Minicursos do XXIV Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais
Palavras-chave:
Ciência de Dados, Cibersegurança, Jailbreaking, Grandes Modelos de Línguas, Aprendizado de Máquina, Ambientes de Computação Segura, Análise Forense, BitcoinSinopse
É com grande satisfação que apresentamos a seleção de capítulos deste livro, que compila os minicursos do XXIV Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais (SBSeg), realizado em São José dos Campos - SP, de 16 a 19 de setembro de 2024. Recebemos 11 propostas de minicursos, das quais 4 foram aceitas para publicação neste livro e para apresentação no evento, resultando em uma taxa de aceitação de 36%.
Os minicursos do SBSeg têm evoluído para responder às demandas do público do evento, buscando atender tanto aqueles que preferem conteúdos práticos quanto aqueles que desejam explorar as fronteiras do conhecimento em cibersegurança. Os capítulos deste livro refletem essa diversidade, abrangendo desde fundamentações teóricas até aplicações concretas.
Cada minicurso selecionado corresponde a um capítulo de 47 a 67 páginas deste livro, com conteúdo ministrado, por especialistas, de forma presencial durante o evento. Na sequência, apresentamos resumidamente o conteúdo desses capítulos.
O Capítulo 1, intitulado "Ciência de Dados Aplicada à Cibersegurança: Teoria e Prática", explora como a Ciência de Dados e a Inteligência Artificial podem ser aplicadas na cibersegurança. O conteúdo abrange desde a análise de grandes volumes de dados até a identificação de vulnerabilidades e a detecção de intrusos. Além de apresentar os conceitos fundamentais e metodologias, o capítulo demonstra o uso prático dessas técnicas em projetos de pesquisa nacionais, como o MENTORED, incentivando colaborações entre universidades e instituições de pesquisa no Brasil.
O Capítulo 2, intitulado "Ferramentas de Jailbreaking para Grandes Modelos de Línguas: Aprendizado de Máquina no Contexto Adversário", aborda as vulnerabilidades e desafios de segurança em sistemas de IA, com foco nos Modelos de Linguagem Grandes (LLMs). Explora ameaças como envenenamento de dados e violações de privacidade, e discute técnicas e ferramentas para mitigar esses riscos. Além dos aspectos teóricos, o capítulo fala sobre normas e boas práticas recomendadas por órgãos internacionais, como o NIST e a ENISA, para proteger esses complexos sistemas.
O Capítulo 3, intitulado "Ambientes de Computação Segura", em especial, os chamados Ambientes de Execução Confiáveis (TEEs), aprofunda nas tecnologias que garantem a segurança e privacidade de dados em ambientes interconectados. Cobre características como isolamento seguro, criptografia, e resistência a ataques, além de sua aplicação em dispositivos móveis e sistemas operacionais. São explorados exemplos práticos, como o uso em sistemas de pagamento e autenticação biométrica, bem como desafios na adoção de TEEs em novas plataformas, incluindo RISC-V e ambientes de nuvem.
O Capítulo 4, intitulado "Análise Forense Aplicada ao Bitcoin", oferece uma visão abrangente da análise forense aplicada ao Bitcoin, utilizando técnicas de aprendizado de máquina. Ele inicia com uma introdução teórica ao ecossistema Bitcoin, detalhando a blockchain e os desafios das transações pseudônimas. Em seguida, aborda métodos de coleta e análise de dados da blockchain, incluindo a aplicação de heurísticas para rastrear transações em mixers e o uso de OSINT para enriquecer a análise. O capítulo também discute a aplicação de modelos de aprendizado de máquina para detectar atividades ilícitas e melhorar a precisão das investigações forenses.
Para finalizar essa mensagem, gostaríamos de expressar nossa profunda gratidão a todos os autores que submeteram suas propostas de minicursos do SBSeg 2024, esse esforço incrível e qualidade das propostas auxilia o contínuo crescimento e relevância deste evento anual. E em especial, os autores dos minicursos selecionados, que dedicaram seu tempo e expertise para preparar 50 páginas de cada capítulo que compõem este livro.
Também gostaria de expressar respeito e gratidão aos membros do Comitê de Programa por sua valiosa contribuição voluntária no processo de avaliação e seleção dos minicursos. Também estendemos nossos agradecimentos aos coordenadores gerais do SBSeg 2024, os professores Lourenço Alves Pereira Júnior (ITA) e Diego Kreutz (UNIPAMPA), pela dedicação, ajustes operacionais e orientações fornecidas, e por confiarem em nós para coordenar os trabalhos de minicursos desta edição.
Esperamos que todos aproveitem ao máximo o conteúdo deste livro!
Capítulos
-
1. Ciência de Dados Aplicada à Cibersegurança: Teoria e Prática
-
2. Ferramentas de Jailbreaking para Grandes Modelos de Línguas – Aprendizado de Máquina no Contexto Adversário
-
3. Ambientes de Computação Segura
-
4. Análise Forense aplicada ao Bitcoin
Downloads
Referências
Aaraj, N., Raghunathan, A., and Jha, N. K. (2009). Analysis and design of a hardware/software trusted platform module for embedded systems. ACM Trans. Embed. Comput. Syst., 8(1).
Abaid, Z., Sarkar, D., Kaafar, M. A., and Jha, S. (2016). The early bird gets the botnet: A Markov chain based early warning system for botnet attacks. In LCN, pages 61–68, UAE. IEEE.
Ádám Ficsór, Kogman, Y., Ontivero, L., and Seres, I. A. (2021). WabiSabi: Centrally coordinated CoinJoins with variable amounts. Cryptology ePrint Archive, Paper 2021/206. [link].
Ahmed, S., Alshater, M. M., El Ammari, A., and Hammami, H. (2022). Artificial intelligence and machine learning in finance: A bibliometric review. Research in International Business and Finance, 61:101646.
Alani, M. M. (2021). Big data in cybersecurity: a survey of applications and future trends. Journal of Reliable Intelligent Environments, 7(2):85–114.
Albano, L., Borges, L., Neira, A., and Nogueira, M. (2023). Predição de ataques DDoS pela correlação de séries temporais via padrões ordinais. In Anais do XXIII SBSeg, pages 69–82, Brasil. SBC.
Ali, M. Q. and Al-Shaer, E. (2013). Configuration-based IDS for advanced metering infrastructure. In SIGSAC, page 451–462, USA. ACM.
AlMahmoud, A., Damiani, E., Otrok, H., and Al-Hammadi, Y. (2019). Spamdoop: A privacy-preserving big data platform for collaborative spam detection. IEEE TBD, 5(3):293–304.
Alon, G. and Kamfonas, M. (2023a). Detecting language model attacks with perplexity.
Alon, G. and Kamfonas, M. (2023b). Detecting language model attacks with perplexity. arXiv preprint arXiv:2308.14132.
Alsharif, M., Mishra, S., and AlShehri, M. (2022). Impact of human vulnerabilities on cybersecurity. Computer Systems Science&Engineering, 40(3).
Ampel, B., Otto, K., Samtani, S., and Chen, H. (2023). Disrupting ransomware actors on the bitcoin blockchain: A graph embedding approach. In 2023 IEEE International Conference on Intelligence and Security Informatics (ISI), pages 1–6.
Anati, I., Gueron, S., Johnson, S., and Scarlata, V. (2013). Innovative technology for cpu based attestation and sealing. Proceedings on hardware and architectural support for security and privacy, (HASP), 13.
