process, and thus,
several implementations have been proposed in the literature over the decades to reduce
the computational cost. The most used strategy is the so-called fast Fourier transform
(FFT) [Faleiros et al. 2020, Tenorio et al. 2020]. After applying the FFT in an image, first-
order measures could be calculated to compose the Fourier-based features (Figure 1.8).
The discrete Fourier transform can be formulated as given by the Equation 1.86 [Parker
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2011]:

F(w) =
N−1

∑
k=0

f (k)e
2π jwk

N (86)

(a) (b)

Figura 1.8. Application of the fast Fourier transform in a cropped CT image of
the lung: (a) and (b) show the original and resulted images, respectively. Source:
Author.

An expanded spectral method for higher-order feature characterization is based
on the Gabor transform or filter, which describe textural patterns by sinusoidal functions
and allow the spatial, temporal, and frequency representation of the signal [Kolossvary
et al. 2018]. A Gabor filter is essentialy a windowed Fourier transform after introducing
a Gaussian function, resulting in the acquisition of measures in different time-frequency
bands according to a determined scale and orientation [Davnall et al. 2012]. Gabor filter
bank is a more powerful approach because it can manipulate local texture parameters of
frequency, orientation, excentricity, and symmetry [Ferreira Junior 2019]. The formula-
tion of a Gabor filter in the spatial domain is given by the Equation 1.87 [Bianconi and
Fernandez 2007]:

ψ(x,y) =
F2

πγη
e−F2[(x′/γ)2+(y′/η)2]ei2πFx′ , (87)

where x′ is xcosθ +ysinθ , y′ is −xsinθ +ycosθ , F is the central filter frequency, θ is the
angle between the sinusoidal wave direction and the axis x in the spatial domain, γ and
η are Gaussian standard deviations. Analogously to the FFT-filtered image, first-order
measures could be calculated to compose the Gabor-based features (Figure 1.9).

Although the Gabor filter is an interesting approach, it is limited by the spatial re-
solution with single window, which is opposite to the wavelet transforms. These methods
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Figura 1.9. Application of a Gabor filter bank in a cropped CT image of the lung.
Source: Author.

use multiple scalable and translatable functions in different frequencies, which could re-
present the texture more comprenhensively than the previous techniques [Kolossvary et al.
2018]. Several wavelets have been proposed in the literature, but they all derived from
Ψ(t) in Equation 1.88 [Davnall et al. 2012]:

ψa,b(t) =
1√
|a|

ψ
(

t −b
a

)
, a,b ∈ R,a ̸= 0, (88)

where a is a scaling parameter that measures the compression degree and b is the transla-
tion parameter that indicates the wavelet time location. Probably the most known wavelet
functions are Coiflets, Haar, Daubechies, Symlets, Discrete Meyer, Biorthogonal, and Re-
verse Biorthogonal (Figure 1.10). They can decompose the image in different frequency
domain bands (HH, HL, LH, and LL) and spectrum levels (Figure 1.11) to allow the
extensive higher-order feature extraction [Lee et al. 2019].
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Haar Daubechies (db2) Symlets (sym3)

Coiflets (coif1) Biorthogonal (bior1.5) Reverse biorthogonal (rbio1.5)

Discrete Meyer

Figura 1.10. Wavelet functions. Source: Adapted from Lee et al. 2019.

Figura 1.11. Application of a discrete Haar wavelet transform in a chest XR.
Source: Author.

Features based on shape

The term shape refers to the information inferred from the VOI but could not be represen-
ted directly from the intensities, like gray levels and texture. Shape features describe the
VOI through geometrical characteristics from the border, contour, curves, among others,
which are important in cases where there is a massive difference in the VOI definition of
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radiological findings (Figure 1.12) [Echegaray et al. 2015].

Characterizing VOIs quantitatively is a challenging task because it depends di-
rectly on the efficiency of image segmentation algorithms [Ferreira Junior et al. 2021b].
Moreover, it is common for image segmentation to have low performances when the VOI
has low contrast in the gray levels (Figure 1.13) [Ferreira Junior et al. 2020a], resulting in
poor shape-based characterization. Traditionally, shape features are categorized as con-
tour or region-based. The former obtains the features by analyzing the border coordinates
from the VOI, and the latter obtains features by considering the region within the VOI.
Some of the most used shape features are listed in Equations 1.89-1.95:

Figura 1.12. Morfological heterogeneity of lung tumors presented in CT images.
These are an example in which shape features could be useful in distinguishing
radiological abnormalities. Source: Author.

