Minicursos do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos

Autores

Geraldo Pereira Rocha Filho (ed)
UESB
Marcelo Antonio Marotta (ed)
UnB
Marcos Fagundes Caetano (ed)
UnB
Rafael Lopes Gomes (ed)
UECE

Palavras-chave:

Redes de Computadores, Minicursos do SBRC 2023, SBRC 2023

Sinopse

O livro Minicursos do 41º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos contém os minicursos selecionados para apresentação no SBRC 2023, realizado em Brasília entre os dias 22 e 26 de maio de 2023. O Livro de Minicursos do SBRC tem sido, tradicionalmente, utilizado como material de estudo de alta qualidade por alunos de graduação e pós-graduação, bem como por profissionais da área. As sessões de apresentação dos minicursos são, também, uma importante oportunidade para atualização de conhecimentos da comunidade científica e para a complementação da formação dos participantes. O principal objetivo dos Minicursos do SBRC é oferecer treinamento e atualização de curto prazo em temas normalmente não cobertos nas estruturas curriculares e que possuem grande interesse entre acadêmicos e profissionais.

Capítulos

  • 1. Gerenciamento e Orquestração de Serviços em O-RAN: Inteligência, Tendências e Desafios
    Rodrigo de Souza Couto, Diogo Menezes Ferrazani Mattos, Igor Monteiro Moraes, Pedro Henrique Cruz Caminha, Dianne Scherly Varela de Medeiros, Lucas Airam Castro de Souza, Felipe Gomes Táparo, Miguel Elias Mitre Campista, Luís Henrique Maciel Kosmalski Costa
  • 2. Um Panorama dos Serviços de Saúde Avançados: Conectividade e Segurança em Sistemas de Vida Assistida
    Adriana V. Ribeiro, Fernando Nakayama, Michele Nogueira, Leobino N. Sampaio
  • 3. Intrusion detection with Machine Learning in Internet of Things and Fog Computing: problems, solutions and research
    Cristiano Antonio de Souza, Carlos Becker Westphall, Renato Bobsin Machado
  • 4. Aplicações Críticas Habilitadas pela Tecnologia 5G: Oportunidades, Tendências e Desafios
    Francisco Carvalho Neto, Alessandro Aparecido Milan, Natalia Castro Fernandes, Alberto G. Guimarães

Downloads

Não há dados estatísticos.

Referências

GPP (2016). Feasibility study on new services and markets technology enablers; stage 1 (release 14). Relatório Técnico TR 22.891, Third Generation Partnership Project.

GPP (2017). System architecture milestone of 5G phase 1 is achieved.

GPP (2020a). Study on new radio (NR) to support non-terrestrial networks. Relatório técnico, 3GPP.

GPP (2020b). Study on using satellite access in 5G. Relatório técnico, 3GPP.

GPP (2021). Solutions for NR to support Non-Terrestrial Networks (NTN). Relatório técnico, 3GPP.

Aazam, M., Zeadally, S., and Harras, K. A. (2020). Health fog for smart healthcare. IEEE Consumer Electronics Magazine, 9(2):96–102.

Abbasi, M., Shahraki, A., and Taherkordi, A. (2021). Deep learning for network traffic monitoring and analysis (ntma): A survey. Computer Communications, 170:19–41.

Aboodi, A., Wan, T.-C., and Sodhy, G.-C. (2019). Survey on the incorporation of ndn/ccn in iot. IEEE Access, 7:71827–71858.

Adil, M., Alshahrani, H., Rajab, A., Shaikh, A., Song, H., and Farouk, A. (2022). Qos review: smart sensing in wake of covid-19, current trends and specifications with future research directions. IEEE Sensors Journal.

Adrah, C. M., Palma, D., Kure, O. e Heegaard, P. E. (2022). Deploying 5G architecture for protection systems in smart distribution grids. Em 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), p. 1–5.

Agarwal, S., Malandrino, F., Chiasserini, C. F. e De, S. (2019). VNF placement and resource allocation for the support of vertical services in 5G networks. IEEE/ACM Transactions on Networking, 27(1):433–446.

Agbaje, P., Anjum, A., Mitra, A., Oseghale, E., Bloom, G. e Olufowobi, H. (2022). Survey of interoperability challenges in the Internet of Vehicles. IEEE Transactions on Intelligent Transportation Systems, 23(12):22838–22861.

Aguado, A., Lopez, V., Martinez-Mateo, J., Szyrkowiec, T., Autenrieth, A., Peev, M., Lopez, D., and Martin, V. (2017). Hybrid conventional and quantum security for software defined and virtualized networks. Journal of Optical Communications and Networking, 9(10):819–825.

Ahad, A., Tahir, M., and Yau, K.-L. A. (2019). 5g-based smart healthcare network: architecture, taxonomy, challenges and future research directions. IEEE access, 7:100747–100762.

Ahad, A., Tahir, M., Sheikh, M. A., Ahmed, K. I., and Mughees, A. (2021). An intelligent clustering-based routing protocol (crp-gr) for 5g-based smart healthcare using game theory and reinforcement learning. Applied Sciences, 11(21):9993.

Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., and Ahmad, F. (2021). Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1):e4150.

Ahvar, E., Ahvar, S., Raza, S. M., Manuel Sanchez Vilchez, J. e Lee, G. M. (2021). Next generation of SDN in cloud-fog for 5G and beyond-enabled applications: Opportunities and challenges. Network, 1(1):28–49.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., and Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4):2347–2376.

Al-Khafajiy, M., Otoum, S., Baker, T., Asim, M., Maamar, Z., Aloqaily, M., Taylor, M., and Randles, M. (2021). Intelligent control and security of fog resources in healthcare systems via a cognitive fog model. ACM Trans. Internet Technol., 21(3).

Albdour, L., Manaseer, S., and Sharieh, A. (2020). Iot crawler with behavior analyzer at fog layer for detecting malicious nodes. Int. J. Commun. Networks Inf. Secur., 12(1).

Alenoghena, C. O., Onumanyi, A. J., Ohize, H. O., Adejo, A. O., Oligbi, M., Ali, S. I. e Okoh, S. A. (2022). ehealth: A survey of architectures, developments in mhealth, security concerns and solutions. International Journal of Environmental Research and Public Health, 19(20):13071.

Alhaj, T. A., Abdulla, S. M., Iderss, M. A. E., Ali, A. A. A., Elhaj, F. A., Remli, M. A., and Gabralla, L. A. (2022). A survey: To govern, protect, and detect security principles on internet of medical things (iomt). IEEE Access, 10:124777–124791.

Alhowaide, A., Alsmadi, I., and Tang, J. (2021). Ensemble detection model for iot ids. Internet of Things, 16:100435.

Aliyu, F., Sheltami, T., and Shakshuki, E. M. (2018). A detection and prevention technique for man in the middle attack in fog computing. Procedia Computer Science, 141:24 – 31. The 9th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2018) / The 8th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH-2018) / Affiliated Workshops.

Almeida, G. M., Bruno, G. Z., Huff, A., Hiltunen, M., Duarte Jr, E. P., Both, C. B. e Cardoso, K. V. (2023). RIC-O: Efficient Placement of a Disaggregated and Distributed RAN Intelligent Controller with Dynamic Clustering of Radio Nodes. arXiv preprint arXiv:2301.02760.

Alsaedi, A., Moustafa, N., Tari, Z., Mahmood, A., and Anwar, A. (2020). Ton_iot telemetry dataset: A new generation dataset of iot and iiot for data-driven intrusion detection systems. IEEE Access, 8:165130–165150.

Amiribesheli, M., Benmansour, A., and Bouchachia, A. (2015). A review of smart homes in healthcare. Journal of Ambient Intelligence and Humanized Computing, 6:495–517.

Anderson, J. P. (1980). Computer security threat monitoring and surveillance. Technical Report, James P. Anderson Company.

Andrade, R. B. d. S. and Monteiro, J. A. S. (2019). Sentryiotoauth: um provedor de serviço de autenticação e autorização para casas inteligentes baseado no processo ace-oauth. In Anais Estendidos do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 73–80. SBC.

Arcelus, A., Jones, M. H., Goubran, R., and Knoefel, F. (2007). Integration of smart home technologies in a health monitoring system for the elderly. In 94 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW’07), volume 2, pages 820–825. IEEE.

Arnaz, A., Lipman, J., Abolhasan, M. e Hiltunen, M. (2022). Toward Integrating Intelligence and Programmability in Open Radio Access Networks: A Comprehensive Survey. IEEE Access, 10:67747–67770.

Arshad, J., Azad, M. A., Abdellatif, M. M., Rehman, M. H. U., and Salah, K. (2019). Colide: a collaborative intrusion detection framework for internet of things. IET Networks, 8(1):3–14.

Arshad, Q. K. U. D., Kashif, A. U. e Quershi, I. M. (2019). A review on the evolution of cellular technologies. Em 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), p. 989–993. IEEE.

Attrapadung, N. and Imai, H. (2009). Attribute-based encryption supporting direct/indirect revocation modes. In Cryptography and Coding: 12th IMA International Conference, Cryptography and Coding 2009, Cirencester, UK, December 15-17, 2009. Proceedings 12, pages 278–300. Springer.

Atzori, L., Iera, A., and Morabito, G. (2010). The internet of things: A survey. Computer networks, 54(15):2787–2805.

Aubet, F.-X. (2018). Machine Learning-Based Adaptive Anomaly Detection in Smart Spaces. PhD thesis.

Auer, P., Cesa-Bianchi, N. e Fischer, P. (2002). Finite-Time Analysis of the Multiarmed Bandit Problem. Machine learning, 47:235–256.