Anderson, J. P. et al. (1972). Computer security technology planning study. Technical report, Citeseer.
Andi, H. K. (2021). An accurate bitcoin price prediction using logistic regression with lstm machine learning model. Journal of Soft Computing Paradigm, 3(3):205–217.
Antonopoulos, A. M. (2014). Mastering Bitcoin: Unlocking Digital Crypto-Currencies. O’Reilly Media, Inc., 1st edition.
Aponte-Novoa, F. A., Orozco, A. L. S., Villanueva-Polanco, R., and Wightman, P. (2021). The 51IEEE Access, 9:140549–140564.
Araujo, A. M., Bergamini de Neira, A., and Nogueira, M. (2023). Autonomous machine learning for early bot detection in the Internet of things. Digital Comm. and Net., 9(6):1301–1309.
Architecture, C. C. (2024). Cca. Acesso em: 12 Set 2024.
Arfaoui, G., Gharout, S., and Traoré, J. (2014). Trusted execution environments: A look under the hood. In 2014 2nd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, pages 259–266.
ARM (2024). TrustZone for Cortex-A. Disponível em: [link]. Acesso em: 07 ago. 2024.
Arthur, W. and Challener, D. (2015). A Practical Guide to TPM 2.0: Using the Trusted Platform Module in the New Age of Security. Apress, USA, 1st edition.
Auti, A., Patil, D., Zagade, O., Bhosale, P., and Ahire, P. (2022). Bitcoin price prediction using svm. Int. J. Eng. Appl. Sci. Technol, 6(11):226–229.
Azevedo, P. R. M. d. (2016). Introdução à estatística. EDUFRN, RN, 3 edition.
Bean, H. (2011). Is open source intelligence an ethical issue? In Government Secrecy, volume 19, pages 385–402. Emerald Group Publishing Limited.
Bellare, M. and Rogaway, P. (1993). Random oracles are practical: A paradigm for designing efficient protocols. In CCS, pages 66–75. ACM.
Bender, E. M., Gebru, T., McMillan-Major, A., and Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, page 610–623, New York, NY, USA. Association for Computing Machinery.
Benford, F. (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, 78(4):551–572.
Bhatia, S., Behal, S., and Ahmed, I. (2018). Distributed Denial of Service Attacks and Defense Mechanisms: Current Landscape and Future Directions, pages 55–97. Springer, Cham.
Block, L. (2023). The long history of osint. Journal of Intelligence History, pages 1–15.
Böhm, I. and Lolagar, S. (2021). Open source intelligence: Introduction, legal, and ethical considerations. International Cybersecurity Law Review, 2:317–337.
Borges, L., de Neira, A. B., Albano, L., and Nogueira, M. (2024). Multifaceted DDoS attack prediction by multivariate time series and ordinal patterns. In 2024 IEEE ICC (WS18), USA.
Brasil (2018). Lei nr. 13.709, de 14 de agosto de 2018. lei geral de proteção de dados (lgpd). Planalto, [link].
Brito, D., de Neira, A. B., Borges, L. F., and Nogueira, M. (2023). An autonomous system for predicting DDoS attacks on local area networks and the Internet. In 2023 IEEE LATINCOM, pages 1–6, Panama. IEEE.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901.
Bruijne, M. d., Eeten, M. v., Ganan, C. H., and Pieters, W. (2017). Towards a new cyber threat actor typology. TU Delft.
Bursell, M. (2020). Systems and Trust, chapter 8, pages 185–209. John Wiley & Sons, Ltd.
Bursell, M. (2021). Trust in computer systems and the cloud. John Wiley & Sons, NJ, USA. ISBN: 978-1119549246.
Cascavilla, G. (2024). The rise of cybercrime and cyber-threat intelligence: Perspectives and challenges from law enforcement. pages 2–11. Conference Name: IEEE Security & Privacy.
Casdoor (2024). An open-source UI-first Identity and Access Management (IAM) / Single-Sign-On (SSO) platform. Acesso em: 07 ago. 2024.
Chainalysis (2020). Tchainalysis in action: Us government agencies seize more than $1 billion in cryptocurrency connected to infamous darknet market silk road.
Chainalysis (2023). Chainalysis Reactor. Data de Acesso: 27/11/2023.
Chan, C.-T., Huang, S.-H., and Choy, P. P. (2023). Poisoning attacks on face authentication systems by using the generative deformation model. Multimedia Tools and Applications, 82(19):29457–29476.
Chao, P., Robey, A., Dobriban, E., Hassani, H., Pappas, G. J., and Wong, E. (2024). Jailbreaking black box large language models in twenty queries.
Chen, J., Zheng, H., Su, M., Du, T., Lin, C., and Ji, S. (2020). Invisible poisoning: Highly stealthy targeted poisoning attack. In Information Security and Cryptology: 15th International Conference, Inscrypt 2019, Nanjing, China, December 6–8, 2019, Revised Selected Papers 15, pages 173–198. Springer.
Chen, W., Yuan, C., Yuan, J., Su, Y., Qian, C., Yang, C., Xie, R., Liu, Z., and Sun, M. (2024). Beyond natural language: Llms leveraging alternative formats for enhanced reasoning and communication. arXiv preprint arXiv:2402.18439.
Chong, B. et al. (2021). K-means clustering algorithm: a brief review. vol, 4:37–40.
Christin, N. (2012). Traveling the silk road: A measurement analysis of a large anonymous online marketplace.
Chu, J., Liu, Y., Yang, Z., Shen, X., Backes, M., and Zhang, Y. (2024). Comprehensive assessment of jailbreak attacks against llms. arXiv preprint arXiv:2402.05668.
CipherTrace (2023a). Crypto crimes & anti-money laundering (aml) report march 2023.
CipherTrace (2023b). Inspector. Data de Acesso: 27/11/2023.
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1):37–46.
Costa, P. R., Souza, F. F., Times, V. C., and Benevenuto, F. (2012). Towards integrating online social networks and business intelligence. In Proceedings of the international conferences web based communities and social media, pages 21–32.
Crevier, D. (1993). AI: The Tumultuous History of the Search for Artificial Intelligence. Basic Books, Inc., New York, NY, USA.
Cutting, D., Kupiec, J., Pedersen, J., and Sibun, P. (1992). A practical part-of-speech tagger. In Third Conference on Applied Natural Language Processing, pages 133–140, Trento, Italy. Association for Computational Linguistics.
Dada, E. G., Bassi, J. S., Chiroma, H., Adetunmbi, A. O., Ajibuwa, O. E., et al. (2019). Machine learning for email spam filtering: review, approaches and open research problems. Heliyon, 5(6).
Dalal, S. R., Wang, Z., and Sabharwal, S. (2021). Identifying ransomware actors in the bitcoin network. ArXiv, abs/2108.13807.
Dalal, S., Wang, Z., and Sabharwal, S. Identifying ransomware actors in the bitcoin network.
de Araújo, A. M., de Neira, A. B., and Nogueira, M. (2022). Lifelong autonomous botnet detection. In GLOBECOM, pages 1–6, Brazil. IEEE.
de Neira, A. B., Araujo, A. M., and Nogueira, M. (2020). Early botnet detection for the Internet and the Internet of Things by autonomous machine learning. In MSN, pages 516–523, Japan.
de Neira, A. B., Kantarci, B., and Nogueira, M. (2023). Distributed denial of service attack prediction: Challenges, open issues and opportunities. ComNet, 222:109553.
de Padrões e Tecnologia (NIST), I. N. (2024). Nist cybersecurity framework (NIST CSF).