Figura 1.13. Semi-automatic segmentation of solid (blue mark) and subsolid
(green mark) components of a lung nodule in CT. This is an example in which
image segmentation could hinder shape characterization due to the low contrast
of gray levels. Source: Author.

surface area (A) =
N

∑
i

1
2
|aibi ×aici|, (89)

volume (V) =
v

∑
k

Vk, (90)
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density (or surface area to volume ratio) =
A
V
, (91)

compactness1 =
V

√
πA

2
3
, (92)

compactness2 = 36π
V 2

A3 , (93)

spherical disproportion =
A

4πR2 , (94)

sphericity =
π

1
3 (6V )

2
3

A
, (95)

where N is the number of connected triangles covering the surface, v is the number of
voxels inside the VOI, Vk is the volume of a single voxel, R is the sphere radius defined as
3
√

3V
4π , and a,b,c are the connected triangle vertices.

Features of maximum diameter, volume, and surface area provide size-related
information. Measures of compactness, spherical disproportion, sphericity, and density
quantify how much the VOI is spherical, compact, and rounded [Zhang et al. 2015].

A special case of shape features consider the specific region in the transition from
inside the VOI to the outside. The so-called margin sharpness is essential in cases where
the disease grows and invade neibouring tissues, such as malignant neoplasms [Levman
and Martel 2011]. One of the first margin sharpness features was proposed in [Gilhuijs
et al. 1998] for the characterization of breast lesions in MR images. The authors based
on the spatial gradient of the boundary, as described in Equations 1.96 and 1.97 [Xu et al.
2012]:

average of margin gradient = max
i=0, ... ,M−1

{
meanr ||∇Im(r)||

meanrIm(r)

}
, (96)

variance of margin gradient =
varr ||∇Im(r)||
[meanrIm(r)]2

, (97)

where Im(r) is a gray-level intensity and the amplitude of vector r in Im( · ) is limited to
the region surface.

A second approach developed for margin sharpness quantification also used MR
images and breast lesions as application [Levman and Martel 2011]. However, the voxels
included in that belonged to both the interior and exterior of the VOI. That method resulted
in only one feature defined in Equation 1.98 [Xu et al. 2012]:

margin sharpness = I(ri)−I(N(ri))

d
, (98)

where I(ri) is the gray intensity within the VOI, N(ri) is the three-dimensional opera-
tor that provides a set of voxels that neighbor ri but are outside the VOI, and d is the
normalization term.

A different group of researchers developed a two-part feature of margin sharpness,
but opposite to the previous ones, it was tested on CT scans [Xu et al. 2012]. The first
feature quantifies the intensity difference between gray levels of the surrounding VOI
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and itself through normal line segments across the boundary at fixed intervals around its
circumference (Figure 1.14). The second feature quantifies the abruptness of the transition
in intensity from the VOI to the surrounding region. The authors affirmed that a sharper
border has a more abrupt transition and may have a higher intensity difference outside and
inside the lesion. In contrast, a blurred border will have a smoother transition and may
have a smaller intensity difference. For each normal line segment I perpendicular to the
margin, the problem can be formulated as defined in Equation 1.99:

arg min
S,W,xo,Lo

∑
x

⌊
L(x)−Lo −

S

1+ e−
x−xo

W

⌋
, (99)

where x is the distance along the normal, xo is the intersection of the boundary point with
the normal, L(x) is the intensity along the normal at x, and Lo is the intensity offset [Xu
et al. 2012].

Figura 1.14. Representation of an ortogonal line over the border to serve as
reference for margin sharpness characterization. Source: Author.

1.2.4. Performance evaluation

Given the extraction of a set of n features, a performance evaluation is mandatory to assess
the efficiency of all radiomic features to become biomarkers. All levels of evidence for
biomarkers (Table 1.1) can use the following validation strategies [Lambin 2021].

At least two image cohorts from different sources should comprise the perfor-
mance evaluation. One is used for discovery, and the other for validation purposes (Fi-
gure 1.15(a)). A widely used strategy in medicine to validate predictive models uses
three data sets: one for discovery, one for testing, and one for external validation (Fi-
gure 1.15(b)). But it is not the most appropriate approach because not all samples are
tested, and thus, not all patient heterogeneity evaluated [Keek et al. 2018, Larue et al.
2017]. Cross-validation, which separates the samples in m folds, from which m−1 is for
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Tabela 1.1. Levels of evidence for biomarkers. Source: Adapted from Lambin 2021.