Aversano, L., Bernardi, M. L., Cimitile, M., and Pecori, R. (2021). A systematic review on deep learning approaches for iot security. Computer Science Review, 40:100389.

Azari, M. M., Solanki, S., Chatzinotas, S., Kodheli, O., Sallouha, H., Colpaert, A., Mendoza Montoya, J. F., Pollin, S., Haqiqatnejad, A., Mostaani, A., Lagunas, E. e Ottersten, B. (2022). Evolution of non-terrestrial networks from 5G to 6G: A survey. IEEE Communications Surveys & Tutorials, 24(4):2633–2672.

Bace, R. and Mell, P. (2001). Nist special publication on intrusion detection systems. Technical report, BOOZ-ALLEN AND HAMILTON INC MCLEAN VA.

Baldesi, L., Restuccia, F. e Melodia, T. (2022). ChARM: NextG Spectrum Sharing through Data-Driven Real-Time O-RAN Dynamic Control. Em IEEE Conference on Computer Communications (INFOCOM), p. 240–249.

Bansal, S. and Kumar, D. (2020). Iot ecosystem: A survey on devices, gateways, operating systems, middleware and communication. International Journal of Wireless Information Networks, 27:340–364.

Barakabitze, A. A., Ahmad, A., Mijumbi, R. e Hines, A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Computer Networks, 167:106984.

Bardalai, P., Neog, H., Dutta, P. E., Medhi, N., and Deka, S. K. (2022). Throughput prediction in smart healthcare network using machine learning approaches. In 2022 IEEE 19th India Council International Conference (INDICON), pages 1–6. IEEE.

Bazzi, A., Berthet, A. O., Campolo, C., Masini, B. M., Molinaro, A. e Zanella, A. (2021). On the design of sidelink for cellular V2X: A literature review and outlook for future. IEEE Access, 9:97953–97980.

Berry, M. W., Mohamed, A., and Yap, B. W. (2019). Supervised and unsupervised learning for data science. Springer.

Besher, K. M., OKidhain, I., Wick, L., and Ali, M. Z. (2022). Congestion control of healthcare packet routing in 5g edge computing networks. In 2022 International Conference on Engineering and Emerging Technologies (ICEET), pages 1–6. IEEE.

Birkinshaw, C., Rouka, E., and Vassilakis, V. G. (2019). Implementing an intrusion detection and prevention system using software-defined networking: Defending against port-scanning and denial-of-service attacks. Journal of Network and Computer Applications, 136:71 – 85.

Bonati, L., D’Oro, S., Polese, M., Basagni, S. e Melodia, T. (2021a). Intelligence and Learning in O-RAN for Data-Driven NextG Cellular Networks. IEEE Communications Magazine, 59(10):21–27.

Bonati, L., Johari, P., Polese, M., D’Oro, S., Mohanti, S., Tehrani-Moayyed, M., Villa, D., Shrivastava, S., Tassie, C., Yoder, K. et al. (2021b). Colosseum: Large-Scale Wireless Experimentation through Hardware-in-the-Loop Network Emulation. Em IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), p. 105–113.

Bonati, L., Polese, M., D’Oro, S., Basagni, S. e Melodia, T. (2023a). NeutRAN: An Open RAN Neutral Host Architecture for Zero-Touch RAN and Spectrum Sharing. arXiv preprint arXiv:2301.07653.

Bonati, L., Polese, M., D’Oro, S., Basagni, S. e Melodia, T. (2023b). OpenRAN Gym: AI/ML development, data Collection, and Testing for ORAN on PAWR Platforms. Computer Networks, 220:109502.

Boneh, D. and Franklin, M. (2001). Identity-based encryption from the weil pairing. In Advances in Cryptology—CRYPTO 2001: 21st Annual International Cryptology Conference, Santa Barbara, California, USA, August 19–23, 2001 Proceedings, pages 213–229. Springer.

Bonneau, M. e Keeney, J. (2022). O-RAN A1 Policies in ONAP. Relatório técnico. Disponível em https://wiki.onap.org/pages/viewpage.action?pageId=84672221.

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pages 13–16. ACM.

Boukerche, A., Machado, R. B., Jucá, K. R., Sobral, J. B. M., and Notare, M. S. (2007). An agent based and biological inspired real-time intrusion detection and security model for computer network operations. Computer Communications, 30(13):2649–2660.

Boussada, R., Hamdane, B., Elhdhili, M. E., and Saidane, L. A. (2019). Pp-ndnot: On preserving privacy in iot-based e-health systems over ndn. In 2019 IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6. IEEE.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and regression trees. CRC press.

Brezolin, U. Q., Prates Jr, N. G., Vergütz, A., and Nogueira, M. (2022). Um método para detecçao de vulnerabilidades através da análise do tráfego de rede iot. In Anais do XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 447–460. SBC.

Brik, B., Boutiba, K. e Ksentini, A. (2022). Deep Learning for B5G Open Radio Access Network: Evolution, Survey, Case Studies, and Challenges. IEEE Open Journal of the Communications Society, 3:228–250.

Bui, A. L. and Fonarow, G. C. (2012). Home monitoring for heart failure management. Journal of the American College of Cardiology, 59(2):97–104.

Camhi, J. (2015). Former cisco ceo john chambers predicts 500 billion connected devices by 2025. Business Insider.

Campello, R. S. and Weber, R. F. (2001). Sistemas de detecçao de intrusao. Minicurso procedente do 19º Simpósio Brasileiro de Redes de Computadores.

Cao, Y., Lien, S.-Y., Liang, Y.-C., Chen, K.-C. e Shen, X. (2022). User Access Control in Open Radio Access Networks: A Federated Deep Reinforcement Learning Approach. IEEE Transactions on Wireless Communications, 21(6).

Capanema, C. G. S., Silva, F. A. e Loureiro, A. A. F. (2022). Redes Neurais de Grafos no Contexto das Cidades Inteligentes. Em Minicursos do XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC).

Carrillo, D., Kalalas, C., Raussi, P., Michalopoulos, D. S., Rodriguez, D. Z., Kokkoniemi-Tarkkanen, H., Ahola, K., Nardelli, P. H. J., Fraidenraich, G. e Popovski, P. (2022). Boosting 5G on smart grid communication: A smart ran slicing approach. IEEE Wireless Communications, p. 1–8.

Cavalcante, A. M., Marquezini, M. V., Mendes, L. e Moreno, C. S. (2021). 5G for remote areas: Challenges, opportunities and business modeling for brazil. IEEE Access, 9:10829–10843.

Ceriotti, M., Diedrich, B. L. e McInnes, C. R. (2012). Novel mission concepts for polar coverage: An overview of recent developments and possible future applications. Acta Astronautica, 80:89–104.

Checko, A., Christiansen, H. L., Yan, Y., Scolari, L., Kardaras, G., Berger, M. S. e Dittmann, L. (2015). Cloud RAN for mobile networks—a technology overview. IEEE Communications Surveys & Tutorials, 17(1):405–426.

Chiarello, L., Baracca, P., Upadhya, K., Khosravirad, S. R. e Wild, T. (2021). Jamming Detection with Subcarrier Blanking for 5G and Beyond in Industry 4.0 Scenarios. Em IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), p. 758–764.

Chowdhury, M. Z., Shahjalal, M., Ahmed, S. e Jang, Y. M. (2020). 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open Journal of the Communications Society, 1:957–975.

Chua, L. O. and Yang, L. (1988). Cellular neural networks: Applications. IEEE Transactions on circuits and systems, 35(10):1273–1290.

Cicioǧlu, M. and Çalhan, A. (2019). Sdn-based wireless body area network routing algorithm for healthcare architecture. ETRI Journal, 41(4):452–464.

Cicioǧlu, M. and Çalhan, A. (2020). Energy-efficient and sdn-enabled routing algorithm for wireless body area networks. Computer Communications, 160:228–239.

Clemm, A., Ciavaglia, L., Granville, L. Z. e Tantsura, J. (2022). Intent-Based Networking - Concepts and Definitions. RFC 9315.

Clemm, A., Faten Zhan, M. e Boutaba, R. (2020). Network Management 2030: Operations and Control of Network 2030 Services. Journal of Network and Systems Management, 28(4).

Cornet, B., Fang, H., Ngo, H., Boyer, E. W., and Wang, H. (2022). An overview of wireless body area networks for mobile health applications. IEEE Network, 36(1):76–82.

Coronado, E., Siddiqui, S. e Riggio, R. (2022). Roadrunner: O-RAN-based Cell Selection in Beyond 5G Networks. Em IEEE/IFIP Network Operations and Management Symposium (NOMS), p. 1–7.

Cox, C. (2020). An introduction to 5G: the new radio, 5G network and beyond. John Wiley & Sons, 1 edição.

Cunningham, P., Carney, J., and Jacob, S. (2000). Stability problems with artificial neural networks and the ensemble solution. Artificial Intelligence in Medicine, 20(3):217 – 225.

Cussuol, E. B., Sachetti, L. L., Santos, B. P., and Mota, V. F. (2022). Otalab: um ambiente de experimentação remota de protocolos e aplicações em internet das coisas. In Anais Estendidos do XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 73–80. SBC.

D’Oro, S., Bonati, L., Polese, M. e Melodia, T. (2022). OrchestRAN: Network Automation through Orchestrated Intelligence in the Open RAN. Em IEEE Conference on Computer Communications (INFOCOM), p. 270–279.

D’Oro, S., Polese, M., Bonati, L., Cheng, H. e Melodia, T. (2022). dApps: Distributed Applications for Real-Time Inference and Control in O-RAN. IEEE Communications Magazine, 60(11):52–58.

Dalton, J. and Deshmane, A. (1991). Artificial neural networks. IEEE Potentials, 10(2):33–36.

