Minicursos do XLII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos
Palavras-chave:
Placas de Redes Inteligentes, WebAssembly, Orientação de Conteúdo para Streaming de Vídeos Adaptativos, Pesquisa Experimental em Cibersegurança, Desaprendizado de Máquinas, LGPD, Bases de Dados Sintéticas, Redes AdversariaisSinopse
O livro Minicursos do 42º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos contém os minicursos selecionados para apresentação no SBRC 2024, realizado em Niterói entre os dias 20 e 24 de maio de 2024. O Livro dos Minicursos do SBRC tem sido, tradicionalmente, utilizado como material de estudo de alta qualidade por alunos de graduação e pós-graduação, bem como por profissionais da área. As sessões de apresentação dos minicursos são, também, uma importante oportunidade para atualização de conhecimentos da comunidade científica e para a complementação da formação dos participantes. O principal objetivo dos Minicursos do SBRC é oferecer treinamento e atualização de curto prazo em temas normalmente não cobertos nas estruturas curriculares e que possuem grande interesse entre acadêmicos e profissionais.
Capítulos
-
1. Content Steering: Leveraging the Computing Continuum to Support Adaptive Video Streaming
-
2. SmartNICs: The Next Leap in Networking
-
3. Generation of Synthetic Datasets in the Context of Computer Networks using Generative Adversarial Networks
-
4. Desaprendizado de Maquinas e a LGPD: da privacidade ao direito ao esquecimento
-
5. Testbeds para Pesquisa Experimental em Cibersegurança: Da Teoria à Prática
-
6. WebAssembly: Uma Introdução
Downloads
Referências
A. Bentaleb, A. C. Begen, S. Harous, and R. Zimmermann. Want to play dash? a game theoretic approach for adaptive streaming over http. In Proceedings of the 9th ACM Multimedia Systems Conference, MMSys ’18, pages 13–26, New York, NY, USA, 2018. Association for Computing Machinery.
A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann. A survey on bitrate adaptation schemes for streaming media over http. IEEE Communications Surveys & Tutorials, 21(1):562–585, 2019.
A. Bentaleb, M. Lim, M. N. Akcay, A. C. Begen, and R. Zimmermann. Bitrate adaptation and guidance with meta reinforcement learning. IEEE Transactions on Mobile Computing, (01):1–14, mar 5555.
A. Diaconescu, B. Porter, R. Rodrigues, and E. Pournaras. Hierarchical selfawareness and authority for scalable self-integrating systems. In 2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS* W), pages 168–175. IEEE, 2018.
A. Goscinski and M. Bearman. Resource management in large distributed systems. ACM SIGOPS Operating Systems Review, 24(4):7–25, 1990.
A. Kyriakidou, N. Karelos, and A. Delis. Video-streaming for fast moving users in 3g mobile networks. In Proceedings of the 4th ACM International Workshop on Data Engineering for Wireless and Mobile Access, MobiDE’05, pages 65–72, New York, NY, USA, 2005. Association for Computing Machinery.
A. Leivadeas and M. Falkner. A survey on intent-based networking. IEEE Communications Surveys and Tutorials, 25(1):625–655, 2023.
A. T. Akabane, R. Immich, R. W. Pazzi, E. R. M. Madeira, and L. A. Villas. Exploiting vehicular social networks and dynamic clustering to enhance urban mobility management. Sensors, 19(16):3558, Aug 2019.
ADJIH, Cedric et al. FIT IoT-LAB: A large scale open experimental IoT testbed. In: IEEE. 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT). 2015. P. 459–464.
Adobe (2021). Adobe flash player eol general information page. [link].
Alexey Kurakin, Shuang Song, Steve Chien, Roxana Geambasu, Andreas Terzis, and Abhradeep Thakurta. Toward training at imagenet scale with differential privacy. arXiv preprint arXiv:2201.12328, 2022.
ALSAEDI, Abdullah et al. TON_IoT telemetry dataset: A new generation dataset of IoT and IIoT for data-driven intrusion detection systems. Ieee Access, IEEE, v. 8, p. 165130–165150, 2020.
Amar Meddahi, Hassen Drira, and Ahmed Meddahi. Sip-gan: Generative adversarial networks for sip traffic generation. In 2021 International Symposium on Networks, Computers and Communications (ISNCC), pages 1–6. IEEE, 2021.
Amazon (2023). Alexa Rank. [link].
André, P. M., Stiévenart, Q., and Ghafari, M. (2022). Developers struggle with authentication in Blazor WebAssembly. In Proceedings of the 38th International Conference on Software Maintenance and Evolution, pages 389–393, Limassol, Cyprus. IEEE.
Apodaca, R. L. (2020). First steps in webassembly: Hello world. Depth-First. [link].
Ariel Góes de Castro, Fábio Rossi, Arthur Lorenzon, Marcelo Caggiani Luizelli, Francisco Vogt, Rumenigue Hohemberger, and Rodrigo Mansilha. Orchestrating in-band data plane telemetry with machine learning. IEEE Communications Letters, 23:20, 10 2019.
Arteaga, J. C. (2022). Artificial Software Diversification for WebAssembly. PhD thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
Arteaga, J. C., Laperdrix, P., Monperrus, M., and Baudry, B. (2022). Multi-variant execution at the edge. In Proceedings of the 9th Workshop on Moving Target Defense, pages 11–22, Los Angeles, CA, USA. ACM.
Arteaga, J. C., Malivitsis, O., Perez, O. V., Baudry, B., and Monperrus, M. (2021). CROW: Code diversification for WebAssembly. In Proceedings of the Workshop on Measurements, Attacks, and Defenses for the Web, Virtual Event. Internet Society.
B. Alt, T. Ballard, R. Steinmetz, H. Koeppl, and A. Rizk. Cba: Contextual quality adaptation for adaptive bitrate video streaming. In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pages 1000–1008, 2019.
B. M. Cordeiro, R. Rodrigues Filho, I. G. Júnior, and F. M. Costa. Steer: An architecture to support self-adaptive iot networks for indoor monitoring applications. Journal of Internet Services and Applications, 14(1):107–123, 2023.
B. Taraghi, H. Amirpour, and C. Timmerer. Multi-codec ultra high definition 8k mpeg-dash dataset. In Proceedings of the 13th ACM Multimedia Systems Conference, MMSys ’22, pages 216–220, New York, NY, USA, 2022. Association for Computing Machinery.
Baik Dowoo, Yujin Jung, and Changhee Choi. Pcapgan: Packet capture file generator by style-based generative adversarial networks. In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pages 1149–1154. IEEE, 2019.
Balakrishnan, A. and Schulze, C. (2005). Code obfuscation literature survey. CS701 Construction of Compilers, 19.
BALDIN, Ilya et al. Fabric: A national-scale programmable experimental network infrastructure. IEEE Internet Computing, IEEE, v. 23, n. 6, p. 38–47, 2019.
Bandhakavi, S., King, S. T., Madhusudan, P., and Winslett, M. (2010). VEX: Vetting browser extensions for security vulnerabilities. In Proceedings of the 19th USENIX Security Symposium, Washington, DC, USA. USENIX Association.
Barach, D., Linguaglossa, L., Marion, D., Pfister, P., Pontarelli, S., and Rossi, D. (2018). High-speed software data plane via vectorized packet processing. IEEE Communications Magazine, 56(12):97–103.
Barth, A., Jackson, C., Reis, C., and The Google Chrome Team, . (2008). The security architecture of the Chromium browser. Technical report, Stanford University. [link].
Bastys, I., Algehed, M., Sjösten, A., and Sabelfeld, A. (2022). SecWasm: Information flow control for WebAssembly. In Proceedings of the 29th International Static Analysis Symposium, pages 74–103, Auckland, New Zealand. Springer.
Battagline, R. (2021). The Art of WebAssembly: Build Secure, Portable, High-Performance Applications. No Starch Press.
Baumgärtner, L., Höchst, J., and Meuser, T. (2019). B-DTN7: Browser-based disruption-tolerant networking via bundle protocol 7. In Proceedings of the 6th International Conference on Information and Communication Technologies for Disaster Management, pages 1–8, Paris, France. IEEE.
BENZEL, Terry. The Science of Cyber Security Experimentation: The DETER Project. In: PROCEEDINGS of the 27th Annual Computer Security Applications Conference. Orlando, Florida, USA: Association for Computing Machinery, 2011. (ACSAC ’11), p. 137–148. ISBN 9781450306720. DOI: 10.1145/2076732.2076752. Disponível em: [link].
BERMAN, Mark et al. GENI: A federated testbed for innovative network experiments. Computer Networks, Elsevier, v. 61, p. 5–23, 2014.
Bhansali, S., Aris, A., Acar, A., Oz, H., and Uluagac, A. S. (2022). A first look at code obfuscation for WebAssembly. In Proceedings of the 15th Conference on Security and Privacy in Wireless and Mobile Networks, pages 140–145, San Antonio, TX, USA. ACM.
Bian, W., Meng, W., and Wang, Y. (2019). Poster: Detecting WebAssembly-based cryptocurrency mining. In Proceedings of the 26th Conference on Computer and Communications Security, pages 2685–2687, London, UK. ACM.
Bian, W., Meng, W., and Zhang, M. (2020). Minethrottle: Defending againstWasm in-browser cryptojacking. In Proceedings of The Web Conference, pages 3112–3118, Taipei, Taiwan. ACM.
Bosamiya, J., Lim, W. S., and Parno, B. (2022). Provably-Safe multilingual software sandboxing using WebAssembly. In Proceedings of the 31st USENIX Security Symposium, pages 1975–1992, Boston, MA, USA. USENIX Association.
Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. (2014a). P4: programming protocol-independent packet processors. SIGCOMM Comput. Commun. Rev., 44(3):87–95.
Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. (2014b). P4: programming protocol-independent packet processors. SIGCOMM Comput. Commun. Rev., 44(3):87–95.
Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A., Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot, N. (2021). Machine unlearning. In 2021 IEEE Symposium on Security and Privacy (SP), pages 141–159. IEEE.
