21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

Capitulo

3

Fundamentals of IEC 62304 with an Agile Soft-
ware Development Model

Johnny Marques, Lilian Barros, Sarasuaty Yelisetty, Talita Slavov

Abstract

In 2006, a working group from the International Electrotechnical Commission (IEC) de-
fined IEC 62304:2006. Thus, the use of IEC 62304 has become fully harmonized in the
United States and Europe. The purpose of IEC 62304 is to provide requirements for
Healthcare Systems manufacturers with Software to demonstrate their ability to provide
Software that consistently meets customer requirements and applicable regulatory requi-
rements. Objective: This chapter aims to present the fundamentals of IEC 62304 with an
Agile Software Development Model. Justification and motivation: In 2021, IEC 62304
completes 15 years. Thus, the authors believe that there are already works that report
experiences, analyzes and difficulties in its use. These results can be interesting to direct
further research and definitions of methods, models, guides or other materials to comply
with IEC 62304. Conclusion: This book chapter provided a lecture with fundamentals of
IEC 62304, including an Agile Software Development Model.

3.1. Introduction

The standards published by committees, international technical entities or regulatory agen-
cies influence the development of Software in Regulated Environments through guidelines
for Software processes and products [Munch et al. 2012], considering the risk mentioned
above. In addition, there are several similarities between the standards for software deve-
lopment in the aviation, health, and railway areas [Marques and Cunha 2019].

Faced with the challenges that involve the insertion of informatics in the health
field, specialized organizations in the area decided to produce guidelines and policies
that can help in the process of implantation and evaluation of systems with software
[Mauer and Marin 2017].

A Medical System (MS) is composed of several physical and logical parts. One or
more Medical Devices (MDs) are part of a Medical System (MS), and they are responsible
for the necessary information controls [Marques et al. 2021]. A Medical Device Software

90 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpdsio Brasileiro de Computagdo Aplicada & Satde (SBCAS 2021)

(MDS) is loaded and operated into a Medical Device (MD). Each MDS is composed of
Software Items (SIs), which are any identifiable part of a computer program. According
to Magnusson (2012), all Medical Devices need to meet the regulations to ensure the
safety of the user and the patient. In addition, with the increased use of Software on these
systems, entities such as the Food and Drug Administration (FDA) in the United States
have identified the need for specific regulation.

In 2006, a working group from the International Electrotechnical Commission
(IEC) defined IEC 62304:2006 [IEC 2006]. Thus, the use of IEC 62304 has become fully
harmonized in the United States and Europe. The purpose of IEC 62304 is to provide
requirements for Healthcare Systems manufacturers with Software to demonstrate their
ability to provide Software that consistently meets customer requirements and applicable
regulatory requirements.

Figure 3.1 presents an illustrative association of these concepts. IEC 62304 ope-
rates within the scope of the MDS, SIs and Software Units (SUs). The IEC 62304:2006
[IEC 2006] and its amendment IEC 62304:2006/AMD 1:2015 [IEC 2015] present the re-
quirements associated with the rigor of the MDS development and maintenance processes,
according to the safety risk [Marques 2019].

IEC 62304
i
1
1
1
1
1
il is part of are part of are part of :
1
1
: | Medical Device Software Items Software Units i
Medical System (MS) Medical Device (MD) :\ Software (MDS) (Sls) (SUs) !

Figura 3.1. Scope of IEC 62304 [Marques et al. 2021]

In 2021, IEC 62304 completes 15 years. Thus, the authors believe that there are
already works that report experiences, analyzes and difficulties in its use. These results
can be interesting to direct further research and definitions of methods, models, guides
or other materials to comply with IEC 62304. Therefore, this chapter aims to present the
fundamentals of IEC 62304 with an Agile Software Development Model.

In addition to this section 1, this book chapter has another 11 (eleven) sections.
Section 2 presents the acronyms, and section 3 presents the definitions. Section 4 pre-
sents the general requirements. Section 5 describes the software development process.
Section 6 presents the software maintenance process. Section 7 presents the software risk
process. Section 8 describes the software configuration management process. Section
9 presents the software problem resolution process. Section 10 briefly describes the re-
lationship between IEC 62304 and other standards. Section 11 presents an overview of
agile methods and Scrum. Section 12 describes our Agile Software Development Model.
Section 13 presents the related work identified during a Systematic Literature Mapping.
Finally, section 14 presents the final considerations.

91 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

3.2. Acronyms

Table 3.1 presents the acronyms required for this book chapter.

Tabela 3.1. Acronyms

Acronym | Definition

ASD Adaptive Software Development

Cat Categories

CMMI Capability Maturity Model Integration
Co Contribution

CR Change Request

DSDM Dynamic Software Development Method
FDA Food and Drug Administration

FDD Feature Driven Development

IEC International Electrotechnical Commission
ISO International Organization for Standardization
MAD Manifesto for Agile Development

MD Medical Device

MDS Medical Device Software

MS Medical System

PR Problem Report

SDP Software Development Plan

SI Software Item

SLM Systematic Literature Mapping

SOUP Software of Unknown Provenance

SU Software Unit

TDD Test Driven Development

Var Variability

XP Extreme Programming

3.3. Definitions

Table 3.2 presents some definitions required for this book chapter.

3.4. General Requirements

The IEC 62304 defines the life cycle requirements for MDS. The structure of the standard
follows a hierarchy composed by processes, activities, and tasks, establishing a common

framework for MDS life cycle processes. The hierarchy is illustrated as part of Figure
3.2.

Compliance with the IEC 62304 is defined as implementing all the processes, acti-
vities, and tasks identified in this standard following the software safety class. In addition,
the MDS manufacturer must identify the safety risks to users (patients and medical staff)
regarding software misbehavior. These risks are directly correlated with the software sa-
fety classes defined by IEC 62304.

92 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

Tabela 3.2. Terms and definitions

Term Definition
Activity A set of one or more interrelated or interacting tasks.
Anomaly Any condition that deviates from the expected based on requi-

rements specifications, design documents, standards, or from
someone’s perceptions or experiences.

Configuration item

Entity that can be uniquely identified at a given reference
point.

Legacy software

Medical Device Software which was legally placed on the
market with insufficient objective evidence that it was deve-
loped in compliance with the current version of this standard.

Manufacturer

Organization, which conducts software development, mainte-
nance, and other processes, activities, and tasks in the scope
of IEC 62304.

Problem report

A record of the actual or potential behavior of the MDS that a
user or other interested person believes to be unsafe, inappro-
priate for the intended use or contrary to specification.

Process

A set of interrelated or interacting activities that transform in-
puts into outputs.

Risk management file

A set of records and other documents, not necessarily conti-
guous, that is produced by a Risk assessment process.

Safety

Freedom from unacceptable risk.

Serious injury

Injury or illness that: is life-threatening results in permanent
impairment of a body function or permanent damage to a body
structure or necessitates medical or surgical intervention.

Software item

Any identifiable part of a computer program.

Software system

Integrated collection of software items organized to accom-
plish a specific function or set of functions.

Software unit

Software item that is not subdivided into other items.

Task A single piece of work that needs to be done.
P et L e |
1 1
1 Hierarchy | I 1
1 Level 1 e 1
1 1
R o S I 1
Hierarchy r
Level 2 | activity 1 I activity 2 activity 3 activity 4 I
Hierarchy
Level 3

COED COEEIEIECI GIEEEIEDED

Figura 3.2. Hierarchy of the MDS life cycle

The Medical Device Software manufacturer must apply a risk management pro-

93 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

cess using [SO 14971:2019 [ISO 2019], where safety risks are identified to users (patients
and medical staff) regarding software misbehavior. This analysis will define the software
classes (A, B and C) provided by IEC 62304. The safety classes determine the rigor in
the software development process through the activities. Marques et al. (2021) presented
the number of activities associated to each class, as shown in Table 3.3.

Tabela 3.3. Software safety classes, impacts and total of activities required

Class Impact Required Tasks
A | No injury or damage to health is possible. 48
B Non-serious injury is possible. 85
C Death or serious injury is possible. 89

IEC 62304 had an amendment introduced in 2015 and is under review for impro-
vement. The expectation is that IEC 62304 will have a revision in the year 2021. One
of the main contributions of the amendment was the flow of risk classification for the
Software Systems existing in a Health System. Initially, all analysis begins with the most
severe category (Class C). After following the flow provided in Figure 3.3, the classifica-
tion can be changed to Class A or B if the conditions existing in the risk analysis are met.
The amendment also brought editorial and conceptual changes that needed updating.

Identify risk control
measures external to
the MDS

Cams)

Can a MDS failure
contribute to a
hazardous
situation?

Does a MDS failure
result in
unacceptable risk?

Serious injury is
possible?

Class C

Class A

Figura 3.3. Assignment of the software class from the safety risk analysis - adap-
ted from [IEC 2015]

IEC 62304 describes 5 (five) processes: Software Development Process, Software
Maintenance Process, Software Risk Management Process, Software Configuration Ma-
nagement Process, and Software Problem Resolution Process, as shown in Figure 3.4.
The Software Development Process contains 8 (eight) activities.

The Software of Unknown Provenance (SOUP) is a SI that is already developed
and generally available and has not been developed to be incorporated a MD or Software
previously developed for which adequate records of the development processes are not
available.