Dang, L. M., Piran, M. J., Han, D., Min, K., and Moon, H. (2019). A survey on internet of things and cloud computing for healthcare. Electronics, 8(7):768.

Darwish, T., Kurt, G. K., Yanikomeroglu, H., Bellemare, M. e Lamontagne, G. (2022). LEO satellites in 5G and beyond networks: A review from a standardization perspective. IEEE Access, 10:35040–35060.

De Alwis, C., Kalla, A., Pham, Q.-V., Kumar, P., Dev, K., Hwang, W.-J. e Liyanage, M. (2021). Survey on 6G frontiers: Trends, applications, requirements, technologies and future research. IEEE Open Journal of the Communications Society, 2:836–886.

de Souza Lopes, C. H., Lima, E. S., Pereira, L. A. M., Borges, R. M., Ferreira, A. C., Abreu, M., Dias, W. D., Spadoti, D. H., Mendes, L. L. e Junior, A. C. S. (2020). Non-standalone 5G NR fiber-wireless system using FSO and fiber-optics fronthauls. Journal of Lightwave Technology, 39(2):406–417.

Demiris, G., Rantz, M. J., Aud, M. A., Marek, K. D., Tyrer, H. W., Skubic, M., and Hussam, A. A. (2004). Older adults’ attitudes towards and perceptions of ‘smart home’technologies: a pilot study. Medical informatics and the Internet in medicine, 29(2):87–94.

Devi, D. H., Duraisamy, K., Armghan, A., Alsharari, M., Aliqab, K., Sorathiya, V., Das, S., and Rashid, N. (2023). 5g technology in healthcare and wearable devices: A review. Sensors, 23(5):2519.

Diro, A. A. and Chilamkurti, N. (2018). Distributed attack detection scheme using deep learning approach for internet of things. Future Generation Computer Systems, 82:761 – 768.

Du, Z., Wu, C., Yoshinaga, T., Yau, K.-L. A., Ji, Y., and Li, J. (2020). Federated learning for vehicular internet of things: Recent advances and open issues. IEEE Open Journal of the Computer Society, 1:45–61.

Dulal, S., Ali, N., Thieme, A. R., Yu, T., Liu, S., Regmi, S., Zhang, L., and Wang, L. (2022). Building a secure mhealth data sharing infrastructure over ndn. In Proceedings of the 9th ACM Conference on Information-Centric Networking, pages 114–124.

Enns, R., Björklund, M., Bierman, A. e Schönwälder, J. (2011). Network Configuration Protocol (NETCONF). RFC 6241.

Esenogho, E., Djouani, K. e Kurien, A. M. (2022). Integrating artificial intelligence Internet of Things and 5G for next-generation smartgrid: A survey of trends challenges and prospect. IEEE Access, 10:4794–4831.

ETSI (2022). Technical specification 5G: Unmanned aerial system (UAS) support in 3GPP (3GPP TS 22.125 version 17.6.0 release 17). Relatório Técnico ETSI TS 122 125 V17.6.0, ETSI, França.

Fan, X., Susan, F., Long, W., and Li, S. (2017). Security analysis of zigbee. MWR InfoSecurity, 2017:1–18.

Farukee, M. B., Shabit, M. Z., Haque, M. R., and Sattar, A. S. (2020). Ddos attack detection in iot networks using deep learning models combined with random forest as feature selector. In International Conference on Advances in Cyber Security, pages 118–134. Springer.

Fernandes, N. C., Moreira, M. D., Moraes, I. M., Ferraz, L. H. G., Couto, R. S., Carvalho, H. E., Campista, M. E. M., Costa, L. H. M. e Duarte, O. C. M. (2011). Virtual networks: Isolation, performance, and trends. Annals of Telecommunications, 66:339–355.

Fersi, G. (2020). Study of middleware for internet of healthcare things and their applications. In The Impact of Digital Technologies on Public Health in Developed and Developing Countries: 18th International Conference, ICOST 2020, Hammamet, Tunisia, June 24–26, 2020, Proceedings 18, pages 223–231. Springer.

Filali, A., Nour, B., Cherkaoui, S. e Kobbane, A. (2023). Communication and Computation O-RAN Resource Slicing for URLLC Services using Deep Reinforcement Learning. IEEE Communications Standards Magazine, 7(1):66–73.

Filho, R. H. S., Ferreira, T. N., Mattos, D. M. F. e Medeiros, D. S. V. (2022). An Efficient and Decentralized Fuzzy Reinforcement Learning Bandwidth Controller for Multitenant Data Centers. Journal of Network and Systems Management, 30(4).

Fotouhi, A., Qiang, H., Ding, M., Hassan, M., Giordano, L. G., Garcia-Rodriguez, A. e Yuan, J. (2019). Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges. IEEE Communications surveys & tutorials, 21(4):3417–3442.

Garcia-Morchon, O., Kumar, S., Keoh, S., Hummen, R., and Struik, R. (2013). Security considerations in the ip-based internet of things draftgarciacore-security-06. Internet Engineering Task Force.

Garcia-Saavedra, A. e Costa-Pérez, X. (2021). O-RAN: Disrupting the Virtualized RAN Ecosystem. IEEE Communications Standards Magazine, 5(4):96–103.

García, S., Grill, M., Stiborek, J., and Zunino, A. (2014). An empirical comparison of botnet detection methods. Computers & Security, 45:100 – 123.

Garcia, S., Parmisano, A., and Erquiaga, M. J. (2020). Iot 23: A labeled dataset with malicious and benign iot network traffic.

Geraci, G., Garcia-Rodriguez, A., Azari, M. M., Lozano, A., Mezzavilla, M., Chatzinotas, S., Chen, Y., Rangan, S. e Di Renzo, M. (2022). What will the future of UAV cellular communications be? A flight from 5G to 6G. IEEE communications surveys & tutorials, 24(3):1304–1335.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Machine learning, 63(1):3–42.

Ghayyur, S., Pappachan, P., Wang, G., Mehrotra, S., and Venkatasubramanian, N. (2020). Designing privacy preserving data sharing middleware for internet of things. In Proceedings of the Third Workshop on Data: Acquisition To Analysis, pages 1–6.

Ghosh, A., Maeder, A., Baker, M. e Chandramouli, D. (2019). 5G evolution: A view on 5G cellular technology beyond 3GPP release 15. IEEE access, 7:127639–127651.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

Gramaglia, M., Camelo, M., Fuentes, L., Ballesteros, J., Baldoni, G., Cominardi, L., Garcia-Saavedra, A. e Fiore, M. (2022). Network Intelligence for Virtualized RAN Orchestration: The DAEMON Approach. Em Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), p. 482–487.

Guidotti, A., Vanelli-Coralli, A., Conti, M., Andrenacci, S., Chatzinotas, S., Maturo, N., Evans, B., Awoseyila, A., Ugolini, A., Foggi, T. et al. (2019). Architectures and key technical challenges for 5G systems incorporating satellites. IEEE Transactions on Vehicular Technology, 68(3):2624–2639.

Gupta, A. e Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE access, 3:1206–1232.

Gupta, R., Tanwar, S., Tyagi, S. e Kumar, N. (2019). Tactile Internet and its applications in 5G era: A comprehensive review. International Journal of Communication Systems, 32(14):e3981.

Handley, M. (2018). Delay is not an option: Low latency routing in space. In Proceedings of the 17th ACM Workshop on Hot Topics in Networks, pages 85–91.

Hasan, M. K., Ghazal, T. M., Saeed, R. A., Pandey, B., Gohel, H., Eshmawi, A., Abdel-Khalek, S., and Alkhassawneh, H. M. (2022). A review on security threats, vulnerabilities, and counter measures of 5g enabled internet-of-medical-things. IET Communications, 16(5):421–432.

Haykin, S. S. (2001). Redes neurais: Princípios e Práticas. Bookman.

Heady, R., Luger, G., Maccabe, A., and Servilla, M. (August 1990). The architecture of a network level intrusion detection system. Technical report, University of New Mexico, Department of Computer Science.

Heart, T. and Kalderon, E. (2013). Older adults: are they ready to adopt health-related ict? International journal of medical informatics, 82(11):e209–e231.

Heemann, M. and Hermsdorf, M. (2017). Custo de internações de idosos é 30% maior para o sus. Disponível em [link]. Acessado: 2023-03-12.

Heideker, A., Ottolini, D., Zyrianoff, I., Kleinschmidt, J., and Kamienski, C. (2019). Imaiot-infrastructure monitoring agent for iot: Um agente monitor de infraestruturas para ambientes de iot. In Anais Estendidos do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 9–16. SBC.

Hindy, H., Bayne, E., Bures, M., Atkinson, R., Tachtatzis, C., and Bellekens, X. (2021). Machine learning based iot intrusion detection system: An mqtt case study (mqtt-iot-ids2020 dataset). In Ghita, B. and Shiaeles, S., editors, Selected Papers from the 12th International Networking Conference, pages 73–84, Cham. Springer International Publishing.

Hosseini, S. and Sardo, S. R. (2022). Network intrusion detection based on deep learning method in internet of thing. Journal of Reliable Intelligent Environments, pages 1–13.

Hosseinian, M., Choi, J. P., Chang, S.-H. e Lee, J. (2021). Review of 5G NTN standards development and technical challenges for satellite integration with the 5G network. IEEE Aerospace and Electronic Systems Magazine, 36(8):22–31.

Huawei (2020). Huawei launches industry’s first site digital twins based 5G digital engineering solution. [link]. Acessado em 23.04.2023.

IBGE (2018). Projeção da população 2018: número de habitantes do país deve parar de crescer em 2047. Disponível em [link]. Acessado: 2023-03-12.