De Paola, A., Gaglio, S., Re, G. L., and Morana, M. (2018). A hybrid system for malware detection on big data. In IEEE INFOCOM (WKSHPS), pages 45–50.
Delgado, R. and Tibau, X.-A. (2019). Why cohen’s kappa should be avoided as performance measure in classification. PLOS ONE, 14(9):e0222916.
Di Battista, G., Mariani, F., Patrignani, M., and Pizzonia, M. (2004). BGPlay: A System for Visualizing the Interdomain Routing Evolution, page 295–306. Springer Berlin Heidelberg.
Do, Q., Martini, B., and Choo, K.-K. R. (2019). The role of the adversary model in applied security research. Computers & Security, 81:156–181.
Docker, Inc. (2024). Docker - Accelerate how you build, share, and run applications. Acesso em: 07 ago. 2024.
Dokuz, A. ¸ S., Çelik, M., and Ecemi¸s, A. (2020). Anomaly detection in bitcoin prices using dbscan algorithm. European Journal of Science and Technology, 2020:436–443.
Dolejška, D., Koutenský, M., Veselý, V., and Pluskal, J. (2023). Busting up monopoly: Methods for modern darknet marketplace forensics. Forensic Science International: Digital Investigation, 46.
Dolev, D. and Yao, A. C. (1983). On the security of public key protocols. IEEE Transactions on Information Theory, 29(2):198–208.
Dong, X., Luu, A. T., Lin, M., Yan, S., and Zhang, H. (2021). How should pre-trained language models be fine-tuned towards adversarial robustness? Advances in Neural Information Processing Systems, 34:4356–4369.
dos Reis, E. F., Teytelboym, A., ElBahraw, A., Loizaga, I. D., and Baronchelli, A. (2023). Identifying key players in dark web marketplaces.
Douligeris, C. and Mitrokotsa, A. (2004). DDoS attacks and defense mechanisms: Classification and state-of-the-art. Comput. Netw., 44(5):643–666.
Dudani, S., Baggili, I., Raymond, D., and Marchany, R. (2023). The current state of cryptocurrency forensics. Forensic Science International: Digital Investigation, 46:301576.
Dunsin, D., Ghanem, M. C., Ouazzane, K., and Vassilev, V. (2024). A comprehensive analysis of the role of artificial intelligence and machine learning in modern digital forensics and incident response. FSI Digital Investigation, 48:301675.
El salvador adopted bitcoin as an official currency. [link]. Accessado: 2024-05-26.
Elliptic (2023). Investigator. Data de Acesso: 27/11/2023.
Elliptic (2024). The elliptic dataset: Cryptocurrency and financial crime.
Emanuelsson, P. and Nilsson, U. (2008). A comparative study of industrial static analysis tools. Electronic notes in theoretical computer science, 217:5–21.
Ermilov, D., Panov, M., and Yanovich, Y. (2017). Automatic bitcoin address clustering. 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pages 461–466.
European Union Agency for Cybersecurity, Malatras, A., Agrafiotis, I., and Adamczyk, M. (2021). Securing machine learning algorithms. Publications Office of the European Union.
Eyal, I. and Sirer, E. G. (2014). Majority is not enough: Bitcoin mining is vulnerable. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8437:436–454.
Fei, S., Yan, Z., Ding, W., and Xie, H. (2021). Security vulnerabilities of sgx and countermeasures: A survey. ACM Computing Surveys (CSUR), 54(6):1–36. DOI: 10.1145/3456631.
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M., and Hutter, F. (2015). Efficient and robust automated machine learning. In NeurIPS, NIPS’15, page 2755–2763, Cambridge, MA, USA. MIT Press.
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M., and Hutter, F. (2019). Auto-sklearn: efficient and robust automated machine learning. In Automated Machine Learning, page 21. Springer.
Gallegos, I. O., Rossi, R. A., Barrow, J., Tanjim, M. M., Kim, S., Dernoncourt, F., Yu, T., Zhang, R., and Ahmed, N. K. (2024). Bias and fairness in large language models: A survey. Computational Linguistics, pages 1–79.
Gangwal, A., Gangavalli, H. R., and Thirupathi, A. (2022). A survey of layer-two blockchain protocols.
Geppert, T., Deml, S., Sturzenegger, D., and Ebert, N. (2022). Trusted execution environments: Applications and organizational challenges. Frontiers in Computer Science, 4:930741.
Ghaniyoun, M., Barber, K., Xiao, Y., Zhang, Y., and Teodorescu, R. (2023). Teesec: Pre-silicon vulnerability discovery for trusted execution environments. In Proceedings of the 50th Annual International Symposium on Computer Architecture, ISCA ’23, New York, NY, USA. Association for Computing Machinery.
GitHub, Inc. (2024). GitHub. Acesso em: 09 ago 2024.
Gong, X., Wang, Q., Chen, Y., Yang, W., and Jiang, X. (2020). Model extraction attacks and defenses on cloud-based machine learning models. IEEE Communications Magazine, 58(12):83–89.
Gong, Y., Liu, G., Xue, Y., Li, R., and Meng, L. (2023). A survey on dataset quality in machine learning. Information and Software Technology, 162:107268.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. Accessed on August 5, 2024.
Gremaud, P., Durand, A., and Pasquier, J. (2017). A secure, privacy-preserving iot middleware using intel sgx. In Proceedings of the Seventh International Conference on the Internet of Things, IoT ’17, New York, NY, USA. Association for Computing Machinery.
Grimaldi, A., Ribiollet, J., Nespoli, P., and Garcia-Alfaro, J. (2023). Toward next-generation cyber range: A comparative study of training platforms. In ESORICS, pages 271–290. Springer.
Gu, T., Dolan-Gavitt, B., and Garg, S. (2017). Badnets: Identifying vulnerabilities in the machine learning model supply chain. arXiv preprint arXiv:1708.06733.
Gupta, B. B. and Badve, O. P. (2017). Taxonomy of DoS and DDoS attacks and desirable defense mechanism in a cloud computing environment. Neural. Comput. Appl., 28(12):3655–3682.
Gupta, B. B. and Dahiya, A. (2021). Distributed Denial of Service (DDoS) Attacks: Classification, Attacks, Challenges, and Countermeasures. CRC Press, USA.
HAI, S. (2021). Introducing the center for research on foundation models (crfm). Accessed: 2024-08-02.
Ham, J. V. D. (2021). Toward a better understanding of “cybersecurity”. Digital Threats: Research and Practice, 2(3):1–3.
Hamerly, G. and Elkan, C. (2003). Learning the k in k-means. Advances in neural information processing systems, 16.
Harrigan, M. and Fretter, C. (2017). The unreasonable effectiveness of address clustering. Proceedings - 13th IEEE International Conference on Ubiquitous Intelligence and Computing, 13th IEEE International Conference on Advanced and Trusted Computing, 16th IEEE International Conference on Scalable Computing and Communications, IEEE Internationa, pages 368–373.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). Unsupervised Learning, pages 485–585. Springer New York, New York, NY.