3.5. Software Development Process

Some software life cycle models were created over the years. Although they define diffe-
rent strategies for executing the software development and verification, it is possible to see

94 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpdsio Brasileiro de Computagdo Aplicada & Satde (SBCAS 2021)

System development activities

__

| Software Risk Management |

Software Development Process

(]

o

c

(1}

c

- [

Unit =

EEt Requirements Architectural Detailed |mplementation Integration & <
2 Analysis Design Design &pVeriﬁcation Testing g
(]

st

[

3

&=

Q

(%]

Software Configuration Management

Scope of IEC 62304

Software Problem Resolution |

,_______________\

N e e e e e e e e e ——— —————

Figura 3.4. Overview of IEC 62304 Processes

that such models differ only in the granularity and the involvement of the user in the evalu-
ation of the software [Sommerville 2015][Pressman and Maxim 2015][Tsui et al. 2015].
The software development is generally divided into 7 (seven) subprocesses: Require-
ments, Architecture, Design, Implementation, Tests, Verification, and Release [Wasson 2015].
IEC 62304 contains 8 (eight) activities as part of the Software development process:

1. Software development plan;

2. Software requirements analysis;

3. Software architectural design;

4. Software detailed design;

5. Software unit implementation and verification;
6. Software integration and integration testing;
7. Software system testing; and

8. Software release.

3.5.1. Software Development Planning

The Software development planning activity contains 11 (eleven) tasks:
1. Software development plan (clause 5.1.1);
2. Keep software development plan updated (clause 5.1.2);

3. Software development plan reference to system design and development (clause

5.1.3);
4. Software development standards, methods and tools planning (clause 5.1.4);
5. Software integration and integration testing planning (clause 5.1.5);

6. Software verification planning (clause 5.1.6);

95 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

7. Software risk management planning (clause 5.1.7);
8. Documentation planning (clause 5.1.8);
9. Software configuration management planning (clause 5.1.9);
10. Supporting items to be controlled (clause 5.1.10);
11. Software configuration item control before verification (clause 5.1.11); and

12. Identification and avoidance of common software defects (clause 5.1.12).
Table 3.4 presents the applicability of each task inside the software classes.

Tabela 3.4. Summary of tasks in Software development planning activity

Clause | Class A | Class B | Class C
5.1.1 X X
5.1.2 X X
5.1.3 X X
5.1.4
5.1.5
5.1.6
5.1.7
5.1.8
5.1.9
5.1.10
5.1.11
5.1.12

|| R

PR PR R PR R K R K| R K| R X

ikl ailalRelle

As part of the activity Software development plan, the manufacturer shall establish
a Software Development Plan (SDP) for conducting the activities of the software deve-
lopment process appropriate to the scope, magnitude, and Software safety classifications
of the Software system to be developed. The software development lifecycle shall either
be fully defined in the SDP. The plan shall address the following:

1. The processes to be used in the development of the MDS;
2. The artifacts of the activities and tasks;

3. The traceability between System Requirements, Software System Requirements,
and System Tests;

4. Software configuration and change management, including SOUP configuration
items and software, used to support development; and

5. The software problem resolution for handling problems detected in the deliverables
and activities at each stage of the life cycle.

96 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

As part of the task Keep software development plan updated, the manufacturer
shall update the plan as development proceeds as appropriate.

As part of the task Software development plan reference to system design and de-
velopment, System Requirements, as inputs for software development, shall be referenced
in the SDP. In addition, the manufacturer shall include or reference the SDP procedures
for coordinating the software development and the design and development validation
necessary to satisfy customer requirements and applicable regulatory requirements.

As part of the task Software development standards, methods and tools planning,
the manufacturer shall include or reference in the SDP the standards, methods, and tools
associated with the development of Software Items of Class C.

As part of the task Software integration and integration testing planning, the ma-
nufacturer shall include or reference in the SDP a plan to integrate the SIs (including
SOUP) and perform testing during integration. It is acceptable to combine integration
testing and Software System testing into a single plan and set of activities.

As part of the task Software verification planning, the manufacturer shall include
or reference in the software development plan the following verification information:

1. Artifacts requiring verification;
2. The required verification tasks for each lifecycle activity;
3. Milestones at which the artifacts are verified; and

4. The acceptance criteria for each artifact verification.

As part of the task Software risk management planning, the manufacturer shall
include or reference in the SDP a plan to conduct the activities and tasks of the software
Risk Management Process, including the management of risks relating to SOUP.

As part of the task Documentation planning, the manufacturer shall include or
reference in the SDP information about the documents to be produced during the software
development lifecycle. For each identified document or type of document, the following
information shall be included or referenced:

1. Title, name or naming convention;
2. Purpose; and

3. Intended audience of the document.
As part of the task Software configuration management planning, the manufactu-
rer shall include or reference software configuration management information in the SDP.

The software configuration management information shall include or reference:

1. The classes, types, categories or lists of items to be controlled;

2. The software configuration management activities and tasks;

97 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

3. The organization(s) responsible for performing software configuration management
and activities;

4. Their relationship with other organizations, such as software development or main-
tenance;

5. When the items are to be placed under configuration control; and

6. When the problem resolution process is to be used.

As part of the task Supporting items to be controlled, the items to be controlled
shall include tools, items or settings, used to develop and which could impact the MDS.

As part of the task Software configuration item control before verification, the
manufacturer shall plan to place configuration items under configuration management
control before they are verified.

As part of the task Identification and avoidance of common software defects, the
manufacturer shall include or reference in the SDP a procedure for:

* Identifying categories of defects that may be introduced based on the selected pro-
gramming technology that are relevant to their Software System; and

* Documenting evidence that demonstrates that these defects do not contribute to
unacceptable risk.

3.5.2. Software Requirements Analysis

The Software requirements analysis activity captures and defines software requirements
from the product level that are implemented by software [Sommerville 2015] [Pressman and Maxim 2015].

The Software requirements analysis activity contains 6 (six) tasks:

1. Define and document software system requirements from system requirements (clause
5.2.1);

2. Software system requirements content (clause 5.2.2);

3. Include risk control measures in software system requirements (clause 5.2.3);
4. Re-evaluate medical device risk analysis (clause 5.2.4);

5. Update system requirements (clause 5.2.5); and

6. Verify software system requirements (clause 5.2.6).

Table 3.5 presents the applicability of each task inside the software classes.

As part of the task Define and document software system requirements from sys-
tem requirements, for each MDS, the manufacturer shall define and document Software
System Requirements from the System Requirements.

98 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

Tabela 3.5. Summary of tasks in Software requirements analysis activity

Clause | Class A | Class B | Class C
5.2.1 X X X
5.2.2 X X X
523 X X
524 X X X
5.2.5 X X X
5.2.6 X X X

As part of the task Software system requirements content, the manufacturer shall
define and document Software System Requirements from the System Requirements. The
manufacturer shall include in the Software System Requirements:

* Functional and capability requirements;

* Software system inputs and outputs;

* Interfaces between the software system and other systems;
* Software-driven alarms, warnings, and operator messages;
* Security requirements;

» User interface requirements implemented by software;

* Data definition and database requirements;

* Installation and acceptance requirements of the delivered MDS at the operation and
maintenance site or sites;

* Requirements related to methods of operation and maintenance;
* Requirements related to I'T-network aspects;
* User maintenance requirements; and

* Regulatory requirements, according to the nature of the MS.

As part of the task Include risk control measures in software requirements, the
manufacturer shall include risk control measures implemented in the MDS.

As part of the task Re-evaluate medical device risk analysis, the manufacture shall
re-evaluate the medical device risk analysis when software requirements are established
and update it as appropriate.

As part of the task Update system requirements, the manufacturer shall ensure that
existing requirements, including System Requirements, are re-evaluated and updated as
appropriate as a result of the Software requirements analysis activity.

As part of the task Verify Software System requirements, the manufacturer shall
verify and document that the Software System Requirements:

99 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpdsio Brasileiro de Computagdo Aplicada & Satde (SBCAS 2021)

Implement System Requirements;

Do not contradict one another;

* Are expressed in terms that avoid ambiguity;

tests to determine whether the test criteria have been met;

Can be uniquely identified; and

Are traceable to System Requirements or another source.

Are stated in terms that permit the establishment of test criteria and performance of

Figure 3.5 presents an overview of the Software requirements analysis activity.

N

System

[

Software

are refined into

contain

Requirements

System
Requirements

(r -\
| Functional and Capability ” Usability |
Data definition and
Inputs and Outputs ” |
| P P database
| Interfaces ” Installation and |
Acceptance
| Alarms, warnings, and ” User documentation and |
messages maintenance
| Security | | Regulation |
| /
are verified to ensure

p
| Implement System
Requirements

|| Non-ambiguity |

are updated as appropriate

| Traceable to System
Requirements

| | Testability |

| Non-contradiction

” Unique identification |

Figura 3.5. Overview of the Software requirements analysis activity

3.5.3. Software Architectural Design

The Software architectural design activity uses outputs of the software requirements
analysis activity to develop the Architecture by creating Software Items and allocating
functions expressed by Software System Requirements.

The Software architectural design activity contains 6 (six) tasks:

1. Transform software system requirements into a software architecture (clause 5.2.1);

2. Develop an architecture for the interfaces of software items (clause 5.2.2);

3. Specify functional and performance requirements of SOUP item (clause 5.2.3);

4. Specify system hardware and software required by SOUP item (clause 5.2.4);

5. Identify segregation necessary for risk control (clause 5.2.5); and

6. Verify software architecture (clause 5.2.6).

100

©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

Tabela 3.6. Summary of tasks in Software architectural design activity

Clause | Class A | Class B | Class C
5.3.1
5.3.2
533
534
5.3.5
5.3.6

|| R

PR PR R R R X

=

Table 3.6 presents the applicability of each task inside the software classes.

As part of the task Transform software systems requirements into a software ar-
chitecture, the manufacturer transforms the Software System Requirements for the MDS
into a documented Architecture that describes the Software’s structure and identifies the
software items.

As part of the task Develop a software architecture for the interfaces of software
items, the manufacturer shall develop and document an Architecture for the interfaces
between the Sls.

As part of the task Specify functional and performance requirements of SOUP
item, if a SI is identified as SOUP, the manufacturer shall specify functional and perfor-
mance requirements for the SOUP item that is necessary for its intended use.

As part of the task Specify system hardware and Software required by SOUP item,
if a SI is identified as SOUP, the manufacturer shall specify the system hardware and
software necessary to support the proper operation of the SOUP item.

As part of the task Identify segregation necessary for risk control, the manufacturer
shall identify any segregation between Sls that is necessary for risk control, and state how
to ensure that such segregation is effective.

As part of the task Verify software architecture, the manufacturer verifies and do-
cuments that the Architecture of the software implements Software System Requirements
and that the Architecture can support interfaces between SIs and between Sls and hard-
ware. The manufacturer shall verify and document that the Architecture:

* Is complete, allocating the Software System Requirements correctly;
* Supports interfaces between Software Items and hardware; and

* Supports the operation of any SOUP items.