Brito, T., Lopes, P., Santos, N., and Santos, J. F. (2022). Wasmati: An efficient static vulnerability scanner for WebAssembly. Computers & Security, 118:102745.
Brophy, J. and Lowd, D. (2021). Machine unlearning for random forests. In International Conference on Machine Learning, pages 1092–1104. PMLR.
Bruyat, J., Champin, P.-A., Médini, L., and Laforest, F. (2021). WasmTree: Web Assembly for the semantic Web. In Proceedings of the European Semantic Web Conference, pages 582–597, Virtual Event. Springer.
Buchele, G. T., Teza, P., Müller, I. R. F., and Souza, J. A. d. (2016). Desaprendizagem organizacional: um estudo de campo na universidade federal de santa catarina. Revista de Administração Contemporânea, 20:64–83.
BUDIGIRI, Gerald et al. Network policies in kubernetes: Performance evaluation and security analysis. In: IEEE. 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). 2021. P. 407–412.
BytecodeAlliance (2021a). Wasmtime. [link].
BytecodeAlliance (2021b). Wasmtime. [link].
BytecodeAlliance (2023). Lucet has reached End-of-life. [link].
BytecodeAlliance (2024). Wasmtime. [link].
C. Benzaid and T. Taleb. Ai-driven zero touch network and service management in 5g and beyond: Challenges and research directions. IEEE Network, 34(2):186–194, 2020.
C. E. Rothenberg, D. A. Lachos Perez, N. F. Saraiva de Sousa, R. V. Rosa, R. U. Mustafa, M. T. Islam, and P. H. Gomes. Intent-based control loop for dash video service assurance using ml-based edge qoe estimation. In 2020 6th IEEE Conference on Network Softwarization (NetSoft), pages 353–355, 2020.
C. Puliafito, C. Cicconetti, M. Conti, E. Mingozzi, and A. Passarella. Balancing local vs. remote state allocation for micro-services in the cloud-edge continuum. Pervasive and Mobile Computing, 93:101808, 2023.
C. Quadros, E. Cerqueira, A. Neto, A. Riker, R. Immich, and M. Curado. A mobile qoe architecture for heterogeneous multimedia wireless networks. In 2012 IEEE Globecom Workshops, pages 1057–1061, Dec 2012.
C. Sicari, D. Balouek, M. Parashar, and M. Villari. Event-driven faas workflows for enabling iot data processing at the cloud edge continuum. In Proceedings of the IEEE/ACM 16th International Conference on Utility and Cloud Computing, UCC ’23, New York, NY, USA, 2024. Association for Computing Machinery.
Cannarozzo, L., Morais, T. B., Lorenzon, A. F., de Souza, P. S. S., Gobatto, L. R., Lamb, I. P., Duarte, P. A. P. R., Azambuja, J. R. F., Lorenzon, A. F., Rossi, F. D., Cordeiro, W., and Luizelli, M. C. (2024). Spinner: Enabling in-network flow clustering entirely in a programmable data plane. In Proceedings of the IEEE/IFIP Network Operations and Management Symposium (NOMS 2024), pages 1–9.
Cao, Y. and Yang, J. (2015). Towards making systems forget with machine unlearning. In 2015 IEEE symposium on security and privacy, pages 463–480. IEEE.
Capanema, W. A. (2020). A responsabilidade civil na lei geral de proteção de dados. Cadernos Jurídicos, São Paulo, ano, 21:163–170.
Carroll Gray-Preston. Ai network applications, Sep 2023.
Chamola, V., Goyal, A., Sharma, P., Hassija, V., Binh, H. T. T., and Saxena, V. (2023). Artificial intelligence-assisted blockchain-based framework for smart and secure emr management. Neural Computing and Applications, 35(31):22959–22969.
Chao, W.-L. (2011). Machine learning tutorial. Digital Image and Signal Processing.
Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M., and Zhang, Y. (2021). When machine unlearning jeopardizes privacy. In Proceedings of the 2021 ACM SIGSAC conference on computer and communications security, pages 896–911.
Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M., and Zhang, Y. (2022). Graph unlearning. In Proceedings of the 2022 ACM SIGSAC conference on computer and communications security, pages 499–513.
Chen, W., Sun, Z., Wang, H., Luo, X., Cai, H., and Wu, L. (2022). WASAI: Uncovering vulnerabilities in Wasm smart contracts. In Proceedings of the 31st International Symposium on Software Testing and Analysis, pages 703–715, Virtual Event. ACM.
Cheng Qian, Wei Yu, Chao Lu, David Griffith, and Nada Golmie. Toward generative adversarial networks for the industrial internet of things. IEEE Internet of Things Journal, 9(19):19147–19159, 2022.
Cheng, J., Dasoulas, G., He, H., Agarwal, C., and Zitnik, M. (2023). Gnndelete: A general strategy for unlearning in graph neural networks. arXiv preprint arXiv:2302.13406.
CHERNYSHEV, Maxim et al. Internet of things (iot): Research, simulators, and testbeds. IEEE Internet of Things Journal, IEEE, v. 5, n. 3, p. 1637–1647, 2017.
Chole, S., Fingerhut, A., Ma, S., Sivaraman, A., Vargaftik, S., Berger, A., Mendelson, G., Alizadeh, M., Chuang, S.-T., Keslassy, I., Orda, A., and Edsall, T. (2017). Drmt: Disaggregated programmable switching. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication, SIGCOMM ’17, page 1–14, New York, NY, USA.
CHOULIARAS, Nestoras et al. Cyber Ranges and TestBeds for Education, Training, and Research. Applied Sciences, v. 11, n. 4, 2021. ISSN 2076-3417. DOI: 10.3390/app11041809. Disponível em: [link].
CHUN, Brent et al. Planetlab: an overlay testbed for broad-coverage services. ACM SIGCOMM Computer Communication Review, ACM New York, NY, USA, v. 33, n. 3, p. 3–12, 2003.
Chundawat, V. S., Tarun, A. K., Mandal, M., and Kankanhalli, M. (2023a). Can bad teaching induce forgetting? unlearning in deep networks using an incompetent teacher. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 7210–7217.
Chundawat, V. S., Tarun, A. K., Mandal, M., and Kankanhalli, M. (2023b). Zero-shot machine unlearning. IEEE Transactions on Information Forensics and Security.
CLAASSEN, Joris; KONING, Ralph; GROSSO, Paola. Linux containers networking: Performance and scalability of kernel modules. In: IEEE. NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium. 2016. P. 713–717.
Cong Zou, Fang Yang, Jian Song, and Zhu Han. Generative adversarial network for wireless communication: Principle, application, and trends. IEEE Communications Magazine, pages 1–7, 2023.
Cong, W. and Mahdavi, M. (2022). Grapheditor: An efficient graph representation learning and unlearning approach.
Content steering for dash, 2022. Accessed 28-oct-2023.
CUNHA PONTES, Edgard da et al. FABRIC Testbed from the Eyes of a Network Researcher. In: SBC. ANAIS do II Workshop de Testbeds. 2023. P. 38–49.
D. Liu, Z. Wang, and J. Zhang. Video stream distribution scheme based on edge computing network and user interest content model. IEEE Access, 8:30734–30744, 2020.
D. Silhavy, W. Law, S. Pham, A. C. Begen, A. Giladi, and A. Balk. Dynamic cdn switching-dash-if content steering in dash. js. In Proceedings of the 2nd Mile-High Video Conference, pages 130–131, 2023.
Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning of language models. arXiv preprint arXiv:2110.06500, 2021.
Dang, Q.-V. (2021). Right to be forgotten in the age of machine learning. In Advances in Digital Science: ICADS 2021, pages 403–411. Springer.
De Macedo, J., Abreu, R., Pereira, R., and Saraiva, J. (2021). On the runtime and energy performance of WebAssembly: Is WebAssembly superior to JavaScript yet? In 2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW), pages 255–262. IEEE.
De Macedo, J., Abreu, R., Pereira, R., and Saraiva, J. (2022). WebAssembly versus JavaScript: Energy and runtime performance. In Proceedings of the International Conference on ICT for Sustainability, pages 24–34, Plovdiv, Bulgaria. IEEE.
Dejaeghere, J., Gbadamosi, B., Pulls, T., and Rochet, F. (2023). Comparing security in eBPF and WebAssembly. In Proceedings of the 1st Workshop on EBPF and Kernel Extensions, pages 35–41, New York, NY, USA. ACM.
DEMEESTER, Piet et al. Fed4fire–the largest federation of testbeds in europe. In: BUILDING the future internet through FIRE. River Publishers, 2022. P. 87–109.
Disselkoen, C., Renner, J., Watt, C., Garfinkel, T., Levy, A., and Stefan, D. (2019). Position paper: Progressive memory safety for WebAssembly. In Proceedings of the 8th InternationalWorkshop on Hardware and Architectural Support for Security and Privacy, pages 1–8, Phoenix, AZ, USA. ACM.
Donovan, A., Muth, R., Chen, B., and Sehr, D. (2010). PNaCl: Portable native client executables. White paper, Google. [link].
DPDK (2024). Internet.
Du, M., Chen, Z., Liu, C., Oak, R., and Song, D. (2019). Lifelong anomaly detection through unlearning. In Proceedings of the 2019 ACM SIGSAC conference on computer and communications security, pages 1283–1297.
Durumeric, Z. (2023). Cached chrome top million websites. [link].
E. Coronado, R. Behravesh, T. Subramanya, A. Fernà ndez-Fernà ndez, M. S. Siddiqui, X. Costa-Pérez, and R. Riggio. Zero touch management: A survey of network automation solutions for 5g and 6g networks. IEEE Communications Surveys and Tutorials, 24(4):2535–2578, 2022.
E. Liotou, T. Hoßfeld, C. Moldovan, F. Metzger, D. Tsolkas, and N. Passas. The Value of Context-Awareness in Bandwidth-Challenging HTTP Adaptive Streaming Scenarios, pages 128–150. Springer International Publishing, Cham, 2018.