Illy, P., Kaddoum, G., Moreira, C. M., Kaur, K., and Garg, S. (2019). Securing fog-to-things environment using intrusion detection system based on ensemble learning. In 2019 IEEE Wireless Communications and Networking Conference (WCNC), pages 1–7.

International Energy Agency - IEA (2022). World energy outlook 2022. Relatório técnico, International Energy Agency, Paris, França.

Iorga, M., Feldman, L., Barton, R., Martin, M. J., Goren, N. S., and Mahmoudi, C. (2018). Fog computing conceptual model. Technical report.

Istepanian, R. S. and Lacal, J. C. (2003). Emerging mobile communication technologies for health: some imperative notes on m-health. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), volume 2, pages 1414–1416. IEEE.

Isto, P., Heikkilä, T., Mämmelä, A., Uitto, M., Seppälä, T. e Ahola, J. M. (2020). 5G based machine remote operation development utilizing digital twin. Open Engineering, 10(1):265–272.

ITU-R (2015a). IMT traffic estimates for the years 2020 to 2030. Relatório Técnico M.2370, ITU, Geneva, Switzerland.

ITU-R (2015b). IMT vision–framework and overall objectives of the future development of IMT for 2020 and beyond. Relatório Técnico ITU-R M.2083-0 - M Series, ITU, Geneva, Switzerland.

Iurii, D., Carrillo, M. D., Antti, P., Liana, A., Jari, J. e Kirsi, L. (2022). IEC-61850 Performance Evaluation in a 5G Cellular Network: UDP and TCP Analysis. Springer, Cham, Switzerland.

Jacobs, A. S., Pfitscher, R. J., Ribeiro, R. H., Ferreira, R. A., Granville, L. Z., Willinger, W. e Rao, S. G. (2021). Hey, Lumi! Using Natural Language for Intent-Based Network Management. Em USENIX Annual Technical Conference, p. 625–639.

Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs, N. H., and Braynard, R. L. (2009). Networking named content. In Proceedings of the 5th international conference on Emerging networking experiments and technologies, pages 1–12. ACM.

Jiang, T., Zhang, J., Tang, P., Tian, L., Zheng, Y., Dou, J., Asplund, H., Raschkowski, L., D’Errico, R. e Jämsä, T. (2021). 3GPP standardized 5G channel model for IIoT scenarios: A survey. IEEE Internet of Things Journal, 8(11):8799–8815.

Johnson, D., Maas, D. e Van Der Merwe, J. (2022). NexRAN: Closed-Loop RAN Slicing in POWDER-A Top-to-Bottom Open-Source Open-RAN use Case. Em ACM Workshop on Wireless Network Testbeds, Experimental evaluation & CHaracterization (WiNTECH), p. 17–23.

Jones, V., Gay, V., and Leijdekkers, P. (2010). Body sensor networks for mobile health monitoring: Experience in europe and australia. In 2010 Fourth International Conference on Digital Society, pages 204–209. IEEE.

Kakkar, A. (2020). A survey on secure communication techniques for 5g wireless heterogeneous networks. Information Fusion, 62:89–109.

Kamboj, P., Pal, S., and Mehra, A. (2021). A qos-aware routing based on bandwidth management in software-defined iot network. In 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS), pages 579–584.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, page 3149–3157, Red Hook, NY, USA. Curran Associates Inc.

Khatib, E. J., Álvarez-Merino, C. S., Luo-Chen, H. Q. e Moreno, R. B. (2023). Designing a 6G Testbed for Location: Use Cases, Challenges, Enablers and Requirements. IEEE Access, 11:10053–10091.

Khorsandroo, S., Sánchez, A. G., Tosun, A. S., Arco, J. M. e Doriguzzi-Corin, R. (2021). Hybrid SDN evolution: A comprehensive survey of the state-of-the-art. Computer Networks, 192:107981.

Kim, H.-S., Lee, K.-H., Kim, H., and Kim, J. H. (2014). Using mobile phones in healthcare management for the elderly. Maturitas, 79(4):381–388.

Kitsiou, S., Paré, G., Jaana, M., and Gerber, B. (2017). Effectiveness of mhealth interventions for patients with diabetes: an overview of systematic reviews. PloS one, 12(3):e0173160.

Kolias, C., Stavrou, A., Voas, J., Bojanova, I., and Kuhn, R. (2016). Learning internet-of-things security" hands-on". IEEE Security & Privacy, 14(1):37–46.

Konečn`y, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., and Bacon, D. (2016). Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492.

Koren, A. and Prasad, R. (2022). Iot health data in electronic health records (ehr): Security and privacy issues in era of 6g. Journal of ICT Standardization, pages 63–84.

Koroniotis, N., Moustafa, N., Sitnikova, E., and Turnbull, B. (2019). Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Generation Computer Systems, 100:779–796.

Kumar, P., Gupta, G. P., and Tripathi, R. (2020a). A distributed ensemble design based intrusion detection system using fog computing to protect the internet of things networks. Journal of Ambient Intelligence and Humanized Computing, pages 1–18.

Kumar, P., Gupta, G. P., and Tripathi, R. (2021a). An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for iomt networks. Computer Communications, 166:110–124.

Kumar, P., Kumar, R., Gupta, G. P., and Tripathi, R. (2020b). A distributed framework for detecting ddos attacks in smart contract-based blockchain-iot systems by leveraging fog computing. Transactions on Emerging Telecommunications Technologies, n/a(n/a):e4112.

Kumar, P., Tripathi, R., and P. Gupta, G. (2021b). P2idf: A privacy-preserving based intrusion detection framework for software defined internet of things-fog (sdiot-fog). In Adjunct Proceedings of the 2021 International Conference on Distributed Computing and Networking, ICDCN ’21, page 37–42, New York, NY, USA. Association for Computing Machinery.

Kumar, R. and Tripathi, R. (2021). Dbtp2sf: a deep blockchain-based trustworthy privacy-preserving secured framework in industrial internet of things systems. Transactions on Emerging Telecommunications Technologies, 32(4):e4222.

Kumar, R., Kumar, P., Tripathi, R., Gupta, G. P., Garg, S., and Hassan, M. M. (2022). A distributed intrusion detection system to detect ddos attacks in blockchain-enabled iot network. Journal of Parallel and Distributed Computing, 164:55–68.

Kumar, T., Ramani, V., Ahmad, I., Braeken, A., Harjula, E., and Ylianttila, M. (2018). Blockchain utilization in healthcare: Key requirements and challenges. In 2018 IEEE 20th International conference on e-health networking, applications and services (Healthcom), pages 1–7. IEEE.

Kumari, N. and Jain, V. K. (2022). Fog based healthcare monitoring system in sdn-iot networks. In 2022 Second International Conference on Advanced Technologies in Intelligent Control, Environment, Computing & Communication Engineering (ICATIECE), pages 1–6.

Labiod, Y., Amara Korba, A., and Ghoualmi, N. (2022). Fog computing-based intrusion detection architecture to protect iot networks. Wireless Personal Communications, 125(1):231–259.

Lalouani, W. and Younis, M. (2021). Robust distributed intrusion detection system for edge of things. In 2021 IEEE Global Communications Conference (GLOBECOM), pages 01–06.

Lawal, M. A., Shaikh, R. A., and Hassan, S. R. (2020). An anomaly mitigation framework for iot using fog computing. Electronics, 9(10).

Lawal, M. A., Shaikh, R. A., and Hassan, S. R. (2021). A ddos attack mitigation framework for iot networks using fog computing. Procedia Computer Science, 182:13–20. Learning and Technology Conference 2020; Beyond 5G: Paving the way for 6G.

Leivadeas, A. e Falkner, M. (2022). A Survey on Intent Based Networking. IEEE Communications Surveys & Tutorials, p. 1–32.

Li, J., Cai, J., Khan, F., Rehman, A. U., Balasubramaniam, V., Sun, J., and Venu, P. (2020). A secured framework for sdn-based edge computing in iot-enabled healthcare system. IEEE Access, 8:135479–135490.

Li, J., Li, J., Chen, X., Jia, C., and Lou,W. (2013). Identity-based encryption with outsourced revocation in cloud computing. IEEE Transactions on computers, 64(2):425–437.

Li, S., Zhang, N., Lin, S., Kong, L., Katangur, A., Khan, M. K., Ni, M. e Zhu, G. (2018). Joint admission control and resource allocation in edge computing for Internet of Things. IEEE Network, 32(1):72–79.

Li, W., Au, M. H., andWang, Y. (2021). A fog-based collaborative intrusion detection framework for smart grid. International Journal of Network Management, 31(2):e2107.

Lin, X., Rommer, S., Euler, S., Yavuz, E. A. e Karlsson, R. S. (2021). 5G from space: An overview of 3GPP non-terrestrial networks. IEEE Communications Standards Magazine, 5(4):147–153.

Lin, Y., Jiang, D., Yus, R., Bouloukakis, G., Chio, A., Mehrotra, S., and Venkatasubramanian, N. (2020). Locater: cleaning wifi connectivity datasets for semantic localization. arXiv preprint arXiv:2004.09676.

Liu, G., Huang, Y., Chen, Z., Liu, L., Wang, Q. e Li, N. (2020a). 5G deployment: Standalone vs. non-standalone from the operator perspective. IEEE Communications Magazine, 58(11):83–89.

Liu, G., Huang, Y., Chen, Z., Liu, L., Wang, Q. e Li, N. (2020b). 5G deployment: Standalone vs. non-standalone from the operator perspective. IEEE Communications Magazine, 58(11):83–89.

Liu, H. and Lang, B. (2019). Machine learning and deep learning methods for intrusion detection systems: A survey. Applied Sciences, 9(20).