Hero, A., Kar, S., Moura, J., Neil, J., Poor, H. V., Turcotte, M., and Xi, B. (2023). Statistics and Data Science for Cybersecurity. Harvard Data Science Review, 5(1). [link].
Hiramoto, N. and Tsuchiya, Y. (2020). Measuring dark web marketplaces via bitcoin transactions: From birth to independence. Forensic Science International: Digital Investigation, 35.
Holgado, P., Villagrá, V. A., and Vázquez, L. (2020). Real-time multistep attack prediction based on hidden markov models. IEEE TDSC, 17(1):134–147.
Hong, Y., Kwon, H., Lee, J., and Hur, J. (2018). A practical demixing algorithm for bitcoin mixing services. In BCC 2018 - Proceedings of the 2nd ACM Workshop on Blockchains, Cryptocurrencies, and Contracts, Co-located with ASIA CCS 2018, pages 15–20. Association for Computing Machinery, Inc.
Horsanali, E., Yigit, Y., Secinti, G., Karameseoglu, A., and Canberk, B. (2021). Network-aware AutoML framework for software-defined sensor networks. In DCOSS, pages 451–457. IEEE.
Huang, H.-J., Zhang, F., Yan, S., Wei, T., and hao He, Z. (2024). Sok: A comparison study of arm trustzone and cca. In 2024 International Symposium on Secure and Private Execution Environment Design.
Hwang, Y.-W., Lee, I.-Y., Kim, H., Lee, H., Kim, D., et al. (2022). Current status and security trend of osint. Wireless Communications and Mobile Computing, 2022.
Hyman, M. (2015). Bitcoin atm: A criminal’s laundromat for cleaning money. . Thomas L. Rev., 27:296.
Ibitoye, O., Abou-Khamis, R., Matrawy, A., and Shafiq, M. O. (2020). The threat of adversarial attacks on machine learning in network security – a survey.
Imran, Jamil, F., and Kim, D. (2021). An ensemble of prediction and learning mechanism for improving accuracy of anomaly detection in network intrusion environments. Sustainability, 13(18):10057.
Intel (2024). Intel Software Guard Extensions SDK for Linux OS - Application Design Considerations. Disponível em: [link], Acesso em 11 out 2024.
Intel Corporation (2021). Life Cycle of an SGX Enclave. URL: [link]. Accessado em 2024-09-12.
Intel Corporation (2023). Intel® Software Guard Extensions (Intel® SGX) Data Center Attestation Primitives: ECDSA Quote Library API. URL: [link]. Accessado em 2024-09-12.
Ishikawa, M. (2017). Designing Virtual Currency Regulation in Japan: Lessons from the Mt Gox Case. Journal of Financial Regulation, 3(1):125–131.
Jagielski, M., Severi, G., Pousette Harger, N., and Oprea, A. (2021). Subpopulation data poisoning attacks. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pages 3104–3122.
Janos, M. (2020). Deep learning – conceitos e aplicações. Acessado em: 12/2021. [link].
Jauernig, P., Sadeghi, A.-R., and Stapf, E. (2020). Trusted execution environments: Properties, applications, and challenges. IEEE Security & Privacy, 18(2):56–60.
Jiang, F., Xu, Z., Niu, L., Xiang, Z., Ramasubramanian, B., Li, B., and Poovendran, R. (2024). Artprompt: Ascii art-based jailbreak attacks against aligned llms. arXiv preprint arXiv:2402.11753.
Jog, M., Natu, M., and Shelke, S. (2015). Distributed and predictivepreventive defense against DDoS attacks. In ICDCN, USA. ACM.
Johnson, D., Menezes, A., and Vanstone, S. (2001). The elliptic curve digital signature algorithm (ecdsa). Int. J. Inf. Secur., 1(1):36–63.
Juodis, M., Filatovas, E., and Paulavičius, R. (2024). Overview and empirical analysis of wealth decentralization in blockchain networks. ICT Express, 10(2):380–386.
Jurafsky, D. (2015). James. h. martin. speech and language processing.
Jurgens, J. and Cin, P. D. (2024). Global cybersecurity outlook 2024. Online. Fórum Econômico Mundial.
Kaissis, G. A., Makowski, M. R., Rückert, D., and Braren, R. F. (2020). Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence, 2(6):305–311.
Kaluarachchi, T., Reis, A., and Nanayakkara, S. (2021). A review of recent deep learning approaches in human-centered machine learning. Sensors, 21(7).
Kanemura, K., Toyoda, K., and Ohtsuki, T. (2019). Identification of darknet markets’ bitcoin addresses by voting per-address classification results. pages 154–158. Institute of Electrical and Electronics Engineers Inc.
Kanno, Y. (2005). An introduction to information security evaluation. Journal of Information Processing and Management, 48(6):320–332. DOI: 10.1241/johokanri.48.320.
Kaplan, D. (2017). Protecting vm register state with sev-es. White paper, page 13.
Kaplan, D., Powell, J., and Woller, T. (2016). Amd memory encryption. White paper, 13.
Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and Amodei, D. (2020). Scaling laws for neural language models. arXiv preprint arXiv:2001.08361.
Kaur, A. and Nayyar, R. (2020). A comparative study of static code analysis tools for vulnerability detection in C/C++ and Java source code. Procedia Computer Science, 171:2023–2029. 3rd International Conference on Computing and Network Communications (CoCoNet’19).
Kawaguchi, K. (2016). Deep learning without poor local minima. Advances in Neural Information Processing Systems, 29:586–594.
Khanum, M., Mahboob, T., Imtiaz, W., Ghafoor, H. A., and Sehar, R. (2015). A survey on unsupervised machine learning algorithms for automation, classification and maintenance. International Journal of Computer Applications, 119(13).
Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard, S., Prescher, T., Schwarz, M., and Yarom, Y. (2019). Spectre attacks: Exploiting speculative execution. In IEEE Symposium on Security and Privacy (SP), pages 1–19, New York, NY, USA. IEEE. DOI: 10.1109/SP.2019.00002.
Kour, H. and Gondhi, N. (2020). Machine learning techniques: A survey. In IDCTA, pages 266–275, Cham. Springer International Publishing.
Kumar, A., Agarwal, C., Srinivas, S., Feizi, S., and Lakkaraju, H. (2023). Certifying llm safety against adversarial prompting. arXiv preprint arXiv:2309.02705.
Kumar, R. S. S., Nyström, M., Lambert, J., Marshall, A., Goertzel, M., Comissoneru, A., Swann, M., and Xia, S. (2020). Adversarial machine learningindustry perspectives. In 2020 IEEE security and privacy workshops (SPW), pages 69–75. IEEE.
Kumbhare, T. A. and Chobe, S. V. (2014). An overview of association rule mining algorithms. IJCSIT, 5(1):927–930.
Lam, J. and Abbas, R. (2020). Machine learning based anomaly detection for 5G networks.
Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1):159.
Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE TDSC, 1(1):11–33.
Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D., Callison-Burch, C., and Carlini, N. (2021). Deduplicating training data makes language models better. arXiv preprint arXiv:2107.06499.
Leros, A. P. and Andreatos, A. S. (2019). Network Traffic Analytics for Internet Service Providers—Application in Early Prediction of DDoS Attacks, pages 233–267. Springer, Cham.
Li, L., Song, D., and Qiu, X. (2022). Text adversarial purification as defense against adversarial attacks. arXiv preprint arXiv:2203.14207.