Level Study Design Definition
I Prospective Marker as primary objective
II Prospective Marker as secondary objective
III Retrospective Multivariate analysis with outcomes
IV Retrospective Univariate analysis with outcomes
V Retrospective Correlation with other marker

discovery and 1 is for testing (Figure 1.15(c)), can mitigate this limitation. The cross-
validation is performed until all samples of the initial fold are tested. It aims to improve
the chances of generalizing the solution and decreasing the risk of overfitting. When
m corresponds to the total number of samples, the process is then called leave-one-out
cross-validation.

(a) Discovery Set
(from source A)

Validation Set
(from source B)

(b)

(c)

Validation Set
(from source B)

Test Set
(from source A)

Discovery Set
(from source A)

Validation Set
(from source B)

Test Set
(from source A)

Validation Set
(from source B)

Test Set
(from source A)

Discovery Set
(from source A)

Validation Set
(from source B)

Test Set
(from source A)

Discovery Set
(from source A)

Discovery Set
(from source A)

Discovery Set
(from source A)

Figura 1.15. Representation of data setting for proper performance evaluation.
Source: Author.

The terms validation and testing are interchangeable, depending on the scientific
background. For instance, in medicine it is common to have the validation set used inde-
pendently. But computing and engineering nomenclature considers the testing set as the
independent one, and the validation set is used for fine-tuning.

Two of the most relevant methods used in performance evaluation are the receiver
operating characteristic (ROC) curve and the confusion matrix. The ROC curve is defined
as a graph of a resulting test where the axis y presents the sensitivity or true positive rate of
the test, and the axis x shows the false positive rate defined as 1 - specificity (Figure 1.16).
The area under the ROC curve (AUC) measures the final performance from the method.
The AUC ranges 0-1 where 0 ≤ AUC ≤ 0.50 indicate bad performance, 0.50 < AUC ≤
0.70 indicate low performance, 0.70 < AUC ≤ 0.85 indicate moderate performance, and
0.85 < AUC ≤ 1 indicate a high performance [Carvalho et al. 2018, Dou et al. 2018, Yip
et al. 2017].

The metrics sensitivity (Equation 1.100) and specificity (Equation 1.101) refer to
the proportion of positive and negative cases, respectively, classified correctly as such.
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Figura 1.16. ROC curves used for performance evaluation. Source: Author.

Both measures can be calculated from the confusion matrix, which presents the number
of samples considered as true-positive (TP), true-negative (TN), false-positive (FP), and
false-negative (FN), as in Table 1.2 [Ferreira Junior et al. 2018].

sensitivity =
T P

T P+FN
, (100)

specificity =
T N

T N +FP
. (101)

Tabela 1.2. Confusion matrix construction. TP, TN, FP, and FN are the number of
true positives, true negatives, false positives, and false negatives, respectively.
Source: Author.

Test
Positive Negative

Real
Positive TP FN
Negative FP TN

A particular method called survival or time-to-event analysis is used to evaluate
the performance of a prediction procedure that constitutes a variable relating to the time
between the beginning of a study and the occurrence of an event [Ferreira Junior 2019].
The event is not necessarily attached to death, as the term survival indicates, but to any
clinical outcome, such as recurrence, hospitalization, among others [George et al. 2014].
Historically, overall survival is considered the temporal outcome of most importance to
the clinical practice due to its objectivity and unambiguity [Cheema and Burkes 2013]. In
this particular case, the event of interest is the patient’s death by any nature. In survival
analyses, the patients who did not reach the event ou had lost follow-up are censored as
the exact survival time is unknown [Ferreira Junior et al. 2021d].
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The Kaplan-Meier estimation is a statistical method used for time-to-event eva-
luation [Kaplan and Meier 1958]. Once defined the event of interest and reasons for
censorship, it is possible to build probability curves that describe the event occurrence
rate along the time, allowing the comparison of different patient groups (Figure 1.17)
[Ferreira Junior 2019]. The survival probability S(t) in a time instant t is computationaly
given by Equation 1.102:

S(t) = S(t −1)× Ns

Nr
, (102)

where S(t −1) is the likelihood in a previous instant to t, Nr is the number of patients at
risk in the study excluding the censored cases in the instant t −1, and Ns is the number of
patients that survived until the instant t.