Figure 3.6 presents an overview of the Software architecture design activity.

3.5.4. Software Detailed Design
The Software detailed design activity contains 5 (five) tasks:

1. Refine software detailed architecture into software units (clause 5.4.1);

101 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

Architecture

N

Software ltem 1 [~ Software Item 2

Completeness

Carrect allocation of

| are verified
to ensure

are developed
into i
|

Software
System
Requirements

Software System
Requirements

Support interfaces

Software Item 5
Database

Software Item 3 [—| Software Item 4

are updated as appropriate

Figura 3.6. Overview of the Software architecture design activity

2. Develop detailed design for each software unit (clause 5.4.2);
3. Develop detailed design for interfaces (clause 5.4.3); and

4. Verify detailed design (clause 5.4.4).
Table 3.7 presents the applicability of each task inside the software classes.

Tabela 3.7. Summary of tasks in Software detailed design activity

Clause | Class A | Class B | Class C
5.4.1 X X
5.4.2 X
543 X
5.4.4 X

As part of the task Refine software architecture into software units, the manufac-
turer shall refine the Software Architecture until Software Units represent it and develop
and document a detailed design for each SU of the SI. The number of levels is defined by
the manufacturer, as presented in Figure 3.7.

As part of the task Develop detailed design for each software unit, the manufac-
turer shall document a design with enough detail to allow correct implementation of each
SU.

As part of the task Develop detailed design for interfaces, the manufacturer shall
document a design for any interfaces between the SU and external components (hardware
or software), as well as any interfaces between SUs, detailed enough to implement each
SU and its interfaces correctly.

As part of the task Verify detailed design, the manufacturer shall verify and docu-
ment that the software detailed design:

* Implements the Architecture;

102 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpdsio Brasileiro de Computagdo Aplicada & Satde (SBCAS 2021)

Software Iltem 1

Level 1

Level 2

%
N
%
~

Level N

Software Unit
11

12

Software Unit

|

Software Unit |
1.3

Figura 3.7. Overview of levels of Architecture

* Has correct data and control flow among Software Units;

* Presents the detailed internal logic confirming the refinement from Software System
requirements; and

¢ Is free from contradiction with the Architecture.

Figure 3.8 presents an overview of the Software detailed design activity.

Architecture

Detailed Architecture

Software Item 1 |—{ Software Item 2

[—— |

Software tem 3 [—| Software Item 4

is refined
into

Data, control, and
hardware couplin,

| Correction of detailed

internal logic

| No contradiction

[

Software Item 1
Software Unit
11 J |
wa

Software Unit
12

Software Item 2
Software Unit
L 21

Hardware

Software Unit
24

Software Unit
13

is verified
to ensure

v
Software Unit
31

Software Item 3

Software Unit
32

Sof\w:; Unit

Software Item 4

Software Unit
a1

Software Item 5
Database

Software Unit
42

Data Coupling —> Control Coupling ——>

Hardware Coupling ——3

is updated as appropriate

Figura 3.8. Overview of the Software detailed design activity

3.5.5. Software Unit Implementation and Verification

The Software unit implementation and verification activity uses outputs of the Software
detailed design activity, generating source and executable codes to be loaded inside the
selected hardware [Sommerville 2015] [Pressman and Maxim 2015].

The Software unit implementation and verification activity contains 5 (five) tasks:

1. Implement each software unit (clause 5.5.1);

103

©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

2. Establish software unit verification process (clause 5.5.2);
3. Software unit acceptance criteria (clause 5.5.3);
4. Additional software unit acceptance criteria (clause 5.5.4); and

5. Software Unit verification (clause 5.5.5).
Table 3.8 presents the applicability of each task inside the software classes.

Tabela 3.8. Summary of tasks in Software unit implementation and verification activity

Clause | Class A | Class B | Class C
5.5.1 X X X
55.2 X X
5.5.3 X X
554 X
5.5.5 X X

As part of the task Implement each software unit, the manufacturer shall imple-
ment each Software Unit. In the task Establish software unit verification process, the
manufacturer shall establish strategies, methods and procedures for verifying each Soft-
ware Unit is required, where verification is done by testing. The test procedures shall be
evaluated for correctness.

As part of the task Software unit acceptance criteria, the manufacturer shall es-
tablish acceptance criteria for Software Units prior to integration into more oversized
Software Items as appropriate and ensure that Software Units meet acceptance criteria.

The manufacturer shall include additional acceptance criteria, according to task
Additional software unit acceptance criteria as appropriate for:

* Proper event sequence;

¢ Data and control flow;

¢ Planned resource allocation;

* Fault handling (error definition, isolation, and recovery);
* Initialization of variables;

* Self-diagnostics;

* Memory management and memory overflows; and

* Boundary conditions.
As part of the task Software unit verification, the manufacturer shall execute the

test and document the results. Figure 3.9 presents an overview of the Software unit imple-
mentation and verification activity.

104 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

Software Item 1 Software Unit L.n
Software Unit 1.2

Software Unit 1.1

. is verified

isimplemented |
into

Software Unit
11

are executed to
generate

are verified

e [
Results satisfaction

are updated as appropriate

Figura 3.9. Overview of the Software unit implementation and verification activity

3.5.6. Software Integration and Integration Testing
The Software integration and integration testing activity contains 8 (eight) tasks:
1. Integrate software units (clause 5.6.1);
2. Verify software integration (clause 5.6.2);
3. Software integration testing (clause 5.6.3);
4. Software integration testing content (clause 5.6.4);
5. Evaluate software integration test procedures (clause 5.6.5);
6. Conduct regression tests (clause 5.6.6);
7. Integration test record contents (clause 5.6.7); and

8. Use software problem resolution process (clause 5.6.8).
Table 3.9 presents the applicability of each task inside the software classes.

Tabela 3.9. Summary of tasks in Software integration and integration testing activity

Clause | Class A | Class B | Class C
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6
5.6.7
5.6.8

PR| DR PR K| | | | 4

PR PR PR A PR | 4

105 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

As part of the task Integrate software units, the manufacturer shall integrate the
Software Units following the integration plan, ensuring the Software Units have been
integrated into Software items and the Software system.

As part of the task Verify software integration, the manufacturer shall verify and
record the following aspects of the software integration following the integration plan:

1. The SUs have been integrated into SIs and the MDS; and

2. The hardware items, SIs, and support for manual operations (e.g., human-equipment
interface, online help menus, speech recognition, voice control) of the MS have
been integrated.

As part of the task Software integration testing, the manufacturer shall test the
integrated software items following the integration plan and document the results. As part
of the task Software integration testing content, the manufacturer shall address whether
the integrated SIs performs as intended. Examples to be considered are:

1. The required functionality of the Software;
2. Specified timing and other behavior;
3. Specified functioning of internal and external interfaces; and

4. Testing under abnormal conditions including foreseeable misuse.

As part of the task Evaluate software integration test procedures, the manufacturer
shall evaluate the integration Test Procedures for correctness.

As part of the task Conduct regression tests, when software items are integrated,
the manufacturer shall conduct regression testing appropriate to demonstrate that defects
have not been introduced into previously integrated Software.

As part of the task Integration test record contents, the manufacturer shall:

* Document the test result (pass/fail and a list of anomalies);
* Retain sufficient records to permit the test to be repeated; and

* Identify the tester.

As part of the task Use software problem resolution process, the manufacturer
shall enter anomalies found during software integration and integration testing into a soft-
ware problem resolution process.

Figure 3.10 presents an overview of the Software integration and integration tes-
ting activity.

106 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

is updated as appropriate

verifies

Software Item 1

coupling
among
software units

Test

is verified
to ensure

Correctness

Procedure Acceptance criteria

N (
[Software Unit Software Unit}
1.1 1.2
N

verifies
coupling
among
software items

are executed to
generate

AN

Software Item 2 are verified to ensure

Software Unit
24

Test
Results

Acceptance criteria
satisfaction

\
Software Item 3 :
1

.| Software Unit je—
31 1
}
1

- ——— —

is updated as appropriate

Figura 3.10. Overview of the Software integration and integration testing activity

3.5.7. Software System Testing

The Software system testing activity contains 5 (five) tasks:
1. Establish tests for software system requirements (clause 5.7.1);
2. Use software problem resolution process (clause 5.7.2);
3. Retest after changes (clause 5.7.3);

4. Evaluate software system testing (clause 5.7.4); and

5. Software system test record contents (clause 5.7.5).
Table 3.10 presents the applicability of each task inside the software classes.

Tabela 3.10. Summary of tasks in Software system testing activity
Class A | Class B | Class C

Clause
5.7.1
5.7.2
573
5.74
5.7.5

iRl
PR < | e
ikl ekl

As part of the task Establish tests for software system requirements, the manu-
facturer shall establish and perform a set of tests, expressed as input stimuli, expected
outcomes, pass/fail criteria and procedures, for conducting Software system testing such
that all software requirements are covered. Separate tests for each requirement and tests
of combinations of requirements can be performed, primarily if dependencies between
requirements exist.

107 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

As part of the task Use software problem resolution process, the manufacturer

shall enter anomalies found during Software System testing into a software problem re-
solution process.

As part of the task Retest after changes, when changes are made during Software

system testing, the manufacturer shall:

1.

that:

Repeat tests, perform modified tests or perform additional tests, as appropriate, to
verify the effectiveness of the change in correcting the problem;

Conduct testing appropriate to demonstrate that unintended side effects have not
been introduced; and

. Perform relevant risk management activities.

As part of the task Verify software system testing, the manufacturer shall verify

Software System test procedures trace to software requirements;
All software requirements have been tested or otherwise verified; and

Test results meet the required pass/fail criteria.
As part of the task Software system test record contents, the manufacturer shall:

A reference to test case procedures showing required actions and expected results;
The test result (pass/fail and a list of anomalies);

The version of software tested;

Relevant hardware and software test configurations;

Relevant test tools;

Date tested; and

The identity of the person responsible for executing the test and recording the test
results.

Figure 3.11 presents an overview of the Software system testing activity.

3.5.8. Software Release

The Software release activity contains 8 (eight) tasks:

1.

2.