Liu, L., Guo, S., Liu, G. e Yang, Y. (2021). Joint dynamical VNF placement and SFC routing in NFV-enabled SDNs. IEEE Transactions on Network and Service Management, 18(4):4263–4276.

Liyanage, M., Braeken, A., Shahabuddin, S. e Ranaweera, P. (2023). Open RAN Security: Challenges and Opportunities. Journal of Network and Computer Applications, 214:103621.

Lopes, Y., Bornia, T., Farias, V., Fernandes, N. C. e Muchaluat-Saade, D. C. (2016). Desafios de segurança e confiabilidade na comunicação para smart grids, p. 142–186. SBC, Porto Alegre, Brasil.

Lopez, M. A., Barbosa, G. N. N. e Mattos, D. M. F. (2022). New Barriers on 6G Networking: An Exploratory Study on the Security, Privacy and Opportunities for Aerial Networks. Em International Conference on 6G Networking (6GNet), p. 1–6.

Luo, C., Satpute, M. N., Li, D., Wang, Y., Chen, W. e Wu, W. (2020). Fine-grained trajectory optimization of multiple UAVs for efficient data gathering from WSNs. IEEE/ACM Transactions on Networking, 29(1):162–175.

Lyu, Z., Zhu, G. e Xu, J. (2022). Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication. IEEE Transactions on Wireless Communications, 22(4):2424 – 2440.

Maddikunta, P. K. R., Pham, Q.-V., Prabadevi, B., Deepa, N., Dev, K., Gadekallu, T. R., Ruby, R. e Liyanage, M. (2022). Industry 5.0: A survey on enabling technologies and potential applications. Journal of Industrial Information Integration, 26:100257.

Madureira, A. L. R., Araújo, F. R. C., and Sampaio, L. N. (2020). On supporting iot data aggregation through programmable data planes. Computer Networks, 177:107330.

Madureira, P., Cardoso, N., Sousa, F., and Moreira, W. (2019). My-aha: middleware platform to sustain active and healthy ageing. In 2019 International Conference onWireless and Mobile Computing, Networking and Communications (WiMob), pages 21–26. IEEE.

Mahmood, N. H., Marchenko, N., Gidlund, M. e Popovski, P. (2020). Wireless Networks and Industrial IoT. Springer, 1 edição.

Mallorquí, A. e Zaballos, A. (2021). A heterogeneous layer-based trustworthiness model for long backhaul NVIS challenging networks and an IoT telemetry service for antarctica. Sensors, 21(3446).

Mangla, C., Rani, S., Qureshi, N. M. F., and Singh, A. (2022). Mitigating 5g security challenges for next-gen industry using quantum computing. Journal of King Saud University-Computer and Information Sciences.

Marín-Tordera, E., Masip-Bruin, X., García-Almiñana, J., Jukan, A., Ren, G.-J., and Zhu, J. (2017). Do we all really know what a fog node is? current trends towards an open definition. Computer Communications, 109:117–130.

Maroufkhani, P., Desouza, K. C., Perrons, R. K. e Iranmanesh, M. (2022). Digital transformation in the resource and energy sectors: A systematic review. Resources Policy, 76:102622.

Martin-Perez, J., Molner, N., Malandrino, F., Bernardos, C. J., Oliva, A. d. l. e Gomez-Barquero, D. (2022). Choose, not Hoard: Informationto-Model Matching for Artificial Intelligence in O-RAN. IEEE Communications Magazine, p. 1–7. Aceito para publicação.

Maskeliūnas, R., Damaševičius, R., and Segal, S. (2019). A review of internet of things technologies for ambient assisted living environments. Future Internet, 11(12):259.

McKeown, N. (2009). Software-defined networking. INFOCOM keynote talk, 17(2):30–32.

Mehrotra, S., Sharma, S., Ullman, J. D., Ghosh, D., Gupta, P., and Mishra, A. (2020). Panda: Partitioned data security on outsourced sensitive and non-sensitive data. ACM Transactions on Management Information Systems (TMIS), 11(4):1–41.

Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breitenbacher, D., and Elovici, Y. (2018). N-baiot—network-based detection of iot botnet attacks using deep autoencoders. IEEE Pervasive Computing, 17(3):12–22.

Meir, R. and Rätsch, G. (2003). An introduction to boosting and leveraging. In Advanced lectures on machine learning, pages 118–183. Springer.

Meliá, S., Nasabeh, S., Luján-Mora, S., and Cachero, C. (2021). Mosiot: modeling and simulating iot healthcare-monitoring systems for people with disabilities. International Journal of Environmental Research and Public Health, 18(12):6357.

Mell, P., Grance, T., et al. (2011). The nist definition of cloud computing.

Mendes, L. L., Moreno, C. S., Marquezini, M. V., Cavalcante, A. M., Neuhaus, P., Seki, J., Aniceto, N. F. T., Karvonen, H., Vidal, I., Valera, F. et al. (2020). Enhanced remote areas communications: The missing scenario for 5G and beyond 5G networks. IEEE Access, 8:219859–219880.

Mihai, S., Yaqoob, M., Hung, D. V., Davis, W., Towakel, P., Raza, M., Karamanoglu, M., Barn, B., Shetve, D., Prasad, R. V. et al. (2022). Digital twins: a survey on enabling technologies, challenges, trends and future prospects. IEEE Communications Surveys & Tutorials, 24(4).

Mimran, D., Bitton, R., Kfir, Y., Klevansky, E., Brodt, O., Lehmann, H., Elovici, Y. e Shabtai, A. (2022). Security of Open Radio Access Networks. Computers & Security, 122:102890.

Miorandi, D., Sicari, S., De Pellegrini, F., and Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad hoc networks, 10(7):1497–1516.

Misra, S., Pal, S., Ahmed, N., and Mukherjee, A. (2023). Sdn-controlled resource-tailored analytics for healthcare iot system. IEEE Systems Journal, pages 1–8.

Misra, S., Saha, R., and Ahmed, N. (2020). Health-flow: Criticality-aware flow control for sdn-based healthcare iot. In GLOBECOM 2020 - 2020 IEEE Global Communications Conference, pages 1–6.

Mitchell, R. and Chen, I.-R. (2014). A survey of intrusion detection techniques for cyber-physical systems. ACM Comput. Surv., 46(4).

Mitchell, T. M. (1997). Machine learning. McGraw Hill Science/Engineering/Math, page 432.

Moglia, A., Georgiou, K., Marinov, B., Georgiou, E., Berchiolli, R. N., Satava, R. M. e Cuschieri, A. (2022). 5G in healthcare: from COVID-19 to future challenges. IEEE Journal of Biomedical and Health Informatics, 26(8):4187– 4196.

Motalleb, M. K., Shah-Mansouri, V., Parsaeefard, S. e López, O. L. A. (2023). Resource Allocation in an Open RAN System Using Network Slicing. IEEE Transactions on Network and Service Management, 20(1):471–485.

Mourtzis, D., Angelopoulos, J. e Panopoulos, N. (2021). Smart manufacturing and tactile Internet based on 5G in Industry 4.0: challenges, applications and new trends. Electronics, 10(24):3175.

Muhammad, F., Anjum, W., and Mazhar, K. S. (2015). A critical analysis on the security concerns of internet of things (iot). International Journal of Computer Applications, 111(7).

Mukherjee, B., Heberlein, L. T., and Levitt, K. N. (1994). Network intrusion detection. IEEE network, 8(3):26–41.

Mukherjee, B., Wang, S., Lu, W., Neupane, R. L., Dunn, D., Ren, Y., Su, Q., and Calyam, P. (2018). Flexible iot security middleware for end-to-end cloud–fog communication. Future Generation Computer Systems, 87:688–703.

Nakayama, F., Lenz, P., and Nogueira, M. (2022). A resilience management architecture for communication on portable assisted living. IEEE Transactions on Network and Service Management, 19(3):2536–2548.

Nakayama, F., Lenz, P., Banou, S., Nogueira, M., Santos, A., and Chowdhury, K. R. (2019a). A continuous user authentication system based on galvanic coupling communication for s-health. Wireless Communications and Mobile Computing, 2019:1–11.

Nakayama, F., Lenz, P., Cremonezi, B., Banou, S., Rosário, D., Chowdhoury, K., Nogueira, M., Cerqueira, E., and Santos, A. (2019b). Autenticação contínua e segura baseada em sinais ppg e comunicação galvânica. In Anais do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 707–720. SBC.

Narra, K. G., Lin, Z., Wang, Y., Balasubramaniam, K., and Annavaram, M. (2019). Privacy-preserving inference in machine learning services using trusted execution environments. arXiv preprint arXiv:1912.03485.

Navas, R. E., Le Bouder, H., Cuppens, N., Cuppens, F., and Papadopoulos, G. Z. (2018). Do not trust your neighbors! a small iot platform illustrating a man-in-the-middle attack. In International Conference on Ad-Hoc Networks and Wireless, pages 120–125. Springer.

Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., and Ghani, N. (2019). Demystifying iot security: an exhaustive survey on iot vulnerabilities and a first empirical look on internet-scale iot exploitations. IEEE Communications Surveys & Tutorials, 21(3):2702–2733.

Neto, H. N. C., Mattos, D. M. F. e Fernandes, N. C. (2020). Privacidade do Usuário em Aprendizado Colaborativo: Federated Learning, da Teoria à Prática. Em Minicursos do XX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg), p. 1–55.

Nguyen, H. X., Trestian, R., To, D. e Tatipamula, M. (2021). Digital twin for 5G and beyond. IEEE Communications Magazine, 59(2):10–15.