High risk Low risk

High risk

Low risk

Figura 1.17. Example of Kaplan-Meier curves with confidence intervals and risk
table for different patient groups (a high and a low risk). Each marked point in
the curves represents a censored patient. Source: Author.

1.3. State-of-the-art
1.3.1. Covid-19 in chest XR

The covid-19 pandemic is the current major public health issue in the world that has cau-
sed over 3 million deaths in less than 18 months [European Centre for Disease Prevention
and Control 2021]. The disease is mainly characterized by an inflammatory process in
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the lungs and airways. The earliest possible diagnosis of covid-19 is imperative for the
patient’s isolation to prevent virus spread and for rapid treatment decisions to improve the
patient’s prognosis [Greenhalgh et al. 2020, Osman et al. 2021, Chiu et al. 2020].

A few alternatives exist as a screening tool for appropriate triage of suspected
and high-risk patients in several low-incoming healthcare centers with a high demand for
suspicious cases. One of those alternatives is chest XR, due to its high availability and
portability [Ferreira Junior et al. 2021b, Wehbe et al. 2020, Ferreira Junior et al. 2021a].
However, it is widely known that XR has limited performance in the current clinical
environment compared to CT, especially to assess covid-19 pneumonia in early disease
stages with very subtle characteristics [Zhang et al. 2021, Wong et al. 2020, Rajaraman
et al. 2020]. But radiomics can support the XR assessment of covid-19 and improve the
identification of disease-related lesions [Chiu et al. 2020, Zhang et al. 2021, Wehbe et al.
2020, Rajaraman et al. 2020].

Ferreira Junior et al. identified 51 radiomic biomarkers in chest XR; most of them
were higher-order features extracted after the Coiflet wavelet, for covid-19 [Ferreira Ju-
nior et al. 2021b]. The GLDM feature of small dependence low gray level emphasis
(Equation 1.82) after the Coiflet transform obtained the highest performance, yielding an
AUC of 0.87, sensitivity of 0.85, and specificity of 0.67 (p < 0.001). The authors found
that higher values of the biomarker correlated with covid-19 patterns, even in cases with
XR negative to discrete ground-glass opacities (Figure 1.18).

Figura 1.18. Examples of XR images from mild covid-19 patients. Source: Author.

The authors also identified other radiomic biomarkers with prognostic value to
predict overall and deterioration-free survival. The first-order feature of mean absolute
deviation (Equation 1.9) after the Coiflet transform yielded a significant difference in
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overall survival rates from the stratified risk groups of covid-19 patients (p < 0.05). High
values of the biomarker identified low-risk patients with a mean survival time of 25 days.
Low values of the feature stratified patients with a higher risk of death, presenting a mean
survival time of 13 days.

Furthermore, the biomarker size zone non-uniformity (Equation 1.55) of GLSZM
after a square filter yielded the highest significant difference in Kaplan-Meier curves to
predict short-term deterioration of the patient clinical status (p < 0.05). High values of
the feature identified lower-risk patients, while low values stratified patients with a higher
risk of rapid worsening, presenting a hazard ratio of 3.198 (95% confidence interval ± CI:
1.145±8.932). Figure 1.19 presents the survival probabilities of the radiomic biomarkers.

(a) (b)

High risk

Low risk

High risk Low riskLow risk High risk

Low risk

High risk

Figura 1.19. Kaplan-Meier curves and risk tables from prognostic radiomic bio-
markers to predict death (a) and short-term deterioration (b). Source: Author.

Those XR features significantly associated with covid-19 outcomes could stratify
the patient’s short-term risk even without comorbidity conditions, at hospitalization, or
any early stage of health care. These features could indicate the patient’s rapid worsening
before the clinical condition deteriorates when intensive therapy is more likely to have
greater benefit [Ferreira Junior et al. 2021b]. Moreover, chest XR-based biomarkers may
have a significant impact on supporting daily clinical decisions due to the accessibility of
radiographic scanners.

The covid-19 biomarkers highlighted the challenge of visually recognizing intri-
cate image characteristics, as they were discovered after algebraic filtering. In the early
stages of the disease, small patchy shadows and interstitial changes emerge in the lungs
when visible [Li et al. 2020]. But the wavelet transforms enabled to capture higher textu-
ral heterogeneity from covid-19 and not from other pneumonia etiologies on radiography
[Ferreira Junior et al. 2021b].