Ensure software verification is complete (clause 5.8.1);

Document known residual anomalies (clause 5.8.2);

108 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpdsio Brasileiro de Computagdo Aplicada & Satde (SBCAS 2021)

N\

Software
System
Regquirements

traces to

verifies System Software is verified
requirements satisfaction Test to ensure | Correctness |
Procedure Acceptance criteria
Pass/Fail Criteria
Medical Device are executed to
enerate
Software (MDS) &
are verified
Test to ensure Acceptance criteria
Results satisfaction

is updated as appropriate

Figura 3.11. Overview of the Software system testing activity

. Evaluate known residual anomalies (clause 5.8.3);

. Document released versions (clause 5.8.4);

. Document how released software was created (clause 5.8.5);
. Ensure activities and tasks are complete (clause 5.8.6);

. Archive software (clause 5.8.7); and

. Assure reliable delivery of released software (clause 5.8.8).
Table 3.11 presents the applicability of each task inside the software classes.

Tabela 3.11. Summary of tasks in Software release activity

Clause | Class A | Class B | Class C
5.8.1 X X X
5.8.2 X X X
5.8.3 X X
5.8.4 X X X
5.8.5 X X
5.8.6 X X
5.8.7 X X X
5.8.8 X X X

109 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

As part of the task Ensure software verification is complete, the manufacturer
shall ensure that all software verification activities have been completed and the results
evaluated before the Software is released.

As part of the task Document known residual anomalies, the manufacturer shall
document all known residual anomalies. Additionally, the manufacturer shall document
all known residual anomalies to ensure that they do not contribute to an unacceptable risk
as part of the task Evaluate known residual anomalies.

As part of the task Document released versions, the manufacturer shall document
the version of the MDS that is being released. Furthermore, the manufacturer shall docu-
ment the procedure and environment used to create the released software, as presented in
task Document how released Software was created.

As part of the task Ensure activities and tasks are complete, the manufacturer shall
ensure that all activities and tasks are complete along with all the associated documenta-
tion.

As part of the task Archive software, the manufacturer shall archive:

¢ The MDS and source-code; and

* The generated artifacts.

The archival is required for at least a period determined as the length of the de-
vice’s lifetime as defined by the manufacturer or a time specified by relevant regulatory
requirements.

As part of the task Assure reliable delivery of released software, the manufacturer
shall establish procedures to ensure that the released MDS can be reliably delivered to the
point of use without corruption or unauthorized change. These procedures shall address
the production and handling of media containing the MDS, including as appropriate:

Replication;

Media labelling;

Packaging;

¢ Protection;

Storage; and

e Delivery.
Figure 3.12 presents an overview of the Software release activity.

3.6. Software Maintenance Process

The Software maintenance process contains 3 activities:

1. Establish software maintenance plan;

110 ©2021 SBC - Soc. Bras. de Computagdo

21° Simposio Brasileiro de Computacao Aplicada a Saide (SBCAS 2021)

"2

Medical Device
Software (MDS)

Artifacts 1 -
is archived

tailed Architecture
Software

System
Requirements

Software
Units

are archived are archived

Archival

Test
Procedures Test Results

are evaluated
to ensure

| Safety

Figura 3.12. Overview of the Software release activity

2. Problem and modification analysis; and

3. Modification implementation.

3.6.1. Establish software maintenance plan

The Establish software maintenance plan (clause 6.1) contains 1 (one) task with the same
name of the activity. As part of the task Establish software maintenance plan, the manu-
facturer shall establish a software maintenance plan (or plans) for conducting the activities
and tasks of the maintenance process. The plan shall address the following:

* Procedures for feedback arising after the release of the MDS:
Receiving;
Documenting;

Evaluating;

Resolving; and

A

Tracking.
* Criteria for determining whether the feedback is considered to be a problem:;

* Use of the software problem resolution process for analyzing and resolving pro-
blems arising after the release of the MDS;

* Use of the software configuration management process for managing modifications
to the existing software system; and

* Procedures to evaluate and implement:

111 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

1. Upgrades;

Bug fixes;

Patches; and
Obsolescence of SOUP.

ol

Table 3.12 presents the applicability of each task inside the software classes.

Tabela 3.12. Summary of tasks in Establish software maintenance plan activity

Clause | Class A | Class B | Class C
6.1 X X X

3.6.2. Problem and modification analysis

The Problem and modification analysis activity contains 5 (five) tasks:

1. Document and evaluate feedback (clause 6.2.1);

2. Use software problem resolution process (clause 6.2.2);

98]

. Analyze change request (clause 6.2.3);

o

. Change request approval (clause 6.2.4); and

5. Communicate to users and regulators (clause 6.2.5).

Table 3.13 presents the applicability of each task inside the software classes.

Tabela 3.13. Summary of tasks in Problem and modification analysis activity

Clause | Class A | Class B | Class C
6.2.1 X X X
6.2.2 X X X
6.2.3 X X X
6.2.4 X X X
6.2.5 X X X

The task Document and evaluate feedback is broken into 3 subtasks:

1. Monitor feedback (clause 6.2.1.1);
2. Document and evaluate feedback (clause 6.2.1.2); and

3. Evaluate problem report’s affects on safety (clause 6.2.1.3).

112 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

As part of the subtask Monitor feedback, the manufacturer shall monitor feedback
on MDS released for intended use.

As part of the subtask Document and evaluate feedback, the feedback shall be
documented and evaluated to determine whether a problem exists in a released MDS. Any
such problem shall be recorded as a Problem Report (PR). The PR shall include actual or
potential adverse events and deviations from specifications and must be evaluated, as part
of the subtask Evaluate Problem Report’s effects on safety, to determine how it affects the
safety of a released MDS and whether a change is needed to correct the problem.

As part of the task Use software problem resolution process, the manufacturer
shall use the software problem resolution process to address PRs.

As part of the task Analyze change requests, the manufacturer shall analyze each
Change Request (CR) for its effect on the organization, released MDS, and MS with
which it interfaces.

As part of the task Change request approval, the manufacturer shall evaluate and
approve CRs which modify released MDS. As required by local regulation, and presented
by the task Communicate to users and regulators, the manufacturer shall inform users and
regulators about:

* Any problem in released MDS and the consequences of continued unchanged use;
and

* The nature of any available changes to released MDS and how to obtain and install
the changes.

3.6.3. Modification implementation

The Modification implementation activity contains 2 (two) tasks:

1. Use established process to implement modification (clause 6.3.1); and

2. Re-release modified MDS (clause 6.3.2).
Table 3.14 presents the applicability of each task inside the software classes.

Tabela 3.14. Summary of tasks in Modification implementation activity

Clause | Class A | Class B | Class C
6.3.1 X X X
6.3.2 X X X

As part of the task Use established process to implement modification, the ma-
nufacturer shall use the software development process, briefly describe in Section 3.5 to
implement the modifications needed by PRs or CRs. Modifications may be released as
part of a complete re-release of a MDS or as a modification kit comprising changed SIs
and the necessary tools to install the changes as modifications to an existing MDS, as
presented in the task Re-release modified MDS.

113 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

3.7. Software Risk Process
The Software risk process contains 4 (four) activities:
1. Analysis of software contributing to hazardous situations;
2. Risk control measures;
3. Verification of risk control measures; and
4. Risk management of software changes.

3.7.1. Analysis of Software contributing to hazardous situations

The Analysis of software contributing to hazardous situations activity contains 4 (four)
tasks:

1. Identify software items that could contribute to a hazardous situation (clause 7.1.1);
2. Identify potential causes of contribution to a hazardous situation (clause 7.1.2);
3. Evaluate published SOUP anomaly lists (clause 7.1.3); and

4. Document potential causes (clause 7.1.4).
Table 3.15 presents the applicability of each task inside the software classes.

Tabela 3.15. Summary of tasks in Analysis of software contributing to hazardous
situations activity

Clause | Class A | Class B | Class C
7.1.1 X X
7.1.2 X X
7.1.3 X X
7.14 X X

As part of the task Identify Software Items that could contribute to a hazardous
situation, the manufacturer shall identify SIs that could contribute to a hazardous situa-
tion identified in the Medical Device Risk Analysis of ISO 14971:2019 [ISO 2019]. The
hazardous situation could be the direct result of software failure or failure of a risk control
measure implemented in Software.

As part of the task Identify potential causes of contribution to a hazardous situ-
ation, the manufacturer shall identify potential causes of the SI identified above contri-
buting to a hazardous situation. The manufacturer shall also consider potential causes
including, as appropriate:

1. Incorrect or incomplete specification of functionality;

2. Software defects in the identified SI functionality;

114 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

3. Failure or unexpected results from SOUP;

4. Hardware failures or other software defects that could result in unpredictable soft-
ware operation; and

5. Reasonably foreseeable misuse.

As part of the task Evaluate published SOUP anomaly lists, if a failure or unexpec-
ted results from SOUP is a potential cause of the SI contributing to a hazardous situation,
the manufacturer shall evaluate as a minimum any anomaly list published by the supplier
of the SOUP item relevant to the version of the SOUP item used in the MDS to deter-
mine if any of the known anomalies result in a sequence of events that could result in a
hazardous situation.

As part of the task Document potential causes, the manufacturer shall document
in the risk management file the potential causes of the SI contributing to a hazardous
situation.

3.7.2. Risk control measures
The Risk control measures activity contains 2 (two) tasks:
1. Define risk control measures (clause 7.2.1); and

2. Risk control measures implemented in software (clause 7.2.2).
Table 3.16 presents the applicability of each task inside the software classes.

Tabela 3.16. Summary of tasks in Risk control measures activity

Clause | Class A | Class B | Class C
721 X X
722 X X

As part of the task Define risk control measures, for each potential cause of the
software item contributing to a hazardous situation documented in the risk management
file, the manufacturer shall define and document risk control measures. The risk con-
trol measures can be implemented in hardware, Software, working environment or user
instruction.