Nguyen, T. G., Phan, T. V., Nguyen, B. T., So-In, C., Baig, Z. A., and Sanguanpong, S. (2019). Search: A collaborative and intelligent nids architecture for sdn-based cloud iot networks. IEEE Access, 7:107678–107694.

Ni, J., Zhang, K., Lin, X., and Shen, X. (2018). Securing fog computing for internet of things applications: Challenges and solutions. IEEE Communications Surveys & Tutorials.

Nogueira, M., Borges, L. F., and Nakayama, F. (2021). Das redes vestíveis aos sistemas ciber-humanos: Uma perspectiva na comunicação e privacidade dos dados. Sociedade Brasileira de Computação.

Noor-A-Rahim, M., Liu, Z., Lee, H., Ali, G. M. N., Pesch, D. e Xiao, P. (2020). A survey on resource allocation in vehicular networks. IEEE transactions on intelligent transportation systems, 23(2):701–721.

Northcutt, S., Cooper, M., Fearnow, M., and Frederick, K. (2001). Intrusion Signatures and Analysis. New Riders, New Jersey.

O-RAN Working Group 1 (2023b). Use cases detailed specification. Especificação Técnica v10.00, O-RAN Alliance. Disponível em https://orandownloadsweb.azurewebsites.net/download?id=376.

O-RAN Working Group 2 (2021a). AI/ML workflow description and requirements. Especificação Técnica v01.03, O-RAN Alliance. Disponível em https://orandownloadsweb.azurewebsites.net/specifications.

O-RAN Working Group 2 (2021b). Non-RT RIC: Functional Architecture. Relatório Técnico v01.01, O-RAN Alliance. Disponível em https://orandownloadsweb.azurewebsites.net/specifications.

O-RAN Working Group 2 (2023). A1 interface: General aspects and principles. Especificação Técnica v03.01, O-RAN Alliance. Disponível em https://orandownloadsweb.azurewebsites.net/specifications.

O-RAN Working Group 3 (2023a). Near-rt ric architecture. Especificação Técnica v04.00, O-RAN Alliance. Disponível em https://orandownloadsweb.azurewebsites.net/specifications.

O-RAN Working Group 3 (2023b). O-RAN E2 General Aspects and Principles (E2GAP). Especificação Técnica v03.00, O-RAN Alliance. Disponível em https://orandownloadsweb.azurewebsites.net/specifications.

O-RAN Working Group 3 (2023c). O-RAN e2 service model (e2sm). Especificação Técnica v03.00, O-RAN Alliance. Disponível em https://orandownloadsweb.azurewebsites.net/specifications.

O-RAN Working Group 4 (2023). O-RAN Management Plane Specification 11.0. Especificação Técnica v11.00, O-RAN Alliance. Disponível em https://orandownloadsweb.azurewebsites.net/specifications.

O-RAN Working Group 6 (2023). O2 Interface General Aspects and Principles. Especificação Técnica v03.00, O-RAN Alliance. Disponível em https://orandownloadsweb.azurewebsites.net/specifications.

O-RANWorking Group 1 (2021). O-RAN Operations and Maintenance Interface Specification. Especificação Técnica v04.00, O-RAN Alliance. Disponível em https://orandownloadsweb.azurewebsites.net/specifications.

O-RANWorking Group 1 (2023a). O-RAN architecture description 8.0. Especificação Técnica v08.00, O-RAN Alliance. Disponível em https://orandownloadsweb.azurewebsites.net/specifications.

O-RANWorking Group 10 (2023). O-RAN architecture description 8.0. Especificação Técnica v08.00, O-RAN Alliance. Disponível em https://orandownloadsweb.azurewebsites.net/specifications.

O’Connell, E., Moore, D. e Newe, T. (2020). Challenges associated with implementing 5G in manufacturing. Em Telecom, p. 48–67. Multidisciplinary Digital Publishing Institute.

Onesimu, J. A., Karthikeyan, J., Eunice, J., Pomplun, M., and Dang, H. (2022). Privacy preserving attribute-focused anonymization scheme for healthcare data publishing. IEEE Access, 10:86979–86997.

Orhan, O., Swamy, V. N., Tetzlaff, T., Nassar, M., Nikopour, H. e Talwar, S. (2021). Connection Management xAPP for O-RAN RIC: A Graph Neural Network and Reinforcement Learning Approach. Em IEEE International Conference on Machine Learning and Applications (ICMLA), p. 936–941.

OSC (2022). The O-RAN Software Community (SC) Documentation. Relatório técnico. Disponível em https://docs.o-ran-sc.org/en/latest/index.html.

Otter, D. W., Medina, J. R. e Kalita, J. K. (2020). A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE Transactions on Neural Networks and Learning Systems.

Padgette, J., Scarfone, K., and Chen, L. (2017). Guide to bluetooth security. NIST special publication, 800(121).

Papaioannou, M., Karageorgou, M., Mantas, G., Sucasas, V., Essop, I., Rodriguez, J., and Lymberopoulos, D. (2022). A survey on security threats and countermeasures in internet of medical things (iomt). Transactions on Emerging Telecommunications Technologies, 33(6):e4049.

Patel, A., Qassim, Q., and Wills, C. (2010). A survey of intrusion detection and prevention systems. Information Management & Computer Security.

Pereira, R. S., Prazeres, C. V. S., Barbosa, M. T. M., Barros, E. B. C., and Peixoto, M. L. M. (2021). Iotfogsim: Um simulador orientado a eventos para avaliaçao de aplicaçoes baseadas em iot-fog-cloud. In Anais Estendidos do XXXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 25–32. SBC.

Perez, A. J., Siddiqui, F., Zeadally, S., and Lane, D. (2022). A review of iot systems to enable independence for the elderly and disabled individuals. Internet of Things, page 100653.

Petrobras (2020). O que são digital twins e como podem aumentar a eficiência operacional. https://nossaenergia.petrobras.com.br/energia/22-digital-twins/. Acessado em 23.04.2023.

Philip, N. Y., Rodrigues, J. J., Wang, H., Fong, S. J., and Chen, J. (2021). Internet of things for in-home health monitoring systems: Current advances, challenges and future directions. IEEE Journal on Selected Areas in Communications, 39(2):300–310.

Plachy, J., Becvar, Z., Strinati, E. C. e di Pietro, N. (2021a). Dynamic allocation of computing and communication resources in multi-access edge computing for mobile users. IEEE Transactions on Network and Service Management, 18(2):2089–2106.

Plachy, J., Becvar, Z., Strinati, E. C. e di Pietro, N. (2021b). Dynamic allocation of computing and communication resources in multi-access edge computing for mobile users. IEEE Transactions on Network and Service Management, 18(2):2089–2106.

Polese, M., Bonati, L., D’Oro, S., Basagni, S. e Melodia, T. (2022). ColO-RAN: Developing Machine Learning-Based xApps for Open RAN Closed-Loop Control on Programmable Experimental Platforms. IEEE Transactions on Mobile Computing.

Polese, M., Bonati, L., D’Oro, S., Basagni, S. e Melodia, T. (2023). Understanding O-RAN: Architecture, Interfaces, Algorithms, Security, and Research Challenges. IEEE Communications Surveys & Tutorials, p. 1–1.

Polese, M., Restuccia, F. e Melodia, T. (2021). DeepBeam: Deep Waveform Learning for Coordination-Free Beam Management in mmWave Networks. Em International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing (MobiHoc), p. 61–70.

Popovski, P., Trillingsgaard, K. F., Simeone, O. e Durisi, G. (2018). 5G Wireless Network Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View. IEEE Access, 6:55765–55779.

Price, A. B., Rarity, J. G., and Erven, C. (2020). A quantum key distribution protocol for rapid denial of service detection. EPJ Quantum Technology, 7(1):8.

Puligheddu, C., Ashdown, J., Chiasserini, C. F. e Restuccia, F. (2023). SEM-O-RAN: Semantic and Flexible O-RAN Slicing for NextG Edge-Assisted Mobile Systems. Em IEEE Conference on Computer Communications (INFOCOM).

Qu, Z., Zhang, G., Cao, H., and Xie, J. (2017). Leo satellite constellation for internet of things. IEEE access, 5:18391–18401.

Quang, P. T. A., Hadjadj-Aoul, Y. e Outtagarts, A. (2019). A deep reinforcement learning approach for VNF forwarding graph embedding. IEEE Transactions on Network and Service Management, 16(4):1318–1331.

Rahman, I., Razavi, S. M., Liberg, O., Hoymann, C., Wiemann, H., Tidestav, C., Schliwa-Bertling, P., Persson, P. e Gerstenberger, D. (2021). 5G evolution toward 5G advanced: An overview of 3GPP releases 17 and 18. Ericsson Technology Review, 2021(14):2–12.

Ramezanpour, K. e Jagannath, J. (2022). Intelligent Zero Trust Architecture for 5G/6G Networks: Principles, Challenges, and the Role of Machine Learning in the Context of O-RAN. Computer Networks, p. 109358.

Ramirez, R., Huang, C.-Y. e Liang, S.-H. (2022). 5G digital twin: A study of enabling technologies. Applied Sciences, 12(15):7794.

Ramos, H. S., Maia, G., Papa, G. L., Alvim, M. S., Loureiro, A. A. F., Cardoso-Pereira, I., Campos, D. H. C., Filipakis, G., Riquetti, G., Chagas, E. T. C., Barros, P. H., Gomes, G. N. e Cid-Allende, H. (2021). Aprendizado Federado Aplicado à Internet das Coisas. Em Minicursos do XXXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC).

Rashidi, P. and Mihailidis, A. (2012). A survey on ambient-assisted living tools for older adults. IEEE journal of biomedical and health informatics, 17(3):579–590.