Li, M., Zhang, Y., and Lin, Z. (2021). Crossline: Breaking "security-bycrash" based memory isolation in amd sev. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, CCS ’21, page 2937–2950, New York, NY, USA. Association for Computing Machinery.
Li, R.-H. and Belford, G. G. (2002). Instability of decision tree classification algorithms. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 570–575.
Li, S.-N., Yang, Z., and Tessone, C. J. (2020a). Mining blocks in a row: A statistical study of fairness in bitcoin mining. In 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pages 1–4.
Li, S.-N., Yang, Z., and Tessone, C. J. (2020b). Proof-of-work cryptocurrency mining: a statistical approach to fairness. In 2020 IEEE/CIC International Conference on Communications in China (ICCC Workshops), pages 156–161.
Li, X., Zhao, B., Yang, G., Xiang, T., Weng, J., and Deng, R. H. (2023). A survey of secure computation using trusted execution environments.
Li, Y. and Liu, Q. (2021). A comprehensive review study of cyberattacks and cyber security; emerging trends and recent developments. Energy Reports, 7:8176–8186.
Lind, J., Priebe, C., Muthukumaran, D., O’Keeffe, D., Aublin, P.-L., Kelbert, F., Reiher, T., Goltzsche, D., Eyers, D., Kapitza, R., et al. (2017). Glamdring: Automatic application partitioning for intel {SGX}. In 2017 USENIX Annual Technical Conference (USENIX ATC 17), pages 285–298.
Lipner, S. and Anderson, R. (2018). CIA history. Personal commun.
Liu, H. and Lang, B. (2019). Machine learning and deep learning methods for intrusion detection systems: A survey. Applied Sciences, 9(20).
Liu, Y., Li, Z., Xiong, H., Gao, X., andWu, J. (2010). Understanding of internal clustering validation measures. In 2010 IEEE ICDM, pages 911–916.
Liu, Y., Zhang, J., Sarabi, A., Liu, M., Karir, M., and Bailey, M. (2015). Predicting cyber security incidents using feature-based characterization of networklevel malicious activities. In IWSPA, page 3–9, USA. ACM.
Loporchio, Matteo; Bernasconi, A. D. F. M. D. R. L. (2023). Is bitcoin gathering dust? an analysis of low-amount bitcoin transactions. Applied Network Science, 8(2364-8228). [Internet], 9(1):381–386.
Maldonado, J., Riff, M. C., and Neveu, B. (2022). A review of recent approaches on wrapper feature selection for intrusion detection. ESWA, 198:116822.
Manès, V. J., Han, H., Han, C., Cha, S. K., Egele, M., Schwartz, E. J., and Woo, M. (2019). The art, science, and engineering of fuzzing: A survey. IEEE Transactions on Software Engineering, 47(11):2312–2331.
Markov, A. A. (1906). Extension of the limit theorems of probability theory to a sum of variables connected in a chain. Proceedings of the Imperial Academy of Sciences, 1.
Marr, B. (2024). The future of banking: Morgan stanley and the rise of ai-driven financial advice. Forbes.
Martin, G., Ghafur, S., Kinross, J., Hankin, C., and Darzi, A. (2018). Wannacry—a year on.
McAleese, N., Pokorny, R. M., Uribe, J. F. C., Nitishinskaya, E., Trebacz, M., and Leike, J. (2024). Llm critics help catch llm bugs. arXiv preprint arXiv:2407.00215.
Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G. M., and Savage, S. (2013). A fistful of bitcoins: Characterizing payments among men with no names. pages 127–140.
Milad, M., Ovezik, C., Karakostas, D., and Woods, D. W. (2024). Statistical confidence in mining power estimates for pow blockchains. In Companion Proceedings of the ACM on Web Conference 2024, WWW ’24, page 1752–1760, New York, NY, USA. Association for Computing Machinery.
Miller, B. P., Fredriksen, L., and So, B. (1990). An empirical study of the reliability of unix utilities. Communications of the ACM, 33(12):32–44.
MITRE (2024). MITRE ATLAS - adversarial threat landscape for artificial-intelligence systems.
Mofrad, S., Zhang, F., Lu, S., and Shi, W. (2018). A comparison study of intel sgx and amd memory encryption technology. In Proceedings of the 7th International Workshop on Hardware and Architectural Support for Security and Privacy, HASP ’18, New York, NY, USA. Association for Computing Machinery.
Moghimi, A., Irazoqui, G., and Eisenbarth, T. (2017). Cache-Zoom: How SGX amplifies the power of cache attacks. In International Conference on Cryptographic Hardware and Embedded Systems (CHES’17), pages 69–90, Cham. Springer International Publishing. DOI: 10.1007/978-3-319-66787-4.
Molitor, D., Raghupathi, W., Raghupathi, V., and Saharia, A. (2023). Understanding cryptocurrency: A descriptive analytics study of bitcoin. International Journal of Blockchain Applications and Secure Computing, 1:1–25.
MongoDB, Inc. (2024). MongoDB. Acesso em: 09 ago 2024.
Monroe, D. (2021). Trouble at the source. CACM, 64(12):17–19.
Montagner, A. S. and Westphall, C. M. (2022). Uma breve análise sobre phishing. ComInG, 6(1):46–56.
Mu, T., Helyar, A., Heidecke, J., Achiam, J., Vallone, A., Kivlichan, I. D., Lin, M., Beutel, A., Schulman, J., and Weng, L. (2024). Rule based rewards for fine-grained llm safety. In ICML 2024 Next Generation of AI Safety Workshop.
Muhammad, A., Asad, M., and Javed, A. R. (2020). Robust early stage botnet detection using machine learning. In ICCWS, pages 1–6, Pakistan. IEEE.
Muhammad, I. and Yan, Z. (2015). Supervised machine learning approaches: A survey. ICTACT Journal on Soft Computing, 5(3).
Muñoz, A., Ríos, R., Román, R., and López, J. (2023). A survey on the (in)security of trusted execution environments. Computers&Security, 129:103180. DOI: 10.1016/j.cose.2023.103180.
Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A., and Brown, S. D. (2004). An introduction to decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society, 18(6):275–285.
Nair, S. S. (2024). Securing against advanced cyber threats: A comprehensive guide to phishing, xss, and sql injection defense. JCSTS, 6(1):76–93.
Najafi Mohsenabad, H. and Tut, M. A. (2024). Optimizing cybersecurity attack detection in computer networks: A comparative analysis of bio-inspired optimization algorithms using the CSE-CIC-IDS 2018 dataset. Applied Sciences, 14(3).
Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic cash system.
Nam, D., Macvean, A., Hellendoorn, V., Vasilescu, B., and Myers, B. (2024). Using an llm to help with code understanding. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, pages 1–13.
Narayanan, A. and Clark, J. (2017). Bitcoin’s academic pedigree. Communications of the ACM, 60:36–45.
Narayanan, A., Bonneau, J., Felten, E., Miller, A., and Goldfeder, S. (2016). Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University Press.
Neira, A. B. d., Araujo, A. M. d., and Nogueira, M. (2023b). An intelligent system for DDoS attack prediction based on early warning signals. TNSM, 20(2):1254–1266.
Neira, A., Borges, L., Araújo, A., and Nogueira, M. (2023a). Unsupervised feature engineering approach to predict DDoS attacks. In IEEE Globecom, Malaysia. IEEE.