E. S. Gama, L. O. N. De Araujo, R. Immich, and L. F. Bittencourt. Video streaming analysis in multi-tier edge-cloud networks. In 2021 8th International Conference on Future Internet of Things and Cloud (FiCloud), pages 19–25, Aug 2021.
E. S. Gama, N. B. V, R. Immich, and L. F. Bittencourt. An orchestrator architecture for multi-tier edge/cloud video streaming services. In 2023 IEEE International Conference on Edge Computing and Communications (EDGE), pages 190–196, 2023.
E. S. Gama, R. Immich, and L. F. Bittencourt. Towards a multi-tier fog/cloud architecture for video streaming. In 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), pages 13–14, 2018.
E. Zavala, X. Franch, and J. Marco. Adaptive monitoring: A systematic mapping. Information and Software Technology, 105:161–189, 2019.
Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.
Ekstrand, M. D., Ludwig, M., Konstan, J. A., and Riedl, J. T. (2011). Rethinking the recommender research ecosystem: reproducibility, openness, and lenskit. In Proceedings of the fifth ACM conference on Recommender systems, pages 133–140.
Emscripten (2021). Emscripten is a complete compiler toolchain to WebAssembly, using LLVM, with a special focus on speed, size, and theWeb platform. [link].
Enyan Dai and Suhang Wang. Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information, 2021.
Eoin Brophy, Zhengwei Wang, Qi She, and Tomás Ward. Generative adversarial networks in time series: A systematic literature review. ACM Comput. Surv., 55(10), feb 2023.
EOSIO (2023). EOSIO is a next-generation, open-source blockchain protocol with industry-leading transaction speed and flexible utility. [link].
F. Aklamanu, S. Randriamasy, E. Renault, I. Latif, and A. Hebbar. Intent-based real-time 5g cloud service provisioning. In 2018 IEEE Globecom Workshops (GC Wkshps), pages 1–6, 2018.
F. Alessi, A. Tundo, M. Mobilio, O. Riganelli, and L. Mariani. Reprobes: An architecture for reconfigurable and adaptive probes, 2024.
F. Pisani, F. de Oliveira, E. S. Gama, R. Immich, L. F. Bittencourt, and E. Borin. Fog computing on constrained devices: Paving the way for the future iot. Advances in Edge Computing: Massive Parallel Processing and Applications, 35:22, 2020.
F. Santos, R. Immich, and E. R. Madeira. Multimedia services placement algorithm for cloud-fog hierarchical environments. Computer Communications, 191:78–91, 2022.
Farnoush Falahatraftar, Samuel Pierre, and Steven Chamberland. A conditional generative adversarial network based approach for network slicing in heterogeneous vehicular networks. Telecom, 2(1):141–154, 2021.
Feldman, R. (2019). Why isn’t functional programming the norm? [link].
Felker, R. (2023). Musl libc. [link].
Ferreira, A. d. H. (1999). Novo Aurélio Século XXI: o dicionário da língua portuguesa. rev. e ampl. Nova Fronteira.
FLANAGAN, Heather et al. Enabling efficient electronic collaboration between LIGO and other astronomy communities using federated identity and COmanage. In: SPIE. SOFTWARE and Cyberinfrastructure for Astronomy II. 2012. v. 8451, p. 530–546.
FORUM, World Economic. Global Risks Report 2024. Jan. 2024. [link].
Fox, A. and Patterson, D. (2021). Engineering Software as a Service: An Agile Approach Using Cloud Computing. Version 2.0b7, 2nd edition. [link].
Fraiwan, M., Al-Salman, R., Khasawneh, N., and Conrad, S. (2012). Analysis and identification of malicious JavaScript code. Information Security Journal: A Global Perspective, 21(1):1–11.
Frederik Hauser, Marco Häberle, Daniel Merling, Steffen Lindner, Vladimir Gurevich, Florian Zeiger, Reinhard Frank, and Michael Menth. A survey on data plane programming with p4: Fundamentals, advances, and applied research. Journal of Network and Computer Applications, 212:103561, 2023.
fstar-lang (2023). Introduction to F*. [link].
Fu, W., Lin, R., and Inge, D. (2018). TaintAssembly: Taint-based information flow control tracking for WebAssembly. arXiv preprint 1802.01050. DOI: 10.48550/arxiv.1802.01050.
Gadepalli, P. K., McBride, S., Peach, G., Cherkasova, L., and Parmer, G. (2020). Sledge: A serverless-first, light-weight Wasm runtime for the edge. In Proceedings of the 21st International Middleware Conference, pages 265–279, Delft, Netherlands. ACM.
Gao, H., Chen, Y., Lee, K., Palsetia, D., and Choudhary, A. N. (2012). Towards online spam filtering in social networks. In NDSS, volume 12, pages 1–16.
Gao, S., Fu, H., Zhang, H., Zhang, J., and Li, G. (2022). ZAWA: A ZKSNARK WASM emulator. Proceedings of the ACM on Programming Languages, 1(1).
GEMMER, Davi Daniel et al. A Scalable Cyber Security Framework for the Experimentation of DDoS Attacks of Things. In: PROCEEDINGS of IEEE/IFIP Network Operations and Management Symposium (NOMS). Miami, FL, EUA: IEEE/IFIP, mai. 2023.
Genkin, D., Pachmanov, L., Tromer, E., and Yarom, Y. (2018). Drive-by key-extraction cache attacks from portable code. In Proceedings of the 16th International Conference on Applied Cryptography and Network Security, pages 83–102, Leuven, Belgium. Springer.
Ginart, A., Guan, M., Valiant, G., and Zou, J. Y. (2019). Making ai forget you: Data deletion in machine learning. Advances in neural information processing systems, 32.
Golatkar, A., Achille, A., and Soatto, S. (2020a). Eternal sunshine of the spotless net: Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9304–9312.
Golatkar, A., Achille, A., and Soatto, S. (2020b). Forgetting outside the box: Scrubbing deep networks of information accessible from input-output observations. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIX 16, pages 383–398. Springer.
Golsch, L. (2019). WebAssembly: Basics. Technical report, Technical University of Braunschweig. [link].
Goltzsche, D., Nieke, M., Knauth, T., and Kapitza, R. (2019). AccTEE: AWebAssembly-based two-way sandbox for trusted resource accounting. In Proceedings of the 20th International Middleware Conference, pages 123–135, Davis, CA, USA. ACM.
Goltzsche, D., Siebels, T., Golsch, L., and Kapitza, R. (2020). Hector: Using untrusted browsers to provision Web applications. arXiv 2010.09512. 10.48550/arXiv.2010.09512.
GOMEZ, Jose et al. A survey on network simulators, emulators, and testbeds used for research and education. Computer Networks, v. 237, p. 110054, 2023. ISSN 1389-1286. DOI: 10.1016/j.comnet.2023.110054. Disponível em: [link].
GOODFELLOW, Ryan; THURLOW, Lincoln; RAVI, Srivatsan. Merge: An Architecture for Interconnected Testbed Ecosystems. CoRR, abs/1810.08260, 2018. arXiv: 1810.082 60. Disponível em: [link].
Grosskurth, A. and Godfrey, M.W. (2006). Architecture and evolution of the modern web browser. Preprint submitted to Elsevier Science, 12(26):235–246.
Guo, C., Goldstein, T., Hannun, A., and Van Der Maaten, L. (2019). Certified data removal from machine learning models. arXiv preprint arXiv:1911.03030.
Guo, T., Guo, S., Zhang, J., Xu, W., and Wang, J. (2022). Efficient attribute unlearning: Towards selective removal of input attributes from feature representations. arXiv preprint arXiv:2202.13295.
Guo, Z., Lin, J., Bai, Y., Kim, D., Swift, M., Akella, A., and Liu, M. (2023). Lognic: A high-level performance model for smartnics. In Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’23, page 916–929, New York, NY, USA.
Gupta, V., Jung, C., Neel, S., Roth, A., Sharifi-Malvajerdi, S., and Waites, C. (2021). Adaptive machine unlearning. Advances in Neural Information Processing Systems, 34:16319–16330.
Gwo-Chuan Lee, Jyun-Hong Li, and Zi-Yang Li. A wasserstein generative adversarial network–gradient penalty-based model with imbalanced data enhancement for network intrusion detection. Applied Sciences, 13(14):8132, 2023.
H. Schulzrinne, S. L. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol for Real-Time Applications. RFC 3550, July 2003.
H. Yousef, J. L. Feuvre, and A. Storelli. Abr prediction using supervised learning algorithms. In 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), pages 1–6, 2020.
Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D., Wagner, L., Zakai, A., and Bastien, J. (2017). Bringing the Web up to speed withWebAssembly. In Proceedings of the 38th Conference on Programming Language Design and Implementation, pages 185–200, Barcelona, Spain. ACM.
HACL* (2023). A High Assurance Cryptographic Library. [link].
Haneya Naeem Qureshi, Usama Masood, Marvin Manalastas, Syed Muhammad Asad Zaidi, Hasan Farooq, Julien Forgeat, Maxime Bouton, Shruti Bothe, Per Karlsson, Ali Rizwan, et al. Towards addressing training data scarcity challenge in emerging radio access networks: A survey and framework. IEEE Communications Surveys & Tutorials, 2023.
Haßler, K. and Maier, D. (2021). WAFL: Binary-only WebAssembly fuzzing with fast snapshots. In Proceedings of the 5th Reversing and Offensive-Oriented Trends Symposium, pages 23–30, Vienna, Austria. ACM.
He, N., Zhang, R.,Wang, H.,Wu, L., Luo, X., Guo, Y., Yu, T., and Jiang, X. (2021). EOSAFE: Security analysis of EOSIO smart contracts. In Proceedings of the 30th USENIX Security Symposium, pages 1271–1288, Vancouver, BC, Canada. USENIX Association.
He, Y., Meng, G., Chen, K., He, J., and Hu, X. (2021). Deepobliviate: a powerful charm for erasing data residual memory in deep neural networks. arXiv preprint arXiv:2105.06209.