Raussi, P., Kokkoniemi-Tarkkanen, H., Ahola, K., Heikkinen, A. e Uitto, M. (2023). Improving reliability of protection communication in a 5G slice. Authorea.

Ravi, N. and Shalinie, S. M. (2020). Semi-supervised learning based security to detect and mitigate intrusions in iot network. IEEE Internet of Things Journal, pages 1–1.

Rego, I., Medeiros, L., Alves, P., Goldbarg, M., Lopes, V., Flor, D., Barros, W., Sousa, V., Aranha, E., Martins, A. et al. (2022). Prototyping Near-Real Time RIC O-RAN xApps for Flexible ML-based Spectrum Sensing. Em IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN).

Rey, V., Sánchez Sánchez, P. M., Huertas Celdrán, A., and Bovet, G. (2022). Federated learning for malware detection in iot devices. Computer Networks, 204:108693.

Rezazadeh, F., Zanzi, L., Devoti, F., Chergui, H., Costa-Pérez, X. e Verikoukis, C. (2023). On the Specialization of FDRL Agents for Scalable and Distributed 6G RAN Slicing Orchestration. IEEE Transactions on Vehicular Technology, 72(3):3473–3487.

Rinaldi, F., Maattanen, H.-L., Torsner, J., Pizzi, S., Andreev, S., Iera, A., Koucheryavy, Y. e Araniti, G. (2020). Non-terrestrial networks in 5G & beyond: A survey. IEEE access, 8:165178–165200.

Rodrigues, J. J., Segundo, D. B. D. R., Junqueira, H. A., Sabino, M. H., Prince, R. M., Al-Muhtadi, J., and De Albuquerque, V. H. C. (2018). Enabling technologies for the internet of health things. Ieee Access, 6:13129–13141.

Rokach, L. (2016). Decision forest: Twenty years of research. Information Fusion, 27:111 – 125.

Roman, R., Lopez, J., and Mambo, M. (2018). Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges. Future Generation Computer Systems, 78:680–698.

Russell, S. and Norvig, P. (2009). Artificial Intelligence: A Modern Approach. Prentice Hall Press, USA, 3rd edition.

Russell, S. J. and Norvig, P. (2010). Artificial intelligence: A Modern Approach. Pearson Education, Inc.

Saba, T., Haseeb, K., Ahmed, I. e Rehman, A. (2020). Secure and energy-efficient framework using Internet of Medical Things for e-healthcare. Journal of Infection and Public Health, 13(10):1567–1575.

Saeed, N., Elzanaty, A., Almorad, H., Dahrouj, H., Al-Naffouri, T. Y. e Alouini, M.-S. (2020). Cubesat communications: Recent advances and future challenges. IEEE Communications Surveys & Tutorials, 22(3):1839–1862.

Sahar, N., Mishra, R., and Kalam, S. (2021). Deep learning approach-based network intrusion detection system for fog-assisted iot. In Proceedings of international conference on big data, machine learning and their applications, pages 39–50. Springer.

Salama, M., Elkhatib, Y., and Blair, G. (2019). Iotnetsim: A modelling and simulation platform for end-to-end iot services and networking. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing, pages 251–261.

Sampaio, L. N., Freitas, A. E. S., Araújo, F. R., Brito, I. V. S., and Ribeiro, A. V. (2021). Revisitando as icns: Mobilidade, segurança e aplicações 100 distribuídas através das redes de dados nomeados. In Livro de Minicursos do XXXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC) 2021.

Santos Filho, R. H., Mattos, D. M. F. e Medeiros, D. S. V. (2020). Agentes Inteligentes baseados em Aprendizado por Reforço para Alocaçao Dinâmica de Tráfego em Nuvens. Em XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, p. 141–154.

Santos, A. C., Firmino, R. M., Soto, J. C., Medeiros, D. S., Mattos, D. M., Albuquerque, C. V., Seixas, F., Muchaluat-Saade, D. C. e Fernandes, N. C. (2020). Aplicações em redes de sensores na área da saúde e gerenciamento de dados médicos: tecnologias em ascensão. Sociedade Brasileira de Computação.

Saraiva Jr, R. G., Oliveira, K. K. L. e Nascimento, F. A. O. (2022). Classificação de Tráfego em Redes Móveis Inteligentes Usando Abordagem de Aprendizado de Máquina. Em XL Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT 2022), p. 1–5.

Sarhan, M., Layeghy, S., Moustafa, N., and Portmann, M. (2021). Towards a standard feature set of nids datasets. arXiv preprint arXiv:2101.11315.

Satyanarayanan, M. (2015). A brief history of cloud offload: A personal journey from odyssey through cyber foraging to cloudlets. GetMobile: Mobile Computing and Communications, 18(4):19–23.

Saxena, D. and Raychoudhury, V. (2017). Design and verification of an ndn-based safety-critical application: A case study with smart healthcare. ieee transactions on systems, man, and cybernetics: systems, 49(5):991–1005.

Schapire, R. E. (1990). The strength of weak learnability. Machine learning, 5(2):197–227.

Sehla, K., Nguyen, T. M. T., Pujolle, G. e Velloso, P. B. (2022). Resource allocation modes in C-V2X: from LTE-V2X to 5G-V2X. IEEE Internet of Things Journal, 9(11):8291–8314.

Shah, S. D. A., Gregory, M. A. e Li, S. (2021). Cloud-native network slicing using software defined networking based multi-access edge computing: A survey. IEEE Access, 9:10903–10924.

Shaik, N. e Malik, P. K. (2021). A comprehensive survey 5G wireless communication systems: open issues, research challenges, channel estimation, multi carrier modulation and 5G applications. Multimedia Tools and Applications, 80(19):28789–28827.

Shang, W., Bannis, A., Liang, T., Wang, Z., Yu, Y., Afanasyev, A., Thompson, J., Burke, J., Zhang, B., and Zhang, L. (2016). Named data networking of things. In 2016 IEEE first international conference on internet-of-things design and implementation (IoTDI), pages 117–128. IEEE.

Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A. (2018). Toward generating a new intrusion detection dataset and intrusion traffic characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy - Volume 1: ICISSP, pages 108–116.

Sharara, M., Pamuklu, T., Hoteit, S., Vèque, V. e Erol-Kantarci, M. (2022). Policy-Gradient-Based Reinforcement Learning for Computing Resources Allocation in O-RAN. Em IEEE International Conference on Cloud Networking (CloudNet), p. 229–236.

Shi, Y., Zheng, Q., Liu, J., and Han, Z. (2015). Directly revocable key-policy attribute-based encryption with verifiable ciphertext delegation. Information Sciences, 295:221–231.

Sicari, S., Rizzardi, A., Grieco, L., and Coen-Porisini, A. (2015). Security, privacy and trust in internet of things: The road ahead. Computer Networks, 76:146 – 164.

Singh, A. K. e Khoa Nguyen, K. (2022). Joint Selection of Local Trainers and Resource Allocation for Federated Learning in Open RAN Intelligent Controllers. Em IEEE Wireless Communications and Networking Conference (WCNC), p. 1874–1879.

Singh, A. K. e Nguyen, K. K. (2022). MCORANFed: Communication Efficient Federated Learning in Open RAN. Em IFIP Wireless and Mobile Networking Conference (WMNC), p. 15–22.

Skorupski, M. e Brakle, T. V. (2020). SMO - Service Management and Orchestration. Relatório técnico. Disponível em [link].

Song, S., Lee, C., Cho, H., Lim, G. e Chung, J.-M. (2019). Clustered virtualized network functions resource allocation based on context-aware grouping in 5G edge networks. IEEE Transactions on Mobile Computing, 19(5):1072–1083.

Soto, I., Calderon, M., Amador, O. e Urueña, M. (2022). A survey on road safety and traffic efficiency vehicular applications based on C-V2X technologies. Vehicular Communications, 33:100428.

Souppaya, M. and Scarfone, K. (2012). Guidelines for securing wireless local area networks (wlans). NIST Special Publication, 800:153.

Souza, C. A., Westphall, C. B., and Machado, R. B. (2022a). Two-step ensemble approach for intrusion detection and identification in iot and fog computing environments. Computers & Electrical Engineering, 98:107694.

Souza, C. A., Westphall, C. B., Machado, R. B., Sobral, J. B. M., and dos Santos Vieira, G. (2020). Hybrid approach to intrusion detection in fog-based iot environments. Computer Networks, 180:107417.

Souza, C. A.,Westphall, C. B., Machado, R. B., Loffi, L.,Westphall, C. M., and Geronimo, G. A. (2022b). Intrusion detection and prevention in fog based iot environments: A systematic literature review. Computer Networks, page 109154.

Spinelli, F. e Mancuso, V. (2020). Toward enabled industrial verticals in 5G: A survey on mec-based approaches to provisioning and flexibility. IEEE Communications Surveys & Tutorials, 23(1):596–630.

Srivastava, G., Agrawal, R., Singh, K., Tripathi, R., and Naik, K. (2020). A hierarchical identity-based security for delay tolerant networks using lattice-based cryptography. Peer-to-Peer Networking and Applications, 13:348–367.

Steele, R., Lo, A., Secombe, C., andWong, Y. K. (2009). Elderly persons’ perception and acceptance of using wireless sensor networks to assist healthcare. International journal of medical informatics, 78(12):788–801.

Sundhari, S. S. (2011). A knowledge discovery using decision tree by gini coefficient. In 2011 International Conference on Business, Engineering and Industrial Applications, pages 232–235.

Takabi, H., Joshi, J. B. D., and Ahn, G. (2010). Security and privacy challenges in cloud computing environments. IEEE Security Privacy, 8(6):24–31.