Nerurkar, P., Bhirud, S., Patel, D., Ludinard, R., Busnel, Y., and Kumari, S. (2021). Supervised learning model for identifying illegal activities in bitcoin. Applied Intelligence, 51:3824–3843.
Ngo, F. T., Agarwal, A., Govindu, R., and MacDonald, C. (2020). Malicious Software Threats, pages 793–813. Springer, Cham.
Nilashi, M., Ahmadi, H., Manaf, A. A., Rashid, T. A., Samad, S., Shahmoradi, L., Aljojo, N., and Akbari, E. (2020). Coronary heart disease diagnosis through self-organizing map and fuzzy support vector machine with incremental updates. IJFS, 22(4).
Ning, Z.,Wang, C., Chen, Y., Zhang, F., and Cao, J. (2023). Revisiting arm debugging features: Nailgun and its defense. IEEE Transactions on Dependable and Secure Computing, 20(1):574–589.
NIST (2018). Framework for improving critical infrastructure cybersecurity. Technical report, U.S. Department of Commerce.
Noel, S., Harley, E., Tam, K., Limiero, M., and Share, M. (2016). Chapter 4 - cygraph: Graph-based analytics and visualization for cybersecurity. In Gudivada, V. N., Raghavan, V. V., Govindaraju, V., and Rao, C., editors, Cognitive Computing: Theory and Applications, volume 35 of Handbook of Statistics, pages 117–167. Elsevier.
Nogueira, M., Borges, L. F., and Nakayama, F. (2021). Das redes vestíveis aos sistemas ciber-humanos: Uma perspectiva na comunicação e privacidade dos dados. SBRC, Sociedade Brasileira de Computação.
Noll, F. (2023). The controversial business of cash-to-crypto bitcoin atms. Payments System Research Briefing.
Noorbehbahani, F. and Saberi, M. (2020). Ransomware detection with semi-supervised learning. In 2020 ICCKE, pages 024–029, Irã. IEEE.
O’Reilly (2021). Chapter 1. introduction to tensorflow: Acessado em: 12/2021. [link].
Occlum (2024). Occlum - A library OS empowering everyone to run every application in secure enclaves. Disponível em: [link]. Acesso em: 07 ago. 2024.
OESDK (2024). Open Enclave SDK. Disponível em: [link]. Acesso em: 07 ago. 2024.
of Standards, N. I. and (NIST), T. (2023). Artificial intelligence risk management framework (ai rmf 1.0). Technical Report NIST AI 100-2e, National Institute of Standards and Technology.
Olabelurin, A., Veluru, S., Healing, A., and Rajarajan, M. (2015). Entropy clustering approach for improving forecasting in DDoS attacks. In ICNSC, pages 315–320, Taiwan. IEEE.
OP-TEE (2024). About OP-TEE. Disponível em: [link]. Acesso em: 07 ago. 2024.
OpenAI (2021). Dall·e: Creating images from text. [link]. Accessed: 2024-08-03.
OpenAI (2023a). Chatgpt: Optimizing language models for dialogue. [link]. Accessed on August 5, 2024.
OpenAI (2023b). Gpt-4 technical report. OpenAI. Accessed on August 5, 2024.
OpenAI (2024). Openai. [link]. Accessed on August 5, 2024.
P, R., CS, P., and M., B. (2016). Common pitfalls in statistical analysis: The perils of multiple testing. Perspect Clin Res., 7:106–107.
Paju, A., Javed, M. O., Nurmi, J., Savimäki, J., McGillion, B., and Brumley, B. B. (2023). SoK: A Systematic Review of TEE Usage for Developing Trusted Applications. In Proceedings of the 18th International Conference on Availability, Reliability and Security, pages 1–15, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3600160.36001691.
Papadopoulos, S., Theodoridis, G., and Tzovaras, D. (2013). Bgpfuse: using visual feature fusion for the detection and attribution of bgp anomalies. In VizSec, VizSec ’13, page 57–64, New York, NY, USA. Association for Computing Machinery.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830.
Pelloso, M., Vergutz, A., Santos, A., and Nogueira, M. (2018). A self-adaptable system for DDoS attack prediction based on the metastability theory. In GLOBECOM, pages 1–6, UAE. IEEE.
Phaladisailoed, T. and Numnonda, T. (2018). Machine learning models comparison for bitcoin price prediction. In 2018 10th international conference on information technology and electrical engineering (ICITEE), pages 506–511. IEEE.
Pise, N. N. and Kulkarni, P. (2008). A survey of semisupervised learning methods. In 2008 CIS, volume 2, pages 30–34.
Portella, A. C. F., do Nascimento, I. R., Alves, A. F., and Scheidt, G. N. (2015). Estatística básica para os cursos de ciências exatas e tecnológicas. EDUFT, Palmas, TO, 1. ed. edition.
Prates Jr, N. G., Andrade, A. M., de Mello, E. R.,Wangham, M. S., and Nogueira, M. (2021). Um ambiente de experimentaçao em cibersegurança para Internet das coisas. In Anais do VI Workshop do testbed FIBRE, pages 68–79. SBC.
Proti´c, D. D. (2018). Review of kdd cup ‘99, nsl-kdd and kyoto 2006+ datasets. Vojnotehniˇcki glasnik/Military Technical Courier, 66(3):580–596.
Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI. Accessed on August 5, 2024.
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving language understanding by generative pre-training.
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. In Journal of Machine Learning Research (JMLR). Accessed on August 5, 2024.
Raschka, S. (2020). Chapter 1: Introduction to machine learning and deep learning. Acessado em: 12/2021. [link].
Raschka, S., Patterson, J., and Nolet, C. (2020). Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence. Information, 11(4):193.
Rathan, K., Sai, S. V., and Manikanta, T. S. (2019). Crypto-currency price prediction using decision tree and regression techniques. In 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pages 190–194. IEEE.
Raynor, J., Crnovrsanin, T., Di Bartolomeo, S., South, L., Saffo, D., and Dunne, C. (2023). The state of the art in bgp visualization tools: A mapping of visualization techniques to cyberattack types. IEEE TVCG, 29(1):1059–1069.
Ren, P., Xiao, Y., Chang, X., Huang, P.-y., Li, Z., Chen, X., and Wang, X. (2021). A comprehensive survey of neural architecture search: Challenges and solutions. ACM Computing Surveys, 54(4).
Reuters (2024). Jpmorgan launches in-house chatbot as ai-based research analyst, ft reports. Reuters.
Rose, S., Borchert, O., Mitchell, S., and Connelly, S. (2020). Zero Trust Architecture. NIST special publication, 800:207. DOI: 10.6028/NIST.SP.800-207.
Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson.
Rust (2024). Rust. Disponível em: [link]. Acesso em: 11 ago. 2024.
Sabt, M., Achemlal, M., and Bouabdallah, A. (2015). Trusted execution environment: What it is, and what it is not. In 2015 IEEE Trustcom/BigData-SE/ISPA, volume 1, pages 57–64.
Salim, M. M., Rathore, S., and Park, J. H. (2020). Distributed denial of service attacks and its defenses in IoT: a survey. The Journal of Supercomputing, 76(7):5320–5363.
Salisu, S., Filipov, V., and Pene, B. (2023). Blockchain forensics: A modern approach to investigating cybercrime in the age of decentralisation. In Proceedings of the 18th International Conference on Cyber Warfare and Security.