As part of the task Risk control measures implemented in software, if a risk control
measure is implemented as part of the functions of a SI, the manufacturer shall:

1. Include the risk control measure in the software requirements;

2. Assign a software safety class to the SI based on the possible effects of the hazard
that the risk control measure is controlling; and

3. Develop the SI in accordance with the Software development process.

115 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

3.7.3. Verification of risk control measures

The Verification of risk control measures activity contains 2 (two) tasks:

1. Verify risk control measures (clause 7.3.1); and

2. Document traceability (clause 7.3.3).
Table 3.17 presents the applicability of each task inside the software classes.

Tabela 3.17. Summary of tasks in Verification of risk control measures activity

Clause | Class A | Class B | Class C
7.3.1 X X
733 X X

As part of the task Verify risk control measures, the implementation of each risk
control measure documented shall be verified, and this verification shall be documented.

As part of the task Document traceability, the manufacturer shall document trace-
ability of software hazards from:

1. The hazardous situation to the SI;
2. The SI to the specific software cause;
3. The software cause to the risk control measure; and
4. The risk control measure to its.
3.7.4. Risk management of software changes
The Risk management of software changes activity contains 3 (three) tasks:
1. Analyze changes to Medical Device Software with respect to safety (clause 7.4.1);

2. Analyze impact of software changes on existing risk control measures (clause 7.4.2);
and

3. Perform risk management activities based on analyses (clause 7.4.3).
Table 3.18 presents the applicability of each task inside the software classes.

Tabela 3.18. Summary of tasks in Risk management of software changes activity

Clause | Class A | Class B | Class C
7.4.1 X X X
7.4.2 X X
7.4.3 X X

116

As part of the task Analyze changes to Medical Device Software with respect to
safety, the manufacturer shall analyze changes to the MDS to determine whether:

©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

1. Additional potential causes are introduced contributing to a hazardous situation;
and

2. Additional software risk control measures are required.

As part of the task Analyze the impact of software changes on existing risk control
measures, the manufacturer shall analyze changes to the Software, including changes to
SOUP, to determine whether the software modification could interfere with existing risk
control measures.

As part of the task Perform risk management activities based on analyses, the
manufacturer shall perform all risk management activities defined in this section based on
these analyses.

3.8. Software Configuration Management Process

The Software configuration management process contains 3 (three) activities:

1. Configuration identification,;
2. Change control; and

3. Configuration status accounting.

3.8.1. Configuration identification

The Configuration identification activity contains 3 (three) tasks:

1. Establish means to identify configuration items (clause 8.1.1);
2. Identify SOUP (clause 8.1.2); and

3. Identify system configuration documentation (clause 8.1.3).
Table 3.19 presents the applicability of each task inside the software classes.

Tabela 3.19. Summary of tasks in Configuration identification activity

Clause | Class A | Class B | Class C
8.1.1 X X X
8.1.2 X X X
8.1.3 X X X

As part of the task Establish means to identify configuration items, the manufactu-
rer shall establish a scheme for the unique identification of configuration items and their
versions to be controlled for the project. This scheme shall include other MDS or entities
such as SOUP and documentation.

As part of the task Identify SOUP, for each SOUP configuration item being used,
including standard libraries, the manufacturer shall document:

117 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

1. The title,
2. The manufacturer, and

3. The unique SOUP designator.

As part of the task Identify System configuration documentation, the manufacturer
shall document the set of configuration items and their versions that comprise the MDS
configuration.

3.8.2. Change control

The Change control activity contains 3 (three) tasks:

1. Approve change requests (clause 8.2.1);
2. Implement changes (clause 8.2.2);
3. Verify changes (clause 8.2.3); and

4. Provide means for traceability of change (clause 8.2.4).
Table 3.20 presents the applicability of each task inside the software classes.

Tabela 3.20. Summary of tasks in Change control activity

Clause | Class A | Class B | Class C
8.2.1 X X X
8.2.2 X X X
8.2.3 X X X
8.24 X X X

As part of the task Approve change requests, the manufacturer shall provide con-
figuration items only in response to an approved Change Request.

As part of the task Implement changes, the manufacturer shall implement the
change as specified in the Change Request. In addition, the manufacturer shall iden-
tify and perform any activity that needs to be repeated as a result of the change, including
changes to the software safety classification of MDS and Sls.

As part of the task Verify changes, the manufacturer shall verify the change, inclu-
ding repeating any verification that a change has invalidated.

As part of the task Provide means for traceability of change, the manufacturer
shall create an audit trail whereby each of the following items are evaluated:

1. Change Request (CR);
2. Relevant Problem Report (PR); and

3. Approval of the CR.

118 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

3.8.3. Configuration status accounting

The Configuration status accounting (clause 8.3) contains 1 (one) task with the same
name of the activity. As part of the task Configuration status accounting, the manu-
facturer shall retain retrievable records of the history of controlled configuration items,
including System configuration. Table 3.21 presents the applicability of each task inside
the software classes.

Tabela 3.21. Summary of tasks in Configuration status accounting activity

Clause | Class A | Class B | Class C
8.3 X X X

3.9. Software Problem Resolution Process

The Software problem resolution process contains 8 (eight) tasks:

1.

N o

Prepare problem reports (clause 9.1);

. Investigate the problem (clause 9.2);

. Advise relevant parties (clause 9.3);

Use change control process (clause 9.4);

Maintain records (clause 9.5);

Analyze problems for trends (clause 9.6);

Verify software problem resolution (clause 9.7); and

Test documentation contents (clause 9.8).
Table 3.22 presents the applicability of each task inside the software classes.

Tabela 3.22. Summary of tasks in Software problem resolution process

Clause | Class A | Class B | Class C
9.1
9.2
9.3
94
9.5
9.6
9.7
9.8

PR PR S| A R R) 4
R PR S| A R < 4
iRl ail iR el

As part of the task Prepare problem reports, the manufacturer shall prepare a PR

for each problem detected in a MDS. Problem Reports shall include a statement of critica-
lity (for example, effect on performance, safety, or security) as well as other information

119 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

that may aid in the resolution of the problem (for example, devices affected, supported
accessories affected).

As part of the task Investigate the problem, the manufacturer shall:
1. Investigate the problem and, if possible, identify the causes;

2. Evaluate the problem’s relevance to safety using the software risk management pro-
cess;

3. Document the outcome of the investigation and evaluation; and

4. Create a Change Request(s) for actions needed to correct the problem or document
the rationale for taking no action.

As part of the task Advise relevant parties, the manufacturer shall advise relevant
parties of the existence of the problem, as appropriate.

As part of the task Use change control process, the manufacturer shall approve
and implement all Change Requests, observing the requirements of the Change control
process.

As part of the task Maintain records, the manufacturer shall maintain records of
PRs and their resolution, including their verification. Additionally, the manufacturer shall
perform analysis to detect trends in Problem Reports.

As part of the task Verify software problem resolution, the manufacturer shall ve-
rify resolutions to determine whether:

1. Problem Report has been resolved, and the Problem Report has been closed;
2. Adverse trends have been reversed;

3. Change Requests have been implemented in the appropriate MDS and activities;
and

4. Additional problems have been introduced.

As part of the task Test documentation contents, when testing, retesting or regres-
sion testing SIs and MDS following a change, the manufacturer shall include in the test
documentation:

1. Test results;
. Anomalies found;

. The version of Software tested;

. Relevant test tools;

2
3
4. Relevant hardware and software test configurations;
5
6. Date tested; and

7

. Identification of the tester.

120 ©2021 SBC - Soc. Bras. de Computagdo

21° Simposio Brasileiro de Computacao Aplicada a Saide (SBCAS 2021)

3.10. Relationship with other Standards

As described before, the IEC 62304 applies to the development and maintenance of MDS.
The Software is considered a part of the MD. The IEC 62304 should be used together
with other appropriate standards when developing an MD. Medical device management
standards such as ISO 13485:2016 [ISO 2016a] and ISO 14971:2019 [ISO 2019] provide
a management environment that lays a foundation for an organization to develop pro-
ducts. Safety standards such as IEC 60601-1-12:2014/AMD 1:2020 [IEC 2020], IEC
61010-1:2010 [IEC 2010a], and IEC 82304-1:2016 [IEC 2016] give specific direction
for creating safe Medical Devices. When Software is a part of these Medical Devices,
IEC 62304 provides more detailed direction on developing and maintaining safe MDS.
Many other standards such as ISO/IEC/IEEE 12207:2017 [ISO 2017], IEC 61508-3:2010
[IEC 2010b], and ISO/IEC/IEEE 90003:2018 [ISO 2018] can be looked to as a source
of methods, tools and techniques that can be used to implement the requirements in IEC
62304.

Figure 3.19 shows the relationship among these standards.

requires
IEC 62304
affects
ISO 14971 IEC 60601-1
affects Implementation of affects
Medical Device
Software
ISO 13485 IEC 61010-1
inspires
Medical Device Management Medical Device

Standards Product Standards

ISO/IEC/IEEE

ISO/IEC/IEEE
12207 IEC 61508-3 9003

Other Sources of Information

Figura 3.13. Relationship with other standards

3.11. Agile Methods and Scrum

According to Davis (2013), in 2001, a group of 17 professionals met and produced a
document that established the principles of agile development. This document, called the
Manifesto for Agile Development (MAD), was prepared broadly and generically. These
general terms and concepts started to guide the agile way of managing projects.

Several proponents of agile methods agreed with the MDA [Beck et al. 2001],
shown in Figure 3.14. It synthesizes the origins of a set of lightweight methodologies,
such as Scrum [Schwaber and Beedle 2001], Extreme Programming (XP) [Beck 2000],

121 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpdsio Brasileiro de Computagdo Aplicada & Satde (SBCAS 2021)

Crystal [Cockburn 2004], Feature Driven Development (FDD) [Palmer and Felsing 2002],
Test Driven Development (TDD) [Astels 2003], Dynamic Software Development Method
(DSDM) [Stapleton 1997] and Adaptive Software Development (ASD) [Highsmith 2000].