Tanaka, H. and Yamaguchi, S. (2017). On modeling and simulation of the behavior of iot malwares mirai and hajime. In 2017 IEEE International Symposium on Consumer Electronics (ISCE), pages 56–60.

Tang, X., Liu, S., Du, X. e Guizani, M. (2023). Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A Reinforcement Learning Based Approach. arXiv preprint arXiv:2303.02657.

Tavallaee, M., Bagheri, E., Lu,W., and Ghorbani, A. A. (2009). A detailed analysis of the kdd cup 99 data set. In Computational Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE Symposium on, pages 1–6. IEEE.

Traganitis, P. A., Pagès-Zamora, A., and Giannakis, G. B. (2018). Blind multiclass ensemble classification. IEEE Transactions on Signal Processing, 66(18):4737–4752.

Tshiningayamwe, L., Lusilao-Zodi, G.-A., and Dlodlo, M. E. (2016). A priority rate-based routing protocol for wireless multimedia sensor networks. In Advances in Nature and Biologically Inspired Computing: Proceedings of the 7th World Congress on Nature and Biologically Inspired Computing (NaBIC2015) in Pietermaritzburg, South Africa, held December 01-03, 2015, pages 347–358. Springer.

Tun, S. Y. Y., Madanian, S., and Mirza, F. (2021). Internet of things (iot) applications for elderly care: a reflective review. Aging clinical and experimental research, 33:855–867.

Uddin, M., Nadeem, T., and Nukavarapu, S. (2019). Extreme sdn framework for iot and mobile applications flexible privacy at the edge. In 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom, pages 1–11.

Ullah, I. and Mahmoud, Q. H. (2020a). A scheme for generating a dataset for anomalous activity detection in iot networks. In Canadian Conference on Artificial Intelligence, pages 508–520. Springer.

Ullah, I. and Mahmoud, Q. H. (2020b). A scheme for generating a dataset for anomalous activity detection in IoT networks. In Advances in Artificial Intelligence, pages 508–520. Springer International Publishing.

United Nations (2020). World population ageing 2020 highlights: Living arrangements of older persons (st/esa/ser.a/451). Disponível em [link]. Acessado: 2023-03-12.

Vaccari, I., Chiola, G., Aiello, M., Mongelli, M., and Cambiaso, E. (2020). Mqttset, a new dataset for machine learning techniques on mqtt. Sensors, 20(22).

Van Hasselt, H., Guez, A. e Silver, D. (2016). Deep Reinforcement Learning with Double Q-learning. Em AAAI conference on artificial intelligence, p. 2094–2100.

Verma, A. and Ranga, V. (2019). Evaluation of network intrusion detection systems for rpl based 6lowpan networks in iot. Wireless Personal Communications, 108(3):1571–1594.

Verma, A. and Ranga, V. (2020). Machine learning based intrusion detection systems for iot applications. Wireless Personal Communications, 111(4):2287–2310.

Wang, D., Zhou, F., Lin, W., Ding, Z. e Al-Dhahir, N. (2022). Cooperative hybrid nonorthogonal multiple access-based mobile-edge computing in cognitive radio networks. IEEE Transactions on Cognitive Communications and Networking, 8(2):1104–1117.

Wang, L., Lu, Z., Wen, X., Knopp, R. e Gupta, R. (2016). Joint optimization of service function chaining and resource allocation in network function virtualization. IEEE Access, 4:8084–8094.

Wang, M., Cheng, B., Feng,W. e Chen, J. (2019). An efficient service function chain placement algorithm in a MEC-NFV environment. Em 2019 IEEE Global Communications Conference (GLOBECOM), p. 1–6. IEEE.

Wang, Z., Xiong, H., Zhang, J., Yang, S., Boukhechba, M., Zhang, D., Barnes, L. E., and Dou, D. (2022). From personalized medicine to population health: a survey of mhealth sensing techniques. IEEE Internet of Things Journal.

Wei, Z., Zhu, M., Zhang, N., Wang, L., Zou, Y., Meng, Z., Wu, H. e Feng, Z. (2022). UAV-assisted data collection for Internet of Things: A survey. IEEE Internet of Things Journal, 9(17):15460–15483.

Westerberg, E. e Fiorani, M. (2020). The Innovation Potential of Non Real-time RAN Intelligent Controller. Relatório técnico, Ericsson. Disponível em [link].

Wu, Y., Dai, H.-N., Wang, H., Xiong, Z. e Guo, S. (2022). A survey of intelligent network slicing management for industrial IoT: integrated approaches for smart transportation, smart energy, and smart factory. IEEE Communications Surveys & Tutorials, 24(2):1175–1211.

Wu, Y., Zhang, K. e Zhang, Y. (2021a). Digital twin networks: A survey. IEEE Internet of Things Journal, 8(18):13789–13804.

Wu, Y., Zheng, W., Zhang, Y. e Li, J. (2021b). Reliability-aware VNF placement using a probability-based approach. IEEE Transactions on Network and Service Management, 18(3):2478–2491.

Xie, Y., Huang, L., Kong, Y., Wang, S., Xu, S., Wang, X. e Ren, J. (2021). Virtualized network function forwarding graph placing in SDN and NFV-enabled IoT networks: A graph neural network assisted deep reinforcement learning method. IEEE Transactions on Network and Service Management, 19(1):524–537.

Xiong, X., Zheng, K., Lei, L. e Hou, L. (2020). Resource allocation based on deep reinforcement learning in IoT edge computing. IEEE Journal on Selected Areas in Communications, 38(6):1133–1146.

Xu, S., Xia, Y. e Shen, H.-L. (2020a). Analysis of malware-induced cyber attacks in cyber-physical power systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(12):3482–3486.

Xu, S., Yang, G., and Mu, Y. (2019). Revocable attribute-based encryption with decryption key exposure resistance and ciphertext delegation. Information Sciences, 479:116–134.

Xu, Z., Zhang, Z., Liang, W., Xia, Q., Rana, O. e Wu, G. (2020b). QoS-aware VNF placement and service chaining for IoT applications in multi-tier mobile edge networks. ACM Transactions on Sensor Networks (TOSN), 16(3):1–27.

Yan, Q., Yu, F. R., Gong, Q., and Li, J. (2016). Software-defined networking (sdn) and distributed denial of service (ddos) attacks in cloud computing environments: A survey, some research issues, and challenges. IEEE Communications Surveys Tutorials, 18(1):602–622.

Yang, P., Xiong, N., and Ren, J. (2020). Data security and privacy protection for cloud storage: A survey. IEEE Access, 8:131723–131740.

Yaseen, F. A., Alkhalidi, N. A., and Al-Raweshidy, H. S. (2022). She networks: Security, health, and emergency networks traffic priority management based on ml and sdn. IEEE Access, 10:92249–92258.

Yaseen, Q., Albalas, F., Jararwah, Y., and Al-Ayyoub, M. (2017). Leveraging fog computing and software defined systems for selective forwarding attacks detection in mobile wireless sensor networks. Transactions on Emerging Telecommunications Technologies, 29(4):e3183.

Zarpelão, B. B., Miani, R. S., Kawakani, C. T., and [de Alvarenga], S. C. (2017). A survey of intrusion detection in internet of things. Journal of Network and Computer Applications, 84:25 – 37.

Zgheib, R., Conchon, E., and Bastide, R. (2019). Semantic middleware architectures for iot healthcare applications. In Enhanced Living Environments: Algorithms, Architectures, Platforms, and Systems, pages 263–294. Springer.

Zhang, H., Zhou, H. e Erol-Kantarci, M. (2022). Team Learning-based Resource Allocation for Open Radio Access Network (O-RAN). Em IEEE International Conference on Communications (ICC), p. 4938–4943.

Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., Claffy, K., Crowley, P., Papadopoulos, C.,Wang, L., and Zhang, B. (2014). Named Data Networking. SIGCOMM Comput. Commun. Rev., 44(3):66–73.

Zhang, P., Lu, J., Wang, Y. e Wang, Q. (2017). Cooperative localization in 5G networks: A survey. Ict Express, 3(1):27–32.

Zhang, T., Wang, Z., Liu, Y., Xu, W. e Nallanathan, A. (2021). Joint resource, deployment, and caching optimization for AR applications in dynamic UAV NOMA networks. IEEE Transactions on Wireless Communications, 21(5):3409–3422.

Zhang, Y., Chen, G., Du, H., Yuan, X., Kadoch, M., and Cheriet, M. (2020). Real-time remote health monitoring system driven by 5g mec-iot. Electronics, 9(11):1753.

Zhang, Z., Yu, Y., Ramani, S. K., Afanasyev, A., and Zhang, L. (2018). Nac: Automating access control via named data. In MILCOM 2018-2018 IEEE Military Communications Conference (MILCOM), pages 626–633. IEEE.

Zhao, C., Liu, J., Sheng, M., Teng, W., Zheng, Y. e Li, J. (2021). Multi-UAV trajectory planning for energy-efficient content coverage: A decentralized learning-based approach. IEEE Journal on Selected Areas in Communications, 39(10):3193–3207.

Zheng, G., Tsiopoulos, A. e Friderikos, V. (2018). Optimal VNF chains management for proactive caching. IEEE Transactions on Wireless Communications, 17(10):6735–6748.

Zhou, Z., Jia, Z., Liao, H., Lu, W., Mumtaz, S., Guizani, M. e Tariq, M. (2021). Secure and latency-aware digital twin assisted resource scheduling for 5G edge computing-empowered distribution grids. IEEE Transactions on Industrial Informatics, 18(7):4933–4943.

Data de publicação

22/05/2023

Detalhes sobre o formato disponível para publicação: Volume Completo

Volume Completo

ISBN-13 (15)

978-85-7669-543-1