Sapienza, A., Ernala, S. K., Bessi, A., Lerman, K., and Ferrara, E. (2018). DISCOVER: Mining online chatter for emerging cyber threats. In WWW ’18, page 983–990, France. WWW.
Schmidgall, S., Ziaei, R., Achterberg, J., Kirsch, L., Hajiseyedrazi, S., and Eshraghian, J. (2024). Brain-inspired learning in artificial neural networks: a review. APL Machine Learning, 2(2).
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61:85–117.
Schnoering, H. and Vazirgiannis, M. (2023). Heuristics for detecting coinjoin transactions on the bitcoin blockchain.
Scikit-learn (2024). Scikit-learn: Machine learning in python.
Sendin, I. d. S. (2018). On detecting cold storage transactions on bitcoin’s blockchain. In Anais do XVIII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais, pages 155–166, Porto Alegre, RS, Brasil. SBC.
Sennrich, R., Vamvas, J., and Mohammadshahi, A. (2023). Mitigating hallucinations and off-target machine translation with source-contrastive and language-contrastive decoding. arXiv preprint arXiv:2309.07098.
Seres, I. A., Gulyás, L., a. Nagy, D., and Burcsi, P. (2019). Topological analysis of bitcoin’s lightning network. pages 1–7.
Serpeloni, C. V. C., Malta, E. B. S., Alencar, J. O., and Lobo, R. L. (2024). Uma abordagem sobre a gestão e tratamento de eventos e incidentes utilizando o microsoft sentinel. JTnI, 4(2):22–22.
Sev-Snp, A. (2020). Strengthening vm isolation with integrity protection and more. White Paper, January, 53:1450–1465.
Sewak, M. (2019). Deep reinforcement learning. Springer.
Shah, A., Chauhan, Y., and Chaudhury, B. (2021). Principal component analysis based construction and evaluation of cryptocurrency index. Expert systems with applications, 163:113796.
Sharma, V., Manocha, T., Garg, S., Sharma, S., Garg, A., and Sharma, R. (2023). Growth of cyber-crimes in society 4.0. In 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM), pages 1–6.
Shen, Y., Tian, H., Chen, Y., Chen, K., Wang, R., Xu, Y., Xia, Y., and Yan, S. (2020). Occlum: Secure and efficient multitasking inside a single enclave of Intel SGX. In Proceedings of the 25th International Conference on Architectural Support for Programming Languages and Operating Systems, pages 955–970, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/3373376.337846.
Shih, M.-W., Kumar, M., Kim, T., and Gavrilovska, A. (2016). Snfv: Securing nfv states by using sgx. In Proceedings of the 2016 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization, pages 45–48. DOI: 10.1145/2876019.2876032.
Shin, S., Gu, G., Reddy, N., and Lee, C. P. (2011). A large-scale empirical study of conficker. IEEE Transactions on Information Forensics and Security, 7(2):676–690.
Sihwail, R., Omar, K., and Ariffin, K. Z. (2018). A survey on malware analysis techniques: Static, dynamic, hybrid and memory analysis. Int. J. Adv. Sci. Eng. Inf. Technol, 8(4-2):1662–1671.
Silva, J. L. d. C. e., Fernandes, M.W., and de Almeida, R. L. F. (2015). Estatística e Probabilidade. EdUECE, Fortaleza, CE, 3. ed. edition.
Singh, A., Thakur, N., and Sharma, A. (2016). A review of supervised machine learning algorithms. In 2016 3rd international conference on computing for sustainable global development (INDIACom), pages 1310–1315. Ieee.
Singh, P. (2019). Supervised Machine Learning, pages 117–159. Apress, CA.
Software Freedom Conservancy (2024). Git. Acesso em: 09 ago 2024.
Somani, G., Gaur, M. S., Sanghi, D., Conti, M., and Buyya, R. (2017). DDoS attacks in cloud computing: Issues, taxonomy, and future directions. Comput. Commun., 107:30–48.
Somvanshi, M., Chavan, P., Tambade, S., and Shinde, S. (2016). A review of machine learning techniques using decision tree and support vector machine. In 2016 international conference on computing communication control and automation (ICCUBEA), pages 1–7. IEEE.
Song, Y., Zhao, W., Tian, Y., and Wang, B. (2024). Hsm: A hybrid storage method based on the heat of data and global disk space utilization. IEEE Access, 12:48630–48639.
Steele, R. D. (1990). Intelligence in the 1990’s: Recasting national security in a changing world. American Intelligence Journal, 11(3):29–36.
Stütz, R., Stockinger, J., Moreno-Sanchez, P., Haslhofer, B., and Maffei, M. (2022). Adoption and actual privacy of decentralized coinjoin implementations in bitcoin. pages 254–267. Association for Computing Machinery (ACM).
Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
Syed, N. F., Shah, S. W., Shaghaghi, A., Anwar, A., Baig, Z., and Doss, R. (2022). Zero Trust Architecture (ZTA): A Comprehensive Survey. IEEE Access, 10:57143–57179. DOI: 10.1109/ACCESS.2022.3174679.
Szabo, N. (1997). Formalizing and securing relationships on public networks. First Monday, 2.
Tabatabaei, F. and Wells, D. (2016). Osint in the context of cyber-security. Open Source Intelligence Investigation: From Strategy to Implementation, pages 213–231.
Takemoto, K. (2024). All in how you ask for it: Simple black-box method for jailbreak attacks. Applied Sciences, 14(9):3558.
Team, C. (2024). Money laundering and cryptocurrency. trends and new techniques for detection and investigation. Technical report, Chainalysis.
Thakur, K., Qiu, M., Gai, K., and Ali, M. L. (2015). An investigation on cyber security threats and security models. In 2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing, pages 307–311.
Thirunavukarasu, A., Ting, D., Elangovan, K., et al. (2023). Large language models in medicine. Nature Medicine, 29:1930–1940.
Tironsakkul, T., Maarek, M., Eross, A., and Just, M. (2022). The unique dressing of transactions: Wasabi coinjoin transaction detection. In Proceedings of the 2022 European Interdisciplinary Cybersecurity Conference, EICC ’22, page 21–28, New York, NY, USA. Association for Computing Machinery.
Tiwari, V. K. and Dwivedi, R. (2016). Analysis of cyber attack vectors. In 2016 ICCCA, pages 600–604. IEEE.
Torrez, A. S. (2023). El rastro virtual de las criptomonedas.
Touvron, H., Gontijo-Lopes, L.,Wolf, T., and et al. (2023). Llama: Open and efficient foundation language models. arXiv preprint. Accessed on August 5, 2024.
Trautman, L. J. (2014). Virtual currencies; bitcoin & what now after liberty reserve, silk road, and mt. gox? Richmond Journal of Law and Technology, 20(4).
Ubuntu Manpage Repository (2024). gcore. Acesso em: 09 ago 2024.
Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Silberstein, M., Wenisch, T. F., Yarom, Y., and Strackx, R. (2018). Foreshadow: Extracting the keys to the Intel SGX kingdom with transient out-of-order execution. In Proceedings of the 27th USENIX Security Symposium. USENIX Association. See also technical report Foreshadow-NG.
Vassilev, A., Oprea, A., Fordyce, A., and Anderson, H. (2024). Adversarial machine learning: A taxonomy and terminology of attacks and mitigations.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.
Vauclair, M. (2011). Secure Element, pages 1115–1116. Springer US, Boston, MA.