Agile values

Al

Individual and interactions e Processes and Tools
Working Software Over Comprehensive Documentation
Customer Collaboration Over Contract Negotiation

Respond to Change Over Following a Plan

||II:}

Figura 3.14. Manifesto for Agile Development (MAD) [Beck et al. 2001]

In addition to these fundamental values identified, the participants of the MAD
also created 12 principles that guide the agile development of Software [Davis 2013]:

1. Our highest priority is to satisfy the customer through the early and continuous
delivery of valuable Software;

2. Accept changing requirements, even at the end of development. Agile processes
are adapted to changes so that the client can gain competitive advantages;

3. Deliver Software frequently running, on the scale of weeks to months, with a pre-
ference for shorter periods;

4. Business-related people and developers must work together daily throughout the
project;

5. Build projects around motivated individuals. Giving them the necessary environ-
ment and support and trusting that they will do their job;

6. The most efficient and effective method of transmitting information to a develop-
ment team is through face-to-face conversation;

7. Functional Software delivery is the primary measure of progress;

8. Agile processes promote a sustainable environment. Sponsors, developers and users
must be able to maintain constant steps indefinitely;

9. Continuous attention to technical excellence and good design increases agility;
10. Simplicity;

11. The best architectures, requirements and designs emerge from self-organizing te-
ams; and

122 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

12. Atregular intervals, the team reflects on becoming more effective, so it adjusts and
optimizes its behavior accordingly.

Principles 1, 2 and 7 are strongly correlated. In principle 2, breaking the paradigm
between agile and traditional development stands out since traditional development avoids
and makes it challenging to change requirements. In traditional projects, it is essential to
follow a plan, and any variation can mean a significant risk to the project’s success. In
agile projects, on the other hand, the customer is the one who dictates the priorities, and
if the changes add more value to the customer, these are welcome, as stated in principle 1.
In principle 7, as functional Software is the primary measure of progress, the added value
to the customer is the same as the working Software.

In principle 3, agile developments work with the concept of iterations, with cycli-
cal efforts of fixed duration. The work to be done is selected and prioritized before the
start and then delivered at the end. This principle strongly correlates with 9, providing a
well-designed software with incremental delivery and modularity.

Principles 4, 5, 6 and 11 are associated with human relationships. Principle 4
focuses on free and unhindered communication from any barrier. Principles 5 and 11
provide that teams are self-organizing and do not need someone by their side to tell them
what to do. Principle 6 establishes a preference for verbal and informal communication
overwritten and formal communication.

The rationale for principle 8 is that projects can keep pace indefinitely without the
team experiencing fatigue. Principle 10 focuses on keeping things simple and eliminating
what is considered unnecessary. Finally, principle 12 appears in several methods with
“Retrospective” calls. At the end of each iteration, the team looks at the completed work
and reflects on what went right and what went wrong.

According to Stober and Hansmann (2010), agile thinking is an attempt to simplify
things, reducing planning complexity, focusing on customer value and shaping a favorable
climate for participation and collaboration. Furthermore, Vuori(2011) points out that there
is a tendency in companies to transform their Software practices and product development
to a more incremental way, using agile development.

Sutherland (2010) defined Scrum as an iterative and incremental framework for
application development, and its structure is defined in work cycles, which happen as a
race, called Sprint. One Sprint typically has 1 (one) to 4 (four) weeks, ending on a specific
date, regardless of the work being completed, and is never extended. Scrum has a series
of defined roles with different responsibilities, as shown in Table 3.23.

The Scrum Master protects the team by ensuring that it does not over-commit
itself to what it can accomplish during a sprint. He also acts as a facilitator and becomes
responsible for removing any obstacles that Scrum Team raises during these meetings.

A meeting called Sprint Planning takes place at the beginning of each Sprint. The
Product Owner is a role of important responsibility and visibility in the Scrum method.
This represents the customer in decisions and prioritization, considering the value added
to the product.

The Product Owner and Scrum team review the product backlog and discuss the

123 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

Tabela 3.23. Roles of Scrum

Role Description

Product Ow- | Defines the items that make up the product backlog and prioritizes
ner them in sprint planning.

Scrum Master | Ensures that the team respects and follows Scrum values and prac-
tices. It also protects the team by ensuring that it does not over-
commit itself to what it is capable of accomplishing during a sprint.
Scrum Team Formed by the development team. There is not necessarily a func-
tional division through traditional roles such as programmer, test
analyst or architect. Everyone on the project works together to
complete the set of work they have jointly committed to for a sprint.

goals and context for the items. In addition, the Scrum Team selects the items from the
product backlog and commits to completing, by the end of the Sprint, forming the sprint
backlog.

A Release is the delivery of one or more product increments, generated in one or
more successive sprints, for use. Scrum projects perform frequent releases. Performing
releases throughout a project gets frequent feedbacks and promote a sense of development
evolution.

The Product Backlog is a list containing all the desired functionality for a product.
The Product Owner defines the content of this list. The Product Backlog does not need
to be complete at the beginning of a project. Instead, it can start with whatever is most
apparent at first. Over time, the Product Backlog grows and changes as the team learns
more about the product and its users.

The Sprint Backlog is a list of tasks that the Scrum Team undertakes to do in a
Sprint. The Sprint backlog items are extracted from the Product Backlog by the Scrum
Team based on the priorities set by the Product Owner and the team’s perception of the
time needed to complete the various functionality.

After the Sprint is completed, there is a Sprint Retrospective, where the team and
stakeholders discuss and review the results, identifying applicable improvements. Figure
3.15 presents the Scrum structure.

In a Scrum project, the team monitors its progress against a plan, updating a Burn-
down Chart at the end of each Sprint. The vertical axis of a Burndown Chart shows the
amount of work that still needs to be done at the beginning of each Sprint. The horizontal
axis represents the measure of time. Figure 3.16 presents an example of the Burndown
Chart.

3.12. Agile Software Development Model

The Agile Software Development Model presented in Figure 3.17 consists of 7 stages.
Stage A is planning, where the two plans required for IEC 62304 are generated. These
plans should describe the other stages of the agile software development model proposed
in this work, including the roles, responsibilities and tools used in software development.

124 ©2021 SBC - Soc. Bras. de Computagdo

21° Simposio Brasileiro de Computacao Aplicada a Saide (SBCAS 2021)

Customers, Team,
Managers, Execs

Inputs from |i| Br'ﬂi"ﬁ

Daily Standup
Meeting

ik

Sprint Review

) 5

Scrum

:bd Master
YVV

Sprint
Backlog Sprint end date and Finished Work
team deliverable
i Sprint do not change
Product Planning [ﬁ
Backlog Meeting |*| i|
Sprint
Retrospective

Figura 3.15. Scrum framework [Beck et al. 2001]

Project XYZ Iteration 1 Burn Down
30

Start
70

15 W Ideal Tasks Remaining

10 B 2.ctual Tasks Remaining

Sum of Task Estimates (days)

0 5 10 15 20
lterstion Timeline (days) End

Figura 3.16. Example of Burn Down Chart [Ambler 2002]

Stage B represents the Architecture Design, involving the software items and ac-
commodating the future allocation of Software System requirements. Stage A and B
represent the inputs needed for the repetitive execution of sprints.

Stages C and D are within the Sprint. Stage C represents the Sprint Planning
with a focus on prioritization of the system requirements. In stage D, the specification of
Software Requirements is from the refinement of the prioritized System Requirements.
With the Software Requirements and the Architecture, a Detailed Architecture is genera-
ted specifying the software units for this Sprint’s software requirements implementation,
thus generating an implementation of each software unit. Also, within the sprints, a set of
testing procedures for the software units is built and executed, thus causing the test results
at the unit level. Finally, Sprints are repeated until all software units are architecturally

125 ©2021 SBC - Soc. Bras. de Computagdo

21° Simposio Brasileiro de Computacao Aplicada a Saide (SBCAS 2021)

detailed, implemented and tested.

Once the implementations of the software units are completed, stage E is the in-
tegration implementation and testing. At this stage, the Software Units built within the
Sprints will be integrated into Software Items. In this same stage, the data and control
couplings between the Software Units belonging to the same software item will be evalu-
ated, respecting the detailed specification of the architecture. In stage F, the system testing
will be done, involving integrating the Software Items and the hardware designated for
the MDS. Finally, in stage G, the MDS will be released for its use.

repeat until finish Software Units

A'

E F G

Integration
- System

Testing

Architectural Sprint

Plannin ;
g Design Planning

Implementation &
testing

Release

¥ ¥

— R
Lo
=3 -
Medical Device

Software (MDS)

¥

Architecture

VVVVVV

N

Software
System
Requirements

System
Requirements

Software
Development
Plan

Priaritized

[\

Anomalies Test

Evaluatod Procedure || TestResults

Software
Integration

Plan

Test
Software l procedures | | Test Resuts
Units (Unit Level) (Unit Level)

Figura 3.17. Agile software development model

During the sprint planning meeting (Figure 3.18 - stage C), the system require-
ments are evaluated. The team chooses those system requirements that will be implemen-
ted by Software, which are prioritized into the Sprint. Once the System Requirements
set is selected, the scrum master monitors the progress of its refinements in software re-
quirements and other development process artifacts, using the Burn Down Chart. During
the Sprint (Figure 3.18 - stage D), which can last up to 4 weeks, the development of the
Software System requirements, the detailed Architecture, implementation of the Software
Units, and their Test procedures and Test Results are carried out in this time. The Wee-
kly Meeting evaluates the progress of refining the system requirements prioritized for this
Sprint. The Sprint Review ensures that generated artifacts have been verified at the Soft-
ware Unit level. The team will also carry out a Sprint Retrospective that will record and
evaluate the possible Anomalies identified in the artifacts generated in this Sprint, sche-
duling the correction of these anomalies for a future Sprint. Stages C and D are detailed
in Figure 3.18.

According to Figure 3.19, after all the software units are developed within the nu-
merous sprints performed, the integration implementation Testing, stage E, performs the
verification of the integration between the software units belonging to the same software
item. Therefore, test procedures at the integration level will be created and generated

126 ©2021 SBC - Soc. Bras. de Computagdo

21° Simposio Brasileiro de Computacao Aplicada a Saide (SBCAS 2021)

Burndown Chart

L
mm Va[ﬂarea_p
O8rag,
C | monitors progress ®

il
Sprint @
Planning m n:‘f;li‘r']yg

Y Detailed Architecture

By |

Scrum Master

ensures artifacts
m ﬁ are verified

Verified at Unit

Sprint Planning

Meetini Sprint Review sofware ||| ,ore | vestresuns Level
D Units {onitLevel) | | twnieLevel)
prioritize —
(Sprint) 5 N
registers and

Retrospective

® &
\ﬂ

evaluates

System
Requirements.