He, Y., Wu,W., Le, Y., Liu, M., and Lao, C. (2023). A generic service to provide in-network aggregation for key-value streams. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2, ASPLOS 2023, page 33–47, New York, NY, USA.
Heinrich, T., Will, N. C., Obelheiro, R. R., and Maziero, C. A. (2023). Uso de chamadas WASI para a identificação de ameaças em aplicações WebAssembly. In Anais do XXIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais, Juiz de Fora, MG, Brasil. SBC.
Heinrich, T., Will, N. C., Obelheiro, R. R., and Maziero, C. A. (2024). A categorical data approach for anomaly detection in WebAssembly applications. In Proceedings of the 10th International Conference on Information Systems Security and Privacy, pages 275–284, Rome, Italy. SciTePress.
Helpa, C., Heinrich, T., Botacin, M., Will, N. C., Obelheiro, R. R., and Maziero, C. (2024). The use of the DWARF Debugging Format for the Identification of Potentially Unwanted Applications (PUAs) in WebAssembly Binaries. In SECRYPT.
Helpa, C., Heinrich, T., Botacin, M., Will, N. C., Obelheiro, R. R., and Maziero, C. A. (2023). Uma estratégia dinâmica para a detecção de anomalias em binários WebAssembly. In Anais do XXIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais, Juiz de Fora, MG, Brasil. SBC.
Herman, D., Wagner, L., and Zakai, A. (2014). asm.js. [link].
Hilbig, A., Lehmann, D., and Pradel, M. (2021). An empirical study of real-world WebAssembly binaries: Security, languages, use cases. In Proceedings of The Web Conference, pages 2696–2708, Ljubljana, Slovenia. ACM.
Hoffman, K. (2019). Programming WebAssembly with Rust: unified development for web, mobile, and embedded applications. The Pragmatic Bookshelf, Raleigh, NC, USA.
Hojjat Navidan, Parisa Fard Moshiri, Mohammad Nabati, Reza Shahbazian, Seyed Ali Ghorashi, Vahid Shah-Mansouri, and David Windridge. Generative adversarial networks (gans) in networking: A comprehensive survey & evaluation, 2021.
Holan, P. M. d. and Phillips, N. (2004). Remembrance of things past? the dynamics of organizational forgetting. Management science, 50(11):1603–1613.
Huang, H., Ma, X., Erfani, S. M., Bailey, J., and Wang, Y. (2021). Unlearnable examples: Making personal data unexploitable. arXiv preprint arXiv:2101.04898.
Hutchins,W. J. (1986). Machine translation: past, present, future. Ellis Horwood Chichester.
I. Cohen, C. F. Chiasserini, P. Giaccone, and G. Scalosub. Dynamic service provisioning in the edge-cloud continuum with bounded resources. IEEE/ACM Transactions on Networking, 31(6):3096–3111, 2023.
I. Sodagar. The mpeg-dash standard for multimedia streaming over the internet. IEEE MultiMedia, 18(4):62–67, 2011.
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets, 2014.
Intel (2021). P416 intel tofino native architecture—public version. [link]. accessed July 20, 2023.
Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved training of wasserstein gans. Advances in neural information processing systems, 30, 2017.
Izzo, Z., Smart, M. A., Chaudhuri, K., and Zou, J. (2021). Approximate data deletion from machine learning models. In International Conference on Artificial Intelligence and Statistics, pages 2008–2016. PMLR.
J. Du, C. Jiang, A. Benslimane, S. Guo, and Y. Ren. Sdn-based resource allocation in edge and cloud computing systems: An evolutionary stackelberg differential game approach. IEEE/ACM Transactions on Networking, 30(4):1613–1628, 2022.
J. Ehlers, A. van Hoorn, J. Waller, and W. Hasselbring. Self-adaptive software system monitoring for performance anomaly localization. In Proceedings of the 8th ACM International Conference on Autonomic Computing, ICAC ’11, pages 197–200, New York, NY, USA, 2011. Association for Computing Machinery.
J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed and Secure Transport. RFC 9000, May 2021.
Jacob Soper, Yue Xu, Kien Nguyen, Ernest Foo, and Zahra Jadidi. A two-pass approach for minimising error in synthetically generated network traffic data sets. In Proceedings of the 2023 Australasian Computer Science Week, pages 18–27. 2023.
Jangda, A., Powers, B., Berger, E. D., and Guha, A. (2019). Not so fast: Analyzing the performance of WebAssembly vs. native code. In Proceedings of the USENIX Annual Technical Conference, pages 107–120, Renton, WA, USA. USENIX Association.
Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural networks? Advances in neural information processing systems, 27, 2014.
Jay Beale, Angela Orebaugh, and Gilbert Ramirez. Wireshark & Ethereal network protocol analyzer toolkit. Elsevier, 2006.
Jesse G Meyer, Ryan J Urbanowicz, Patrick CN Martin, Karen O’Connor, Ruowang Li, Pei-Chen Peng, Tiffani J Bright, Nicholas Tatonetti, Kyoung Jae Won, Graciela Gonzalez-Hernandez, et al. Chatgpt and large language models in academia: opportunities and challenges. BioData Mining, 16(1):20, 2023.
Jiayi Meng, Jingqi Huang, Y Charlie Hu, Yaron Koral, Xiaojun Lin, Muhammad Shahbaz, and Abhigyan Sharma. Characterizing and modeling control-plane traffic for mobile core network. arXiv preprint arXiv:2212.13248, 2022.
Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial networks, 2019.
Johnson, E., Laufer, E., Zhao, Z., Gohman, D., Narayan, S., Savage, S., Stefan, D., and Brown, F. (2023). WaVe: a verifiably secure WebAssembly sandboxing runtime. In Proceedings of the Symposium on Security and Privacy, pages 2940–2955, San Francisco, CA, USA. IEEE.
Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. New directions in automated traffic analysis. CCS ’21, page 3366–3383, New York, NY, USA, 2021. Association for Computing Machinery.
K. Fu, W. Zhang, Q. Chen, D. Zeng, and M. Guo. Adaptive resource efficient microservice deployment in cloud-edge continuum. IEEE Transactions on Parallel and Distributed Systems, 33(8):1825–1840, 2022.
K. Fu, W. Zhang, Q. Chen, D. Zeng, X. Peng, W. Zheng, and M. Guo. Qos-aware and resource efficient microservice deployment in cloud-edge continuum. In 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 932–941, 2021.
K. R. Sheshadri and J. Lakshmi. Qos aware faas for heterogeneous edge-cloud continuum. In 2022 IEEE 15th International Conference on Cloud Computing (CLOUD), pages 70–80, 2022.
Katsikas, G. P., Barbette, T., Chiesa, M., Kosti´c, D., and Maguire Jr, G. Q. (2021). What you need to know about (smart) network interface cards. In International Conference on Passive and Active Network Measurement, pages 319–336. Springer.
Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. From theory to practice: improving bitrate adaptation in the dash reference player. In ACM Transactions on Multimedia Computing, Communications, and ApplicationsVolume 15Issue 2s, pages 123–137, 06 2018.
Kianpisheh, S. and Taleb, T. (2023). A survey on in-network computing: Programmable data plane and technology specific applications. IEEE Communications Surveys Tutorials, 25(1):701–761.
Kim, M., Jang, H., and Shin, Y. (2022). Avengers, Assemble! survey of WebAssembly security solutions. In Proceedings of the 15th International Conference on Cloud Computing, pages 543–553, Barcelona, Spain. IEEE.
Klicpera, J., Bojchevski, A., and Günnemann, S. (2019). Combining neural networks with personalized pagerank for classification on graphs. In International conference on learning representations.
Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard, S., Prescher, T., et al. (2020). Spectre attacks: Exploiting speculative execution. Communications of the ACM, 63(7):93–101.
Koh, P. W. W., Ang, K.-S., Teo, H., and Liang, P. S. (2019). On the accuracy of influence functions for measuring group effects. Advances in neural information processing systems, 32.
Koh, P.W. and Liang, P. (2017). Understanding black-box predictions via influence functions. In International conference on machine learning, pages 1885–1894. PMLR.
Kolosick, M., Narayan, S., Johnson, E., Watt, C., LeMay, M., Garg, D., Jhala, R., and Stefan, D. (2022). Isolation without taxation: Near-zerocost transitions for WebAssembly and SFI. Proceedings of the ACM on Programming Languages, 6(POPL).
Koren, I. (2021). A standalone WebAssembly development environment for the internet of things. In Proceedings of the 21st International Conference on Web Engineering, pages 353–360, Biarritz, France. Springer.
KORONIOTIS, Nickolaos; MOUSTAFA, Nour; SCHILIRO, Francesco et al. The sair-iiot cyber testbed as a service: A novel cybertwins architecture in iiot-based smart airports. IEEE Transactions on Intelligent Transportation Systems, IEEE, v. 24, n. 2, p. 2368–2381, 2021.
KORONIOTIS, Nickolaos; MOUSTAFA, Nour; SITNIKOVA, Elena et al. Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Generation Computer Systems, Elsevier, v. 100, p. 779–796, 2019.
L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira, M. Curado, L. Villas, L. DaSilva, C. Lee, and O. Rana. The internet of things, fog and cloud continuum: Integration and challenges. Internet of Things, 3-4:134–155, 2018.
L. F. Bittencourt, A. Goldman, E. R. Madeira, N. L. da Fonseca, and R. Sakellariou. Scheduling in distributed systems: A cloud computing perspective. Computer Science Review, 30:31–54, 2018.
L. Pang, C. Yang, D. Chen, Y. Song, and M. Guizani. A survey on intent-driven networks. IEEE Access, 8:22862–22873, 2020.
L. Peng, A. R. Dhaini, and P.-H. Ho. Toward integrated cloud-fog networks for efficient iot provisioning: Key challenges and solutions. Future Generation Computer Systems, 88:606–613, 2018.
L. Peroni and S. Gorinsky. An end-to-end pipeline perspective on video streaming in best-effort networks: A survey and tutorial, 2024.
Langley, P. and Carbonell, J. G. (1984). Approaches to machine learning. Journal of the American Society for Information Science, 35(5):306–316.