Future investigations in this subject include correlating imaging with other clinical
outcomes, assessing pathologic aggressiveness, and primarily identifying genetic traits
associated with disease progression and therapeutical resistance. Studies have shown that
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28 ©2021 SBC - Soc. Bras. de Computação



patients with critical or severe covid-19 have high expression of tyrosine kinase 2 and CC-
chemokine receptor 2, respectively [Pairo-Castineira et al. 2021]. Those findings could
bring significant clinical benefits with the existing drugs, and radiogenomics could play a
key role in decoding covid-19 genotypes [Ferreira Junior and Cardona Cardenas 2021].

1.3.2. Lung neoplasms in computed tomography

Lung cancer is the most lethal malignant neoplasm globally, with a 5-year overall survival
rate of about 15%. Moreover, the prognosis of patients with lung neoplasms is still poor
and varies markedly according to tumor staging at diagnosis [Ferreira Junior et al. 2020b].
Several clinical aspects may influence therapy decision-making, like staging, histology,
genomics, CT imaging, among others. Radiomic biomarkers emerged in this context to
increase the clinical applicability of the previous computer-aided detection tools focused
on the automated diagnosis of pulmonary nodules [Santos et al. 2019].

Ferreira Junior, Oliveira, and Azevedo-Marques proposed a novel margin sharp-
ness characterization to classify the malignancy likelihood of pulmonary nodules in CT
[Ferreira Junior et al. 2018]. The method extracts statistical properties across the nodule
boundary in each CT scan (Figure 1.20) [Ferreira Junior and Oliveira 2015]. The authors
discovered that the combination of the margin sharpness amplitude and the GLCM in-
verse difference moment (Equation 1.25) has potential to identify the malignancy of the
lung lesions (p < 0.05). To do that, the authors used a standard decision tree to per-
form the multivariate classification [Ferreira Junior et al. 2018]. Calheiros et al. inves-
tigated further margin sharpness features by including perinodular zone characterization
[Calheiros et al. 2021]. The developed method increased the performance when integra-
ting parenchyma-originated features of the histogram skewness (Equation 1.10), and the
GLCM prominence, shade, correlation, energy, and entropy (Equations 1.13, 1.14, 1.16,
1.20, and 1.29, respectively).

(a) (b)

Figura 1.20. Margin sharpness characterization based on boundary control
points (a) and normal line segments (b). Source: Author.
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In another work, Ferreira Junior et al. found that several features are associa-
ted with nodal and distant metastases and could serve as biomarkers for tumor staging
(p < 0.05) [Ferreira Junior et al. 2020b]. Some of them are the energy (Equation 1.6)
after the Haar wavelet, GLCM IMCs (Equations 1.21 and 1.22), NIDM busyness (Equa-
tion 1.69), directionality from Tamura, estimation of fractal dimension, surface area
(Equation 1.89), and volume (Equation 1.90). Moreover, the shape diameter and the
GLCM feature of maximum probability (Equation 1.30) distinguished types of non-small
cell lung cancer (NSCLC) and could serve as biomarkers for histology. The greater are
their values, the greater are the chances of tumor to be squamous cell carcinoma, indi-
cating more homogeneous patterns on CT for it and heterogeneous for adenocarcinoma
(Figure 1.21). This finding was confirmed in [Zhu et al. 2018, Digumarthy et al. 2019].

(a) (b)

Figura 1.21. Non-small cell lung cancer types of adenocarcinoma (a) and squa-
mous cell carcinoma (b). Source: Author.

van Timmeren et al. discovered three CT features with prognostic value for
NSCLC: the mode (most common value) of the image histogram after a Laplacian-of-
Gaussian filter, the mean intensity of a VOI centered on the highest gray level, and the
GLCM inverse variance (Equation 1.27) calculated after a wavelet transform [van Tim-
meren et al. 2019]. Carvalho et al. discovered the GLRLM feature of short-run emphasis
(Equation 1.35) on positron emission tomography images combined with CT correlates
with the prognosis in patients with lung neoplasms [Carvalho et al. 2018]. Aerts et al.
identified a radiomic signature associated with survival in patients with NSCLC composed
of four features: first-order energy (Equation 1.6), shape compactness (Equation 1.93),
GLRLM non-uniformity (Equation 1.74), and the previous one after a wavelet transform
[Aerts et al. 2014]. Ferreira Junior et al. identified another prognostic biomarker for
malignant neoplasms of the lung: the mean (Equation 1.2) after the Fourier transform
(p < 0.05) [Ferreira Junior et al. 2021d]. Patients with a high value were identified as
being at high risk with a hazard ratio of 2.12 (95% CI: 1.01±4.48). The authors also
showed that the lesions from higher-risk patients have greater heterogeneity, and possibly
be more aggressive, in comparison to lower-risk lesions, characterized by the presence of
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30 ©2021 SBC - Soc. Bras. de Computação



more infiltrating regions (Figure 1.22) [Ferreira Junior et al. 2021c].