Veale, M. and Zuiderveen Borgesius, F. (2021). Demystifying the draft eu artificial intelligence act—analysing the good, the bad, and the unclear elements of the proposed approach. Computer Law Review International, 22(4):97–112.
Vegesna, V. V. (2023). Adopting a conceptual architecture to mitigate an iot zero-day threat that might result in a zero-day attack with regard to operational costs and communication overheads. IJCESR, 10:9–17.
Vičič, J. and Tošić, A. (2022). Application of benford’s law on cryptocurrencies. Journal of Theoretical and Applied Electronic Commerce Research, 17.
Vidal-Tomás, D. (2022). Which cryptocurrency data sources should scholars use? International Review of Financial Analysis, 81:102061.
Wagh, A., Pawar, R., Wable, N., Wandhekar, S., and Dighe, M. S. (2024). Detection of cyber attacks and network attacks using machine learning algorithms. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), 4(2):414–417.
Wallace, E., Feng, S., Kandpal, N., Gardner, M., and Singh, S. (2019). Universal adversarial triggers for attacking and analyzing nlp. arXiv preprint arXiv:1908.07125.
Wallace, E., Xiao, K., Leike, R.,Weng, L., Heidecke, J., and Beutel, A. (2024). The instruction hierarchy: Training llms to prioritize privileged instructions. arXiv preprint arXiv:2404.13208.
Wallace, E., Zhao, T. Z., Feng, S., and Singh, S. (2020). Concealed data poisoning attacks on nlp models. arXiv preprint arXiv:2010.12563.
Wang, N., Chen, Y., Xiao, Y., Hu, Y., Lou, W., and Hou, Y. T. (2023). Manda: On adversarial example detection for network intrusion detection system. IEEE Transactions on Dependable and Secure Computing, 20(2):1139–1153.
Wang, Y., Li, F., Hu, J., and Zhuang, D. (2018). K-means algorithm for recognizing fraud users on a bitcoin exchange platform. In Proceedings of the 18th International Conference on Electronic Business.
Wang, Z. and Zhang, Y. (2017). DDoS event forecasting using Twitter data. In IJCAI, page 4151–4157, Australia. AAAI Press.
Wang, Z., Chaliasos, S., Qin, K., Zhou, L., Gao, L., Berrang, P., Livshits, B., and Gervais, A. (2023). On how zero-knowledge proof blockchain mixers improve, and worsen user privacy. In ACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023, pages 2022–2032. Association for Computing Machinery, Inc.
Wang, Z., Hong, T., and Piette, M. A. (2020). Building thermal load prediction through shallow machine learning and deep learning. Applied Energy, 263:114683.
Weber, M., Domeniconi, G., Chen, J., Weidele, D. K. I., Bellei, C., Robinson, T., and Leiserson, C. E. (2019). Anti-money laundering in bitcoin: Experimenting with graph convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591.
Wei, A., Haghtalab, N., and Steinhardt, J. (2024). Jailbroken: How does llm safety training fail? Advances in Neural Information Processing Systems, 36.
Weisse, O., Van Bulck, J., Minkin, M., Genkin, D., Kasikci, B., Piessens, F., Silberstein, M., Strackx, R., Wenisch, T. F., and Yarom, Y. (2018). Foreshadow-NG: Breaking the virtual memory abstraction with transient out-of-order execution. Technical report. See also USENIX Security paper Foreshadow.
Wlosinski, L. G. (2019). Cybersecurity takedowns. ISACA JOURNAL, 6.
Wood, G. et al. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, 151(2014):1–32.
Wu, L., Hu, Y., Zhou, Y., Wang, H., Luo, X., Wang, Z., Zhang, F., and Ren, K. (2021a). Towards understanding and demystifying bitcoin mixing services. In Proceedings of the Web Conference 2021, pages 33–44.
Wu, L., Hu, Y., Zhou, Y., Wang, H., Luo, X., Wang, Z., Zhang, F., and Ren, K. (2021b). Towards understanding and demystifying bitcoin mixing services. In Proceedings of the World Wide Web Conference. The Web Conference.
Xi, H., Fan, Z., Shenwen, L., Hongliang, M., and Ketai, H. (2020). A review on data analysis of bitcoin transaction entity. In 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), pages 159–164.
Xi, H., Ketai, H., Shenwen, L., Jinglin, Y., and Hongliang, M. Bitcoin address clustering method based on multiple heuristic conditions. IET Blockchain, 2:44–56.
Xia, P., Wang, H., Zhang, B., Ji, R., Gao, B., Wu, L., Luo, X., and Xu, G. (2020). Characterizing cryptocurrency exchange scams. Computers & Security, 98:101993.
Yang, Z., Meng, Z., Zheng, X., andWattenhofer, R. (2024). Assessing adversarial robustness of large language models: An empirical study. arXiv preprint arXiv:2405.02764.
Yao, K., Zweig, G., Hwang, M.-Y., Shi, Y., and Yu, D. (2013). Recurrent neural networks for language understanding. In Interspeech, pages 2524–2528.
Yeboah-Ofori, A. and Brimicombe, A. (2018). Cyber intelligence and osint: Developing mitigation techniques against cybercrime threats on social media. International Journal of Cyber-Security and Digital Forensics (IJCSDF), 7(1):87–98.
Yigit, Y., Buchanan, W. J., Tehrani, M. G., and Maglaras, L. (2024). Review of generative ai methods in cybersecurity.
Ying, X. (2019). An overview of overfitting and its solutions. In Journal of physics: Conference series, volume 1168, page 022022. IOP Publishing.
Yuan, Y., Jiao, W., Wang, W., Huang, J.-t., He, P., Shi, S., and Tu, Z. (2023). GPT-4 is too smart to be safe: Stealthy chat with LLMs via cipher.
Zargar, S. T., Joshi, J., and Tipper, D. (2013). A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutor., 15(4):2046–2069.
Zhang, W., Yang, G., Lin, Y., Ji, C., and Gupta, M. M. (2018). On definition of deep learning. In 2018 World Automation Congress (WAC), pages 1–5.
Zhang, Y., Li, Y., Cui, L., Cai, D., Liu, L., Fu, T., Huang, X., Zhao, E., Zhang, Y., Chen, Y., et al. (2023). Siren’s song in the ai ocean: a survey on hallucination in large language models. arXiv preprint arXiv:2309.01219.
Zhang, Y., Wang, J., and Luo, J. (2020). Heuristic-based address clustering in bitcoin. IEEE Access, 8:210582–210591.
Zhao, H., Liu, Z., Wu, Z., Li, Y., Yang, T., Shu, P., Xu, S., Dai, H., Zhao, L., Mai, G., et al. (2024). Revolutionizing finance with llms: An overview of applications and insights. arXiv preprint arXiv:2401.11641.
Zhou, W., Wang, X., Xiong, L., Xia, H., Gu, Y., Chai, M., Zhu, F., Huang, C., Dou, S., Xi, Z., et al. (2024). Easyjailbreak: A unified framework for jailbreaking large language models. arXiv preprint arXiv:2403.12171.
Zhou, X. and Belkin, M. (2014). Chapter 22 - semi-supervised learning. In Academic Press Library in Signal Processing: Volume 1, volume 1 of Academic Press Library in Signal Processing, pages 1239–1269. Elsevier.
Downloads
Data de publicação
Categorias
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.