Laskov, P. and Šrndi´c, N. (2011). Static detection of malicious javascript-bearing pdf documents. In Proceedings of the 27th annual computer security applications conference, pages 373–382.
Le Pochat, V., Van Goethem, T., Tajalizadehkhoob, S., Korczy´nski, M., and Joosen, W. (2019). Tranco: A research-oriented top sites ranking hardened against manipulation. In 26th Annual Network and Distributed System Security Symposium, NDSS ’19. 10.14722/ndss.2019.23386.
Leandro Almeida, Jefferson Silva, Ricardo Lins, Paulo Maciel Jr., Rafael Pasquini, and Fábio Verdi. Wave - um gerador de cargas múltiplas para experimentação em redes de computadores. In Anais Estendidos do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 9–16, Porto Alegre, RS, Brasil, 2023. SBC.
Leandro C de Almeida et al. Desired - dynamic, enhanced, and smart ired: A p4-aqm with deep reinforcement learning and in-band network telemetry. Computer Networks, 244(110326):1–19, 2024.
Lehmann, D. and Pradel, M. (2019). Wasabi: A framework for dynamically analyzing WebAssembly. In Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems, pages 1045–1058, Providence, RI, USA. ACM.
Lehmann, D. and Pradel, M. (2022). Finding the dwarf: Recovering precise types from WebAssembly binaries. In Proceedings of the 43rd International Conference on Programming Language Design and Implementation, pages 410–425, San Diego, CA, USA. ACM.
Lehmann, D., Kinder, J., and Pradel, M. (2020). Everything old is new again: Binary security of WebAssembly. In Proceedings of the 29th USENIX Security Symposium, pages 217–234, Virtual Event. USENIX Association.
Lehmann, D., Torp, M. T., and Pradel, M. (2021). Fuzzm: Finding memory bugs through binary-only instrumentation and fuzzing of WebAssembly.
Levente Csikor. Pcap generator. [link], 2017. Accessed: 2024/03/10.
Levick, R. (2024). Deconstructing webassembly components. [link].
Li, B., Fan, H., Gao, Y., and Dong, W. (2021). ThingSpire OS: A WebAssembly-based IoT operating system for cloud-edge integration. In Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services, pages 487–488, Virtual Event. ACM.
Li, H., Berger, D. S., Hsu, L., Ernst, D., Zardoshti, P., Novakovic, S., Shah, M., Rajadnya, S., Lee, S., Agarwal, I., Hill, M. D., Fontoura, M., and Bianchini, R. (2023). Pond: Cxl-based memory pooling systems for cloud platforms. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2, ASPLOS 2023, page 574–587, New York, NY, USA.
Li, L. T. and Zhang, M. (2022). Poster: EOSDFA: Data flow analysis of EOSIO smart contracts. In Proceedings of the Conference on Computer and Communications Security, pages 3391–3393, Los Angeles, CA, USA. ACM.
Li, Y., Wang, C.-H., and Cheng, G. (2020). Online forgetting process for linear regression models. arXiv preprint arXiv:2012.01668.
Liang, H., Pei, X., Jia, X., Shen, W., and Zhang, J. (2018). Fuzzing: State of the art. IEEE Transactions on Reliability, 67(3):1199–1218.
Liu, G., Ma, X., Yang, Y., Wang, C., and Liu, J. (2020). Federated unlearning. arXiv preprint arXiv:2012.13891.
Liu, M., Cui, T., Schuh, H., Krishnamurthy, A., Peter, S., and Gupta, K. (2019). Offloading distributed applications onto smartnics using ipipe. In Proceedings of the ACM Special Interest Group on Data Communication, SIGCOMM ’19, page 318–333, New York, NY, USA.
Liu, R., Garcia, L., and Srivastava, M. (2021). Aerogel: Lightweight access control framework for WebAssembly-based bare-metal IoT devices. In Proceedings of the 6th Symposium on Edge Computing, pages 94–105, San Jose, CA, USA. IEEE.
LLVM-Team (2023). The LLVM project. [link].
LLVM(2023). The LLVMcompiler infrastructure. [link].
Luchao Han, Yiqiang Sheng, and Xuewen Zeng. A packet-length-adjustable attention model based on bytes embedding using flow-wgan for smart cybersecurity. IEEE Access, 7:82913–82926, 2019.
Luis Fernando Uria Garcia, Rodolfo S. Villaça, Moisés R. N. Ribeiro, Regis Francisco Teles Martins, Fábio Luciano Verdi, and Cesar Marcondes. Introdução à linguagem p4 - teoria e prática. Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC) - Minicursos, 2018.
Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-toimage diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3836–3847, 2023.
M. A. Khan, E. Baccour, Z. Chkirbene, A. Erbad, R. Hamila, M. Hamdi, and M. Gabbouj. A survey on mobile edge computing for video streaming: Opportunities and challenges. IEEE Access, 10:120514–120550, 2022.
M. C. Thornburgh. Adobe’s RTMFP Profile for Flash Communication. RFC 7425, Dec. 2014.
M. L. M. Peixoto, T. A. L. Genez, and L. F. Bittencourt. Hierarchical scheduling mechanisms in multi-level fog computing. IEEE Transactions on Services Computing, 15(5):2824–2837, 2022.
M. Liyanage, Q.-V. Pham, K. Dev, S. Bhattacharya, P. K. R. Maddikunta, T. R. Gadekallu, and G. Yenduri. A survey on zero touch network and service management (zsm) for 5g and beyond networks. Journal of Network and Computer Applications, 203:103362, 2022.
M. Seufert, R. Schatz, N. Wehner, and P. Casas. Quicker or not? an empirical analysis of quic vs tcp for video streaming qoe provisioning. In 2019 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), pages 7–12, 2019.
M. Uitto and A. Heikkinen. Evaluation of live video streaming performance for low latency use cases in 5g. In 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), pages 431–436, 2021.
Magdziarczyk, M. (2019). Right to be forgotten in light of regulation (eu) 2016/679 of the european parliament and of the council of 27 april 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/ec. In 6th International Multidisciplinary Scientific Conference on Social Sciences and Art Sgem 2019, pages 177–184.
Marchant, N. G., Rubinstein, B. I., and Alfeld, S. (2022). Hard to forget: Poisoning attacks on certified machine unlearning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 7691–7700.
Markus Ring, Daniel Schlör, Dieter Landes, and Andreas Hotho. Flow-based network traffic generation using generative adversarial networks. Computers & Security, 82:156–172, 2019.
Marques, F., Fragoso Santos, J., Santos, N., and Adão, P. (2022). Concolic execution for WebAssembly. In Proceedings of the 36th European Conference on Object-Oriented Programming, Berlin, Germany. DROPS.
Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pages 308–318, 2016.
Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In International conference on machine learning, pages 214–223. PMLR, 2017.
Mazaheri, M. E., Bayat Sarmadi, S., and Taheri Ardakani, F. (2022). A study of timing side-channel attacks and countermeasures on JavaScript and WebAssembly. The ISC International Journal of Information Security, 14(1):27–46.
McFadden, B., Lukasiewicz, T., Dileo, J., and Engler, J. (2018). Security chasms of WASM. NCC Group Whitepaper.
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM computing surveys (CSUR), 54(6):1–35.
Mehta, R., Pal, S., Singh, V., and Ravi, S. N. (2022). Deep unlearning via randomized conditionally independent hessians. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10422–10431.
Ménétrey, J., Pasin, M., Felber, P., and Schiavoni, V. (2021). Twine: An embedded trusted runtime forWebAssembly. In Proceedings of the 37th International Conference on Data Engineering, pages 205–216, Chania, Greece. IEEE.
Ménétrey, J., Pasin, M., Felber, P., and Schiavoni, V. (2022). WaTZ: A trustedWebAssembly runtime environment with remote attestation for Trust-Zone. In Proceedings of the 42nd International Conference on Distributed Computing Systems, pages 1177–1189, Bologna, Italy. IEEE.
Ménétrey, J., Pasin, M., Felber, P., and Schiavoni, V. (2022). WebAssembly as a common layer for the cloud-edge continuum. In Proceedings of the 2nd Workshop on Flexible Resource and Application Management on the Edge, pages 3–8, Minneapolis, MN, USA. ACM.
Mercuri, S., Khraishi, R., Okhrati, R., Batra, D., Hamill, C., Ghasempour, T., and Nowlan, A. (2022). An introduction to machine unlearning. arXiv preprint arXiv:2209.00939.
MEYER, Bruno Henrique; GEMMER, Davi Daniel; SANTANA, Khalil G. Q. de et al. Criação e análise de datasets de ataque de negação de serviço usando o Mentored Testbed. In: SBC. ANAIS do XLII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos. 2024.
MEYER, Bruno Henrique; GEMMER, Davi Daniel; SCHWARZ, Marcos et al. MENTORED: The Brazilian Cybersecurity Testbed. In: DEMO sessions of IEEE Global Communications Conference (GLOBECOM). Rio de Janeiro, RJ: IEEE, dez. 2022.
Michael, A. E., Gollamudi, A., Bosamiya, J., Disselkoen, C., Denlinger, A., Watt, C., Parno, B., Patrignani, M., Vassena, M., and Stefan, D. (2023). MSWasm: Soundly enforcing memory-safe execution of unsafe code. Proceedings of the ACM on Programming Languages, 1(1).
Microsoft (1996). Microsoft announces activex technologies. [link].
Min, J., Liu, M., Chugh, T., Zhao, C., Wei, A., Doh, I. H., and Krishnamurthy, A. (2021). Gimbal: Enabling multi-tenant storage disaggregation on smartnic jbofs. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page 106–122, New York, NY, USA.
Ming, J.,Wu, D.,Wang, J., Xiao, G., and Liu, P. (2016). StraightTaint: Decoupled offline symbolic taint analysis. In Proceedings of the 31st International Conference on Automated Software Engineering, pages 308–319, Singapore. IEEE.
MIRKOVIC, Jelena; BENZEL, Terry. Teaching cybersecurity with DeterLab. IEEE Security & Privacy, IEEE, v. 10, n. 1, p. 73–76, 2012.