(a) (b)

Figura 1.22. Intratumor heterogeneity of lung neoplasms with different staging:
(a) stage-I, (b) stage-IV. Source: Author.

These findings highlight the importance of extracting features from all imaging
levels. The discovered higher-order biomarkers correlate to smoother or rougher texture
variations and thus, could quantify tumor heterogeneity [Ferreira Junior et al. 2021d].
That is important because intratumor heterogeneity can be associated with disease pro-
gression and treatment resistance, which ultimately serve as insight to targeted therapies
needed for precision medicine [Ferreira Junior et al. 2021c].

Future directions for the area include identifying specific regions of resistance to
targeted treatment, which would allow therapies located at a low molecular level.

1.3.3. Spondyloarthritis in magnetic resonance imaging

Spondyloarthritis (SpA) is a set of diseases with common clinical manifestations, such
as inflammatory axial pain and peripheral arthritis. The active inflammation in sacroiliac
joints, so-called sacroiliitis, is one of the most important criteria to diagnose SpA, and it
can be identified in MRI [Rudwaleit et al. 2009]. The major MRI finding of active sacroi-
liitis is bone marrow edema (Figure 1.23). Therapy decision of SpA consists mainly on
the subtype of the disease, i.e., axial or peripheral [Sieper et al. 2009]. In this sense, MRI-
based radiomics could play a key role in early diagnosis and therapy decision-making to
indicate the presence of SpA and subtyping.

Tenorio et al. identified 63 MRI radiomic biomarkers specific for sacroiliitis, from
which most of them were derived from a Gabor bank [Tenorio et al. 2020]. The histogram
skewness (Equation 1.10) yielded an AUC of 0.86 (p < 0.001). High values characterized
the active inflammation in MRI, as expected, due to the brightness patterns of the lesion
(Figure 1.24). Faleiros et al. confirmed these findings by wrapping six radiomic features
into an artificial neural network, yielding an AUC of 0.96 [Faleiros et al. 2020]. Those
MRI biomarkers are the mean and standard deviation of the Tamura’s directionality, sum
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Figura 1.23. MRI of the sacroiliac joints with active inflammation (arrow). Source:
Fiona McQueen, Marissa Lassere and Mikkel Ostergaard licensed under CC BY
2.0.

variance of the gray levels, maximum intensity, mean after a Gabor filter, and energy after
the Haar wavelet (LH band on level 2).

(a) (b)

Figura 1.24. Sacroiliitis characterization using histogram and the skewness fe-
ature: (a) sacroiliac joint without active inflammation (histogram symmetrical),
(b) sacroiliac joint with active inflammation (histogram skewed right). Source:
Author.

Tenorio et al. also discovered 27 biomarkers for SpA [Tenorio et al. 2020]. Ta-
mura features were predominant, and the directionality yielded the highest performance
in identifying SpA with an AUC of 0.80 and distinguishing axial and peripheral with an
AUC of 0.97 (p < 0.001). High values of the directionality standard deviation characteri-
zed axial SpA, distinguishing it from the peripheral form and other diseases, like arthrosis,
fibromyalgia, and bone injury.

Although this clinical problem does not consider shape features, we highlight the
use of all imaging levels for feature extraction. The studies showed that even though the
first-order histogram is a simple strategy for characterization, it can quantify the images
comprehensively enough to recognize complex clinical patterns.
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Future perspectives to improve radiomic biomarker discovery include confirming
all findings by testing the features prospectively. It is also advisable the clinical validation
of the biomarkers and hence the assessment of whether the biomarkers can impact clinical
routine.

1.4. Conclusion
This book chapter introduced theoretical and practical quantitative biomarker develop-
ment and discovery. We highlighted the valuable role that radiomics can have in precision
medicine. Therefore, radiomic biomarkers disclose a vast potential to improve clinical
practice.
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