Figura 3.18. Sprint structure

from these tests when executed. In system testing, stage F, on the other hand, performs
the verification of the integration between the software items with the definition of test
procedures that exercise the software requirements and that, when executed, generate test
results. Finally, in stage G, the manufacturer archives the artifacts generated during the
Medical device software and evaluate the possible anomalies identified regarding the sa-
fety aspect.

sprint
1

E y F G
Integration
o Implementation & System Testing Release
testing

l

iﬁ%

= o il
Medical Device Medical Device Medical Device
Softwara (MDS) Software [MDS) Saftware (MDS)

Test

Siaad Test Results Test
racedure -)
(Integration (integration Procedure Test Results Archival
Level)
Level)

verified at Integration ° Verified at System Level
Level

Figura 3.19. Integration, system testing, and release

127 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

3.13. Related Work

For the identification of the related work, we executed a Systematic Literature Mapping
(SLM) that was published in March 2021 in Journal of Health Informatics [Marques et al. 2021].

3.13.1. Systematic Literature Mapping (SLM)

Our previous work [Marques et al. 2021] has identified works reporting the usage of IEC
62304. We also identified the advantages and difficulties of using IEC 62304. We found
and classified 22 (twenty-two) works that met the inclusion criteria, as part of our SLM.
Using the instructions suggested by Petersen et al. (2015), 4 Categories (Cat) were defined
and identified (Catl...4):

» Conceptual Analysis (Catl): works that discuss a theoretical concept or a new ap-
proach, but without validating it;

* Experimental Analysis (Cat2): works that discuss a theoretical concept or a new
approach with validation;

» Experience Report (Cat3): works that report an industrial experience without de-
claring research questions or theoretical concepts; and

* Survey (Cat4): works that collect data based on a questionnaire.

The IEC 62304 standard presents software development and support processes
such as configuration and risk control. Thus, the works usually present contributions
that describe, support, elucidate their processes and activities through guides, models,
methods or comparatives. Thus, the Contribution (Co) axis identified 4 (four) types of
contribution (Col...4), as follows:

* Guidance (Col): works that support the understanding of IEC 62304 processes and
activities;

* Model (Co2): works that present an extension and detailing of the processes and
activities of IEC 62304, with reusable tools, methods and checklists;

* Method (Co3): works that present methods to meet only one IEC 62304 process or
activity; and

* Comparative (Co4): works that present a comparison of IEC 62304 in some pers-
pective.

IEC 62304 describes 5 (five) processes: Software Development Process, Soft-
ware Maintenance Process, Software Risk Management Process, Software Configuration
Management Process, and Software Problem Resolution Process. The Software Develop-
ment Process contains 8 (eight) activities, as presented in sections 3.5. For the Variability
(Var) axis, the team leading the SLM decided to group 4 (four) processes and 8 (eight)
activities of the Software Development Process into 4 (four) groups with identification
(Varl...4). We did not find any work associated with the Software Maintenance Process:

128 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

* Planning and Requirements (Varl): works that address the Development Planning
and Requirements Analysis activities that belong to the Software Development Pro-
cess;

* Design and Implementation (Var2): works that address the Architectural Design,
Detailed Design and Unit Implementation and Verification activities that also be-
long to the Software Development Process;

e Tests (Var3): works that address the Integration and Integration Testing and Soft-
ware System Testing activities that belong to the Software Development Process;
and

* Risks (Var4): works that address the Software Risk Management process.

3.13.2. Results

Figure 3.20 presents the 22 works grouped into the 3 (three) axis. We mapped some works
to more than one possibility within the same axis.

Variability
: Planning and @ :
Requirements
17,7% 2,5% 7,6% (Varl) 17,8% 9,7%
@ Design and I
13,9% 2,5% 6,3% Implementation 12,9%
. 8,0%
(Var2)
@ Tests
13,9% 2,5% 2,5% 7.6% (var3) 16,1% 8,0%
® © ()o@ o
Risks
(vard)
13,9% 3,8% 7,6% 14,5% 1,6% 9,7% 1,6%
Classification
Contribution Category
(79) | (62)
Guidance Model Method Comparative Conceptual Experimental Experience Survey
(Co1) (Co2) (Co3) (Co4) Analysis Analysis Report (Cat4)

(Catl) (Cat2) (Cat3)

Figura 3.20. SLM bubble chart

Jordan (2006) and Varri et al. (2019) described IEC 62304 presenting their soft-
ware processes and classes. Jordan (2006) was the first to deal with IEC 62304 after its
issuance. Varri et al. (2019) plays a similar role but updated with the IEC 62304 amend-
ment issued in 2015.

Huhn and Zechner (2010) proposed a method to evaluate arguments centred on
quality and engineering in reliability cases (assurance cases) to guarantee software deve-
lopment, according to IEC 62304.

Mc Caffery et al. (2010) compared the depth of current medical equipment regula-
tions, focusing on IEC 62304, concerning Capability Maturity Model Integration (CMMI)

129 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

in specifying which risk management practices companies should adopt when developing
software medical devices. Bianco (2011) describes a quality system that integrates as
main processes those specified by IEC 62304 and applies a risk-oriented approach and
supporting processes such as contract and supplier management.

Cruciani and Vicario (2011) identified the need for the extensive testing effort ne-
cessary to comply with IEC 62304 prescriptions, presenting how data flow analysis can
identify an appropriate set of constraints explored in the verification stage at reducing the
set of tests, preserving the coverage. Finally, Larson et al. (2012) presented an initial pro-
posal for a real-time and critical computing platform to integrate heterogeneous devices,
identifying the absence of requirements in IEC 62304 for this purpose.

McHugh et al. (2012) identified how regulations affect medical device software
development companies, and they made recommendations on compliance with IEC 62304.
Wong and Callaghan (2012) described an approach taken to manage the baselines of soft-
ware requirements for medical devices in need of compliance with IEC 62304.

Regan et al. (2013) described the extent and diversity of traceability requirements
in medical device standards and guidelines at each stage of the software development life
cycle, as required by IEC 62304.

Hoss et al. (2014) described the first experiences with the implementation of IEC
62304 to guarantee the quality of a radiotherapy unit, being the only work with an industry
report.

Rust et al. (2016) described a roadmap that assists small and medium-sized com-
panies in developing medical Software by IEC 62304, offering design patterns to generate
pre-established artifacts and models to demonstrate compliance. They also presented a
software development plan to help organizations in which the use of IEC 62304 can be
problematic because they are new organizations or have limited experience in the medical
field. They also present a roadmap, divided into two levels: (a) the high level consists
of the activities and tasks necessary for implementing IEC 62304, and (b) the low level
contains the artifacts of design standards and instructions related to the tasks. The script
involved a consultation, by questionnaire, with 6 (six) experts performing the evaluation.

Laukkarinen et al. (2017) examined the obstacles and benefits of using DevOps
to develop Software for medical devices. Finally, Hatcliff provided an overview of the
life cycle problems of interoperable medical devices not sufficiently addressed in existing
medical device standards, including IEC 62304.

Kasisopha and Meananeatra (2019) presented a directive for Very Small Entities
(VSE) that employ ISO TR 29110 [ISO 2016b] and aspire to apply the IEC 62304 proces-
ses in constructing Software for medical devices. Marques and Yelisetty (2019) analyzed
the characteristics of specification of software requirements in regulated environments
such as medical, aeronautical and rail. The four characteristics identified are consistency
(internal and external), unambiguity, verifiability and traceability. The document also
describes the three standards used in these regulated environments (RTCA DO-178C,
IEC 62279 and IEC 62304). It examines their similarities and differences from the point
of view of the requirements’ specification.

130 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

Table 3.24 identified the difficulties inside the 22 works.

Tabela 3.24. Difficulties of using IEC 62304 [Marques et al. 2021]

Difficult | Description
DIF 1 | Challenging to select and use automated tools to comply with the standard.
DIF 2 | High initial effort with a learning curve to overcome.
DIF 3 | There is a lack of recommendations of methods and techniques.
DIF 4 | High test effort.
DIF 5 | Difficult to use in small and medium-sized companies.
DIF 6 | Lack of how to handle the interoperability of various medical products.
DIF 7 | Continuous integration is complex.
DIF 8 | Lack of integration with CMMI [Chrissis et al. 2011].
DIF 9 | Need for qualified personnel.

Table 3.25 identified the advantages inside the 22 works.

Tabela 3.25. Advantages of using IEC 62304 [Marques et al. 2021]

Advantage | Description
ADV 1 | Present rigorous criteria equivalent to the norms of other critical domains.
ADV 2 | Do not prescribe a specific lifecycle, only its processes.
ADV 3 | Facilitate competitiveness among companies.
ADV 4 | Determine rigor according to safety impact.
ADV 5 | Control of software planning, programming, testing and documentation.
ADV 6 | Present a process for handling software updates.
ADV 7 | Emphasize the importance of requirements management and traceability.

3.14. Final Considerations

This chapter presented the fundamentals of IEC 62304 with an Agile Software Develop-
ment Model. In 2021, IEC 62304 completed 15 years. Thus, the authors believe that
there are already works that report experiences, analyzes and difficulties in its use. These
results can be interesting to direct further research and definitions of methods, models,
guides or other materials to comply with IEC 62304.

The main contributions of this chapter are:

1. The summary of IEC 62304 processes, activities, and tasks, as presented in Sections

3.5,3.

6,3.7,3.8, and 3.9;

2. The illustration of Figures 4, 5, 6,7, 8,9, 10, 11, 12, 13, and 14 that contributes to
a visual understanding of the Software Development Process;

3. The Agile Software Development Model providing an adaptation of Scrum, focu-
sing on IEC 62304 compliance; and

4. The summary of the Systematic Literature Mapping performed.

131 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

We believe that our chapter helps the difficulty identified during SLM and presen-
ted in Table 3.24. Furthermore, by creating a lecture involving IEC 62304, we are helping
to solve DIF 2 High initial effort with a learning curve to overcome and DIF 9 Need
for qualified personnel, because this chapter allows readers to better understand with a
qualification in the IEC 62304.