Mohammad Mustafa Taye. Understanding of machine learning with deep learning: Architectures, workflow, applications and future directions. Computers, 12(5), 2023.
Moon, Y., Lee, S., Jamshed, M. A., and Park, K. (2020). {AccelTCP}: Accelerating network applications with stateful {TCP} offloading. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), pages 77–92.
MOUSTAFA, Nour. A new distributed architecture for evaluating AI-based security systems at the edge: Network TON_IoT datasets. Sustainable Cities and Society, Elsevier, v. 72, p. 102994, 2021.
Muhammad Haris Naveed, Umair Sajid Hashmi, Nayab Tajved, Neha Sultan, and Ali Imran. Assessing deep generative models on time series network data. IEEE Access, 10:64601–64617, 2022.
Munsters, A., Pupo, A. L. S., Bauwens, J., and Boix, E. G. (2021). Oron: Towards a dynamic analysis instrumentation platform for AssemblyScript. In Proceedings of the 5th International Conference on the Art, Science, and Engineering of Programming, pages 6–13, Cambridge, UK. ACM.
Musch, M., Wressnegger, C., Johns, M., and Rieck, K. (2019). New kid on the web: A study on the prevalence of webassembly in the wild. In Proceedings of the 16th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, pages 23–42, Gothenburg, Sweden. Springer.
Mustafizur R Shahid, Gregory Blanc, Houda Jmila, Zonghua Zhang, and Hervé Debar. Generative deep learning for internet of things network traffic generation. In 2020 IEEE 25th Pacific Rim International Symposium on Dependable Computing (PRDC), pages 70–79. IEEE, 2020.
N. F. S. d. Sousa and C. E. Rothenberg. Clara: Closed loop-based zero-touch network management framework. In 2021 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), pages 110–115, 2021.
Narayan, S., Disselkoen, C., Garfinkel, T., Froyd, N., Rahm, E., Lerner, S., Shacham, H., and Stefan, D. (2020). Retrofitting fine grain isolation in the Firefox renderer. In Proceedings of the 29th USENIX Security Symposium, pages 699–716, Boston, MA, USA. USENIX Association.
Narayan, S., Disselkoen, C., Moghimi, D., Cauligi, S., Johnson, E., Gang, Z., Vahldiek-Oberwagner, A., Sahita, R., Shacham, H., Tullsen, D., et al. (2021). Swivel: Hardening WebAssembly against Spectre. In Proceedings of the 30th USENIX Security Symposium, pages 1433–1450, Vancouver, BC, Canada. USENIX Association.
Narayan, S., Garfinkel, T., Lerner, S., Shacham, H., and Stefan, D. (2019). Gobi: WebAssembly as a practical path to library sandboxing. arXiv preprint 1912.02285. 10.48550/arXiv.1912.02285.
Neel, S., Roth, A., and Sharifi-Malvajerdi, S. (2021). Descent-todelete: Gradient-based methods for machine unlearning. In Algorithmic Learning Theory, pages 931–962. PMLR.
Nguyen, Q. P., Low, B. K. H., and Jaillet, P. (2020). Variational bayesian unlearning. Advances in Neural Information Processing Systems, 33:16025–16036.
Nguyen, T. T., Huynh, T. T., Nguyen, P. L., Liew, A. W.-C., Yin, H., and Nguyen, Q. V. H. (2022). A survey of machine unlearning. arXiv preprint arXiv:2209.02299.
NGUYEN, Xuan et al. Network isolation for Kubernetes hard multi-tenancy. 2020. Diss. (Mestrado).
Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March 2008.
Nieke, M., Almstedt, L., and Kapitza, R. (2021). Edgedancer: Secure mobile WebAssembly services on the edge. In Proceedings of the 4th International Workshop on Edge Systems, Analytics and Networking, pages 13–18, Virtual Event. ACM.
Njavro, A., Tau, J., Groves, T., Wright, N. J., and West, R. (2022). A dpu solution for container overlay networks. arXiv preprint arXiv:2211.10495.
NVIDIA (2024). Internet.
Olteanu, V., Eran, H., Dumitrescu, D., Popa, A., Baciu, C., Silberstein, M., Nikolaidis, G., Handley, M., and Raiciu, C. (2022). An edge-queued datagram service for all datacenter traffic. In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), pages 761–777.
OpenNIC (2024). OpenNIC.
P. Soumplis, P. Kokkinos, A. Kretsis, P. Nicopolitidis, G. Papadimitriou, and E. Varvarigos. Resource allocation challenges in the cloud and edge continuum. In Advances in Computing, Informatics, Networking and Cybersecurity: A Book Honoring Professor Mohammad S. Obaidat’s Significant Scientific Contributions, pages 443–464. Springer, 2022.
P4. In-band network telemetry (int) dataplane specification. Technical report, P4 Consortium, 2021.
Pan, C., Chien, E., and Milenkovic, O. (2023). Unlearning graph classifiers with limited data resources. In Proceedings of the ACM Web Conference 2023, pages 716–726.
Pardau, S. L. (2018). The california consumer privacy act: Towards a european-style privacy regime in the united states. J. Tech. L. & Pol’y, 23:68.
Petrov, I., Invernizzi, L., and Bursztein, E. (2020). CoinPolice: Detecting hidden cryptojacking attacks with neural networks. arXiv preprint 2006.10861. 10.48550/arXiv.2006.10861.
Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross, J., Wang, A., Stringer, J., Shelar, P., Amidon, K., and Casado, M. (2015). The design and implementation of open vSwitch. In 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15), pages 117–130, Oakland, CA.
PNA, P. P. N. A. (2023). Internet.
Ponomarev, D. and Ghose, K. (1998). A comparative study of some network subsystem organizations. In Proceedings. Fifth International Conference on High Performance Computing (Cat. No. 98EX238), pages 436–443.
Pop, V. A. B., Niemi, A., Manea, V., Rusanen, A., and Ekberg, J.-E. (2022). Towards securely migrating WebAssembly enclaves. In Proceedings of the 15th European Workshop on Systems Security, pages 43–49, Rennes, France. ACM.
Pranav Mani, E. S. Gopi, Hrishikesh Shekhar, and Sharan Chandra. Generative adversarial network and reinforcement learning to estimate channel coefficients. In E. S. Gopi, editor, Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication, pages 49–58, Singapore, 2021. Springer Singapore.
PRATES JR, Nelson G et al. Um ambiente de experimentaçao em cibersegurança para internet das coisas. In: SBC. ANAIS do VI Workshop do testbed FIBRE. 2021. P. 68–79.
Protzenko, J., Beurdouche, B., Merigoux, D., and Bhargavan, K. (2019). Formally verified cryptographic Web applications in WebAssembly. In Proceedings of the 40th Symposium on Security and Privacy, pages 1256–1274, San Francisco, CA, USA. IEEE.
Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, and X. S. Shen. Toward efficient content delivery for automated driving services: An edge computing solution. IEEE Network, 32(1):80–86, 2018.
Qiang Liu, Nakjung Choi, and Tao Han. Atlas: Automate online service configuration in network slicing. In Proceedings of the 18th International Conference on Emerging Networking EXperiments and Technologies, CoNEXT ’22, page 140–155, New York, NY, USA, 2022. Association for Computing Machinery.
Qiang, W., Dong, Z., and Jin, H. (2018). Se-Lambda: Securing privacy-sensitive serverless applications using SGX enclave. In Proceedings of the 14th International Conference on Security and Privacy in Communication Systems, pages 451–470, Singapore. Springer.
Qinghai Miao, Yisheng Lv, Min Huang, Xiao Wang, and Fei-Yue Wang. Parallel learning: Overview and perspective for computational learning across syn2real and sim2real. IEEE/- CAA Journal of Automatica Sinica, 10(3):603–631, 2023.
Qu, Y., Yuan, X., Ding, M., Ni, W., Rakotoarivelo, T., and Smith, D. (2023). Learn to unlearn: A survey on machine unlearning. arXiv preprint arXiv:2305.07512.
Quan, L., Wu, L., and Wang, H. (2019). EVulHunter: Detecting fake transfer vulnerabilities for EOSIO’s smart contracts at Webassembly-level. 10.48550/arXiv.1906.10362.
R. Buyya, M. Pathan, and A. Vakali. Content delivery networks, volume 9. Springer Science & Business Media, 2008.
R. Farahani, M. Shojafar, C. Timmerer, F. Tashtarian, M. Ghanbari, and H. Hellwagner. Ararat: A collaborative edge-assisted framework for http adaptive video streaming. IEEE Transactions on Network and Service Management, 20(1):625–643, 2023.
R. Immich, L. Villas, L. Bittencourt, and E. Madeira. Multi-tier edge-to-cloud architecture for adaptive video delivery. In 2019 7th International Conference on Future Internet of Things and Cloud (FiCloud), pages 23–30, Aug 2019.
R. Pantos and W. May. HTTP Live Streaming. RFC 8216, Aug. 2017.
Radovici, A., Rusu, C., and Serban, R. (2018). A survey of IoT security threats and solutions. In Proceedings of the 17th RoEduNet Conference: Networking in Education and Research, pages 1–5, Cluj-Napoca, Romania. IEEE.
Raef Bassily, Albert Cheu, Shay Moran, Aleksandar Nikolov, Jonathan Ullman, and Steven Wu. Private query release assisted by public data. In International Conference on Machine Learning, pages 695–703. PMLR, 2020.
Ren, K., Zheng, T., Qin, Z., and Liu, X. (2020). Adversarial attacks and defenses in deep learning. Engineering, 6(3):346–360.
Renner, J., Cauligi, S., and Stefan, D. (2018). Constant-time WebAssembly. In Proceedings of the 45th Symposium on Principles of Programming Languages, Los Angeles, CA, USA. ACM.
Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 10684–10695, 2022.
Rohit Kumar Gupta, Shashwat Mahajan, and Rajiv Misra. Resource orchestration in network slicing using gan-based distributional deep q-network for industrial applications. The Journal of Supercomputing, 79(5):5109–5138, 2023.
Rokicki, T. (2022). Side Channels in Web Browsers: Applications to Security and Privacy. Thèse de doctorat, Institut National des Sciences Appliquées de Rennes. [link].
Romano, A. and Wang, W. (2020a). Wasim: Understanding WebAssembly applications through classification. In Proceedings of the 35th International Conference on Automated Software Engineering, pages 1321–1325, Melbourne, Australia. IEEE.
Romano, A. and Wang, W. (2020b). WasmView: Visual testing for WebAssembly applications. In Proceedings of the 42nd International Conference on Software Engineering, pages 13–16, Seoul, South Korea. ACM.
Romano, A., Lehmann, D., Pradel, M., andWang,W. (2022). Wobfuscator: Obfuscating JavaScript malware via opportunistic translation to WebAssembly. In Proceedings of the 43rd Symposium on Security and Privacy, pages 1574–1589, San Francisco, CA, USA. IEEE.
Romano, A., Liu, X., Kwon, Y., and Wang, W. (2021). An empirical study of bugs inWebAssembly compilers. In Proceedings of the 36th International Conference on Automated Software Engineering, pages 42–54, Melbourne, Australia. IEEE.
Rosenfeld, A. (2002). Face recognition: A literature survey. UMD, 2002.
Rossberg, A. (2024). WebAssembly specification. [link].
Rourke, M. (2018). Learn WebAssembly: Build web applications with native performance using Wasm and C/C++. Packt Publishing Ltd.
Ruth, K., Kumar, D.,Wang, B., Valenta, L., and Durumeric, Z. (2022). Toppling top lists: Evaluating the accuracy of popular website lists. In Proceedings of the 22nd Internet Measurement Conference, pages 374–387, Nice, France. ACM.
S. Chaudhary, N. K. Shukla, P. Sachdeva, S. Chakraborty, and M. Maity. Managing connections by quic-tcp racing: A first look of streaming media performance over popular http/3 browsers. IEEE Transactions on Network and Service Management, pages 1–1, 2024.
S. Moreschini, F. Pecorelli, X. Li, S. Naz, D. Hastbacka, and D. Taibi. Cloud continuum: The definition. IEEE Access, 10:131876–131886, 2022.
S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, and V. Stankovski. Monitoring selfadaptive applications within edge computing frameworks: A state-of-the-art review. Journal of Systems and Software, 136:19–38, 2018.
SÁEZ-DE-CÁMARA, Xabier et al. Gotham testbed: a reproducible IoT testbed for security experiments and dataset generation. IEEE Transactions on Dependable and Secure Computing, IEEE, 2023. SAYFAN, Gigi. Mastering kubernetes. Packt Publishing Ltd, 2017.
Saquetti, M., Bueno, G., Cordeiro,W., and Azambuja, J. R. (2020). P4vbox: Enabling p4-based switch virtualization. IEEE Communications Letters, 24(1):146–149.
Saquetti, M., Canofre, R., Lorenzon, A. F., Rossi, F. D., Azambuja, J. R., Cordeiro, W., and Luizelli, M. C. (2021). Toward in-network intelligence: Running distributed artificial neural networks in the data plane. IEEE Communications Letters, 25(11):3551–3555.
Schelter, S., Grafberger, S., and Dunning, T. (2021). Hedgecut: Maintaining randomised trees for low-latency machine unlearning. In Proceedings of the 2021 International Conference on Management of Data, pages 1545–1557.
Schuh, H. N., Liang, W., Liu, M., Nelson, J., and Krishnamurthy, A. (2021). Xenic: Smartnic-accelerated distributed transactions. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, SOSP ’21, page 740–755, New York, NY, USA.
SCHWAB, Stephen; KLINE, Erik. Cybersecurity experimentation at program scale: Guidelines and principles for future testbeds. In: IEEE. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). 2019. P. 94–102.
Sekhari, A., Acharya, J., Kamath, G., and Suresh, A. T. (2021). Remember what you want to forget: Algorithms for machine unlearning. Advances in Neural Information Processing Systems, 34:18075–18086.
Serhat Arslan and Nick McKeown. Switches know the exact amount of congestion, 2019.
Shengzhe Xu, Manish Marwah, Martin Arlitt, and Naren Ramakrishnan. Stan: Synthetic network traffic generation with generative neural models. arXiv preprint arXiv:2009.12740, 2020.
Shibata, T., Irie, G., Ikami, D., and Mitsuzumi, Y. (2021). Learning with selective forgetting. In IJCAI, volume 3, page 4.
Shirey, R. (2007). Internet security glossary, version 2. RFC 4949. [link].
SIATERLIS, Christos; GARCIA, Andres Perez; GENGE, Bela. On the Use of Emulab Testbeds for Scientifically Rigorous Experiments. IEEE Communications Surveys & Tutorials, v. 15, n. 2, p. 929–942, 2013. ISSN 1553-877X. DOI: 10.1109/SURV.2012.0601112.00185. Disponível em: [link]. Acesso em: 24 abr. 2023.
SIATERLIS, Christos; GENGE, Bela; HOHENADEL, Marc. EPIC: A testbed for scientifically rigorous cyber-physical security experimentation. IEEE Transactions on Emerging Topics in Computing, IEEE, v. 1, n. 2, p. 319–330, 2013.
SIBONI, Shachar et al. Security testbed for Internet-of-Things devices. IEEE transactions on reliability, IEEE, v. 68, n. 1, p. 23–44, 2018.
Sletten, B. (2022). WebAssembly: The Definitive Guide. O’Reilly Media, Inc.
Sommer, D. M., Song, L., Wagh, S., and Mittal, P. (2022). Athena: Probabilistic verification of machine unlearning. Proceedings on Privacy Enhancing Technologies.
Sommer, D. M., Song, L.,Wagh, S., and Mittal, P. (2020). Towards probabilistic verification of machine unlearning. arXiv preprint arXiv:2003.04247.
Spreitzer, R., Moonsamy, V., Korak, T., and Mangard, S. (2017). Systematic classification of side-channel attacks: A case study for mobile devices. IEEE Communications Surveys & Tutorials, 20(1):465–488.
stackoverflow (2023). Stackoverflow. [link].
Stephen, A. (2022). Awesome WebAssembly languages. [link].
Stiévenart, Q. and De Roover, C. (2020). Compositional information flow analysis for WebAssembly programs. In Proceedings of the 20th International Working Conference on Source Code Analysis and Manipulation, pages 13–24, Adelaide, Australia. IEEE.
Stiévenart, Q., Binkley, D.W., and De Roover, C. (2022a). Static stack-preserving intra-procedural slicing of WebAssembly binaries. In Proceedings of the 44th International Conference on Software Engineering, pages 2031–2042, Pittsburgh, PA, USA. IEEE.
Stiévenart, Q., De Roover, C., and Ghafari, M. (2021). The security risk of lacking compiler protection in WebAssembly. In Proceedings of the 21st International Conference on Software Quality, Reliability and Security, pages 132–139, Hainan, China. IEEE.
Stiévenart, Q., De Roover, C., and Ghafari, M. (2022b). Security risks of porting C programs to WebAssembly. In Proceedings of the 37th Symposium on Applied Computing, pages 1713–1722, Virtual Event. ACM.
Stock, B., Johns, M., Steffens, M., and Backes, M. (2017). How the Web tangled itself: Uncovering the history of client-side Web (in)security. In Proceedings of the 26th USENIX Security Symposium, pages 971–987, Vancouver, BC, Canada. USENIX Association.
Sun, J., Cao, D., Liu, X., Zhao, Z., Wang, W., Gong, X., and Zhang, J. (2019). SELWasm: A code protection mechanism for WebAssembly. In Proceedings of the 17th International Symposium on Parallel and Distributed Processing with Applications, pages 1099–1106, Xiamen, China. IEEE.
Sun, S., Ma, H., Song, Z., and Zhang, R. (2022). WebCloud: Webbased cloud storage for secure data sharing across platforms. IEEE Transactions on Dependable and Secure Computing, 19(3):1871–1884.
Swamy, T., Rucker, A., Shahbaz, M., Gaur, I., and Olukotun, K. (2022). Taurus: A data plane architecture for per-packet ml. In Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’22, page 1099–1114, New York, NY, USA.
Szanto, A., Tamm, T., and Pagnoni, A. (2018). Taint tracking for WebAssembly. arXiv preprint arXiv:1807.08349.
T. Huang and L. Sun. Deepmpc: A mixture abr approach via deep learning and mpc. In 2020 IEEE International Conference on Image Processing (ICIP), pages 1231–1235, 2020.
T. Pfandzelter and D. Bermbach. Enoki: Stateful distributed faas from edge to cloud. In Proceedings of the 2nd International Workshop on Middleware for the Edge, MiddleWEdge ’23, pages 19–24, New York, NY, USA, 2023. Association for Computing Machinery.
Tarun, A. K., Chundawat, V. S., Mandal, M., and Kankanhalli, M. (2023). Fast yet effective machine unlearning. IEEE Transactions on Neural Networks and Learning Systems.
THOM, Jay et al. Casting a wide net: An internet of things testbed for cybersecurity education and research. In: IEEE. 2021 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS). 2021. P. 1–8. DOI: 10.23919/SPECTS52716.2021.9639278.
Thudi, A., Deza, G., Chandrasekaran, V., and Papernot, N. (2022). Unrolling sgd: Understanding factors influencing machine unlearning. In 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P), pages 303–319. IEEE.
Titzer, B. L. (2022). A fast in-place interpreter for WebAssembly. Proceedings of the ACM on Programming Languages, 6(OOPSLA2).
Tiwari, T., Starobinski, D., and Trachtenberg, A. (2018). Distributed Web mining of Ethereum. In Proceedings of the International Symposium on Cyber Security Cryptography and Machine Learning, pages 38–54, Beer-Sheva, Israel. Springer.
Tobias Bühler, Roland Schmid, Sandro Lutz, and Laurent Vanbever. Generating representative, live network traffic out of millions of code repositories, 2022.