We also believe that our Agile Software Development Model is helpful to solve
some difficulties identified during SLLM, as presented in Table 3.24. We are helping to
solve DIF 3 There is a lack of recommendations of methods and techniques and DIF
5 Difficult to use in small and medium-sized companies. The usage of an adaptation
of Scrum, which focuses on small and medium teams (4 to 9 participants), we adapted
the compliance using the Agile Software Development Model presented in Section 3.12,
facilitating the competitiveness among companies. We identified that our Agile Software
Development Model reaffirms the ADV 2 Do not prescribe a specific lifecycle, only its
processes and ADV 3 Facilitate competitiveness among companies.

Referéncias
[Ambler 2002] Ambler, S. (2002). Agile Modeling. Wiley, Nova Iorque, Estados Unidos.

[Astels 2003] Astels, D. (2003). Test-driven Development: A Practical Guide. Pearson
Education.

[Beck 2000] Beck, K. (2000). Extreme Programming Explained: Embrace Change.
Addison-Wesley.

[Beck et al. 2001] Beck, K., Fulano, Beltrano, and Ciclano (2001). Manifesto for agile
software development.

[Bianco 2011] Bianco, C. (2011). Integrating a risk-based approach and iso 62304 into a
quality system for medical devices. In Nineteenth Safety-Critical Systems Symposium.

[Caffery et al. 2010] Caffery, F. M., Burton, J., and Richardson, I. (2010). Risk mana-
gement capability model for the development of medical device software. Software
Quality Journal, 18(1):81-107.

[Chrissis et al. 2011] Chrissis, M. B., Konrad, M., and Shrum, S. (2011). CMMI for
Development: Guidelines for Process Integration and Product Improvement. Software
Engineering Institute.

[Cockburn 2004] Cockburn, A. (2004). Crystal Clear: a Human-powered Methodology
for Small Teams. Addison-Wesley.

[Cruciani and Vicario 2011] Cruciani, F. and Vicario, E. (2011). Reducing complexity of
data flow testing in the verification of a iec-62304 flexible workflow system. In 30th
International Conference (SAFECOMP).

[Davis 2013] Davis, B. (2013). Agile Practices for Waterfall Projects. J.ROSS.

[Highsmith 2000] Highsmith, J. A. (2000). Adaptive Software Development: a Collabo-
rative Approach to Managing Complex Systems. Dorset House Publishing.

132 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

[Huhn and Zechner 2010] Huhn, M. and Zechner, A. (2010). Arguing for software qua-
lity in an iec 62304 compliant development process. In 4th International Symposium
on Leveraging Applications.

[Hoss et al. 2014] Hoss, A., Lampe, C., Panse, R., Ackermann, B., Naumann, J., and
Jikel, O. (2014). First experiences with the implementation of the european standard
en 62304 on medical device software for the quality assurance of a radiotherapy unit.
Radiat Oncol, 9(79):1-10.

[IEC 2006] IEC (2006). Iec 62304:2006 medical device software - software life-cycle
processes — amendment 1. Technical report, International Electrotechnical Commis-
sion.

[IEC 2010a] IEC (2010a). Iec 61010-1:2010 safety requirements for electrical equipment
for measurement, control, and laboratory use - part 1: General requirementssafety re-
quirements for electrical equipment for measurement, control, and laboratory use - part
1: General requirements. Technical report, International Electrotechnical Commission.

[IEC 2010b] IEC (2010b). Iec61508-3:2010 functional safety of electri-
cal/electronic/programmable electronic safety related sysyste - software requirements.

[IEC 2015] IEC (2015). Iec 62304:2006/amd 1:2015 medical device software - software
life-cycle processes — amendment 1. Technical report, International Electrotechnical
Commission.

[IEC 2016] IEC (2016). Iec 82304-1:2016 health software - part 1: General requirements
for product safety. Technical report, International Electrotechnical Commission.

[IEC 2020] IEC (2020). Iec 60601-1-12:2014/amd 1:2020 medical electrical equipment
part 1-12: General requirements for basic safety and essential performance — colla-
teral standard: Requirements for medical electrical equipment and medical electrical
systems intended for use in the emergency medical services environment. Technical
report, International Electrotechnical Commission.

[ISO 2016a] ISO (2016a). Iso 13485:2016 medical devices — quality management sys-
tems — requirements for regulatory purposes. Technical report, International Standar-
dization.

[ISO 2016b] ISO (2016b). Iso tr 29110:2016 systems and software engineering — li-
fecycle profiles for very small entities (vses). Technical report, International Standar-
dization Organization.

[ISO 2017] ISO (2017). Isofiec/ieee 12207:2017 systems and software engineering —
software life cycle processes. Technical report, Internation Standardization Organiza-
tion.

[ISO 2018] ISO (2018). Iso/iec/ieee 90003:2018 software engineering — guidelines for
the application of iso 9001:2008 to computer software. Technical report, International
Standardization.

133 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

[ISO 2019] ISO (2019). Iso 14971:2019 medical devices — application of risk manage-
ment to medical devices. Technical report, International Standardization.

[Jordan 2006] Jordan, P. (2006). Standard iec 62304 - medical device software - software
lifecycle processes. In IET Seminar on Software for Medical devices.

[Kasisopha and Meananeatra 2019] Kasisopha, N. and Meananeatra, P. (2019). Applying
iso/iec 29110 to iso/iec 62304 for medical device software sme. In 2nd International
Conference on Computing and Big Data.

[Larson et al. 2012] Larson, B., Hatcliff, J., Procter, S., and Chalin, P. (2012). Requi-
rements specification for apps in medical application platforms. In 4th International
Workshop on Software Engineering in Health Care (SEHC).

[Laukkarinen et al. 2017] Laukkarinen, T., Kuusinen, K., and Mikkonen, T. (2017). De-
vops in regulated software development: Case medical devices. In 2017 IEEE/ACM
39th International Conference on Software Engineering: New Ideas and Emerging
Technologies Results Track (ICSE-NIER).

[Magnuson 2012] Magnuson, A. (2012). Iec/iso 62304 regulations for the development
of medical software devices. Master’s thesis, Chalmers University of Technology.

[Marques 2019] Marques, J. (2019). Uma andlise das caracteristicas de especificacio
de requisitos de software em normas de ambientes regulados. In 22° Workshop de
Engenharia de Requisitos (WER 2019).

[Marques and Cunha 2019] Marques, J. and Cunha, A. (2019). Ares: An agile requi-
rements specification process for regulated environments. International Journal of
Software Engineering and Knowledge Engineering (IJSEKE), 29(10):1403-1438.

[Marques et al. 2021] Marques, J., Yelisetty, S., and Barros, L. (2021). Um mapeamento
sistemadtico da literatura no uso da iec 62304. Journal of Health Informatics.

[Mauer and Marin 2017] Mauer, T. and Marin, H. (2017). Instrumento de avaliacao de
implantacdo de sistemas de informagdo em sadde. Journal of Health Informatics,
9(4):111-118.

[Mchugh et al. 2012] Mchugh, M., Caffery, F. M., and Casey, V. (2012). Software pro-
cess improvement to assist medical device software development organizations to com-
ply with the amendments to the medical device directive. IET Software, 6(5):431-437.

[Munch et al. 2012] Munch, J., Armbrunt, O., Kowalczyk, M., and Soto, M. (2012). Soft-
ware Process Definition and Management. Springer-Verlag, Berlim, Germany.

[Palmer and Felsing 2002] Palmer, S. R. and Felsing, J. M. (2002). A Practical Guide to
Feature Driven Development. Pearson Educational.

[Peterson et al. 2015] Peterson, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guideli-
nes for conducting systematic mapping studies in software engineering: An update.
Information and Software Technology, 64:1-18.

134 ©2021 SBC - Soc. Bras. de Computagdo

21° Simpésio Brasileiro de Computagdo Aplicada & Satide (SBCAS 2021)

[Pressman and Maxim 2015] Pressman, R. and Maxim, B. (2015). Software Enginee-
ring: A Practitioner’s Approach. McGraw-Hill Education.

[Regan et al. 2013] Regan, G., Caffery, F. M., Daid, K. M., and D. Flood, D. (2013). Me-
dical device standards’ requirements for traceability during the software development
lifecycle and implementation of a traceability assessment model. Computer Standards
Interfaces, 36(1):3-9.

[Rust et al. 2016] Rust, P., Flood, D., and McCaffery, F. (2016). Creation of an iec 62304
compliant software development plan. Journal of Software Evolution and Process,
28(11):1.1-1.10.

[Schwaber and Beedle 2001] Schwaber, K. and Beedle, M. (2001). Agile Software De-
velopment with SCRUM. Prentice-Hall.

[Sommerville 2015] Sommerville, 1. (2015). Software Engineering. Pearson.

[Stapleton 1997] Stapleton, J. (1997). DSDM - Dynamic Systems Development Method.
Addison-Wesley.

[Stober and Hansmann 2010] Stober, T. and Hansmann, U. (2010). Agile Software De-
velopment - Best Practices for Large Software Projects. Springer.

[Sutherland 2010] Sutherland, J. (2010). SCRUM Handbook,. Scrum Training Institute
Press.

[Tsui et al. 2015] Tsui, F., Karam, O., and Bernal, B. (2015). Essentials of Software
Engineering. Jones Bartlett Learning.

[Varri and de la Cruz 2019] Varri, A. and de la Cruz, P. K.-Z. R. (2019). Software life
cycle standard for health software. Stud Health Technol Inform, 264:868—-872.

[Vuori 2011] Vuori, M. (2011). Agile development of safety-critical software. Technical
report, Tampere University of Technology.

[Wasson 2015] Wasson, C. (2015). System Engineering Analysis, Design, and Develop-
ment: Concepts, Principles, and Practices. Wiley Series in Systems Engineering and
Management.

[Wong and Callaghan 2012] Wong, K. and Callaghan, C. (2012). Managing require-
ments baselines for medical device software development. In 2012 IEEE International
Systems Conference (SysCon).

135 ©2021 SBC - Soc. Bras. de Computagdo