Tsoupidi, R. M., Balliu, M., and Baudry, B. (2021). Vivienne: Relational verification of cryptographic implementations in WebAssembly. In Proceedings of the Secure Development Conference, pages 94–102, Atlanta, GA, USA. IEEE.
V. Colombo, A. Tundo, M. Ciavotta, and L. Mariani. Towards self-adaptive peer-to-peer monitoring for fog environments. In Proceedings of the 17th Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’22, pages 156–166, New York, NY, USA, 2022. Association for Computing Machinery.
V. Nathan, V. Sivaraman, R. Addanki, M. Khani, P. Goyal, and M. Alizadeh. End-to-end transport for video qoe fairness. In Proceedings of the ACM Special Interest Group on Data Communication, SIGCOMM ’19, pages 408–423, New York, NY, USA, 2019. Association for Computing Machinery.
Vassena, M. and Patrignani, M. (2020). Memory safety preservation for WebAssembly. In Proceedings of the 47th Symposium on Principles of Programming Languages, New Orleans, LA, USA. ACM.
Vassena, M., Disselkoen, C., Gleissenthall, K. v., Cauligi, S., Kıcı, R. G., Jhala, R., Tullsen, D., and Stefan, D. (2021). Automatically eliminating speculative leaks from cryptographic code with Blade. Proceedings of the ACM on Programming Languages, 5(POPL).
Veale, M., Binns, R., and Edwards, L. (2018). Algorithms that remember: model inversion attacks and data protection law. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2133):20180083.
Viegas, P. B., de Castro, A. G., Lorenzon, A. F., Rossi, F. D., and Luizelli, M. C. (2021). The actual cost of programmable smartnics: Diving into the existing limits. In International Conference on Advanced Information Networking and Applications, pages 181–194. Springer.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning, 2015.
W. Eddy. Transmission Control Protocol (TCP). RFC 9293, Aug. 2022.
W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.
W3C Community Group (2022a). WA: Security. [link].
W3C Community Group (2022b). WebAssembly. [link].
W3Techs (2023). Usage statistics of JavaScript as client-side programming language on websites. [link].
Wang, C.-L., Huai, M., and Wang, D. (2023). Inductive graph unlearning. In 32nd USENIX Security Symposium (USENIX Security 23), pages 3205–3222.
Wang, S., Ye, G., Li, M., Yuan, L., Tang, Z., Wang, H., Wang, W., Wang, F., Ren, J., Fang, D., and Wang, Z. (2019). Leveraging WebAssembly for numerical JavaScript code virtualization. IEEE Access, 7:182711–182724.
Wang, T., Lin, J., Antichi, G., Panda, A., and Sivaraman, A. (2023). Application-defined receive side dispatching on the nic. arXiv preprint arXiv:2312.04857.
Wang, W. (2021). Empowering web applications with WebAssembly: are we there yet? In Proceedings of the 36th International Conference on Automated Software Engineering, pages 1301–1305, Melbourne, Australia. IEEE.
Wang, W., Ferrell, B., Xu, X., Hamlen, K. W., and Hao, S. (2018). SEISMIC: SEcure In-lined Script Monitors for Interrupting Cryptojacks. In Proceedings of the 23rd European Symposium on Research in Computer Security, pages 122–142, Barcelona, Spain. Springer.
Warnecke, A., Pirch, L., Wressnegger, C., and Rieck, K. (2021). Machine unlearning of features and labels. arXiv preprint arXiv:2108.11577.
Watt, C., Renner, J., Popescu, N., Cauligi, S., and Stefan, D. (2019a). CT-Wasm: Type-driven secure cryptography for the Web ecosystem. Proceedings of the ACM on Programming Languages, 3(POPL).
Watt, C., Rossberg, A., and Pichon-Pharabod, J. (2019b). Weakening WebAssembly. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–28.
Wazid, M., Das, A. K., Chamola, V., and Park, Y. (2022). Uniting cyber security and machine learning: Advantages, challenges and future research. ICT express, 8(3):313–321.
WebAssembly (2024). Webassembly proposals. [link].
Weber, R. H. (2011). The right to be forgotten: more than a pandora’s box. J. Intell. Prop. Info. Tech. & Elec. Com. L., 2:120.
Wei, X., Cheng, R., Yang, Y., Chen, R., and Chen, H. (2023a). Characterizing off-path SmartNIC for accelerating distributed systems. In 17th USENIX Symposium on Operating Systems Design and Implementation (OSDI 23), pages 987–1004, Boston, MA.
Wei, X., Cheng, R., Yang, Y., Chen, R., and Chen, H. (2023b). Characterizing off-path SmartNIC for accelerating distributed systems. In 17th USENIX Symposium on Operating Systems Design and Implementation (OSDI 23), pages 987–1004, Boston, MA.
Wei, X., Cheng, R., Yang, Y., Chen, R., and Chen, H. (2023c). Characterizing off-path {SmartNIC} for accelerating distributed systems. In 17th USENIX Symposium on Operating Systems Design and Implementation (OSDI 23), pages 987–1004.
Wen, E. and Weber, G. (2020). Wasmachine: Bring the edge up to speed with aWebAssembly OS. In Proceedings of the 13th International Conference on Cloud Computing, pages 353–360, Beijing, China. IEEE.
Wen, E., Weber, G., and Nanayakkara, S. (2021). WasmAndroid: A cross-platform runtime for native programming languages on Android (WIP paper). In Proceedings of the 22nd International Conference on Languages, Compilers, and Tools for Embedded Systems, pages 80–84, Virtual Event. ACM.
Will, N. C., Heinrich, T., Viescinski, A. B., and Maziero, C. A. (2021). Trusted inter-process communication using hardware enclaves. In Proceedings of the 15th International Systems Conference, pages 1–7, Vancouver, BC, Canada. IEEE.
Wixted, J. T. (2021). The role of retroactive interference and consolidation in everyday forgetting. In Current issues in memory, pages 117–143. Routledge.
WROCLAWSKI, John et al. DETERLab and the DETER Project. The GENI Book, Springer, p. 35–62, 2016.
Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. (2019). Simplifying graph convolutional networks. In International conference on machine learning, pages 6861–6871. PMLR.
Wu, G., Hashemi, M., and Srinivasa, C. (2022). Puma: Performance unchanged model augmentation for training data removal. In Proceedings of the AAAI conference on artificial intelligence, volume 36, pages 8675–8682.
Wu, J., Yang, Y., Qian, Y., Sui, Y., Wang, X., and He, X. (2023). Gif: A general graph unlearning strategy via influence function. In Proceedings of the ACM Web Conference 2023, pages 651–661.
Wu, Y., Dobriban, E., and Davidson, S. (2020). Deltagrad: Rapid retraining of machine learning models. In International Conference on Machine Learning, pages 10355–10366. PMLR.
X. Wang, T. Kwon, Y. Choi, H. Wang, and J. Liu. Cloud-assisted adaptive video streaming and social-aware video prefetching for mobile users. IEEE Wireless Communications, 20(3):72–79, 2013.
Xavier, B. M., Guimarães, R. S., Comarela, G., and Martinello, M. (2021). Programmable switches for in-networking classification. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications, pages 1–10. IEEE.
Xi Jiang, Shinan Liu, Aaron Gember-Jacobson, Arjun Nitin Bhagoji, Paul Schmitt, Francesco Bronzino, and Nick Feamster. Netdiffusion: Network data augmentation through protocol-constrained traffic generation. arXiv preprint arXiv:2310.08543, 2023.
Xie, Q., Tang, S., Zheng, X., Lin, Q., Liu, B., Duan, H., and Li, F. (2022). Building an open, robust, and stable voting-based domain top list. In Proceedings of the 31st USENIX Security Symposium, pages 625–642, Boston, MA, USA. USENIX Association.
Xilinx (2024). Internet.
Xing, J., Qiu, Y., Hsu, K.-F., Sui, S., Manaa, K., Shabtai, O., Piasetzky, Y., Kadosh, M., Krishnamurthy, A., Ng, T. S. E., and Chen, A. (2023). Unleashing smartnic packet processing performance in p4. In Proceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM ’23, page 1028–1042, New York, NY, USA.
Xu, J., Wu, Z., Wang, C., and Jia, X. (2024). Machine unlearning: Solutions and challenges. IEEE Transactions on Emerging Topics in Computational Intelligence.
Xu, M., Sun, J., Yang, X., Yao, K., and Wang, C. (2023). Netflix and forget: Efficient and exact machine unlearning from bi-linear recommendations. arXiv preprint arXiv:2302.06676.
Y. Chen, H. Yu, B. Hu, Z. Duan, and G. Xue. An edge caching strategy based on user speed and content popularity for mobile video streaming. Electronics, 10(18), 2021.
Y. Elkhatib, G. Coulson, and G. Tyson. Charting an intent driven network. In 2017 13th International Conference on Network and Service Management (CNSM), pages 1–5, 2017.
Y. Verginadis. A review of monitoring probes for cloud computing continuum. In L. Barolli, editor, Advanced Information Networking and Applications, pages 631–643, Cham, 2023. Springer International Publishing.
YALTIRAKLI, Gokberk. Low bandwidth DoS tool. Slowloris rewrite in Python. 2015. [link].
Yan, Y., Tu, T., Zhao, L., Zhou, Y., and Wang, W. (2021). Understanding the performance of WebAssembly applications. In Proceedings of the 21st Internet Measurement Conference, pages 533–549, Virtual Event. ACM.
Yao, R., Zhang, Z., Fang, G., Gao, P., Liu, S., Fan, Y., Xu, Y., and Chao, H. J. (2023). Bmw tree: Large-scale, high-throughput and modular pifo implementation using balanced multi-way sorting tree. In Proceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM ’23, page 208–219, New York, NY, USA.
Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Ormandy, T., Okasaka, S., Narula, N., and Fullagar, N. (2010). Native Client: A sandbox for portable, untrusted x86 native code. Communications of the ACM, 53(1):91–99.
Yoon, Y., Nam, J., Yun, H., Lee, J., Kim, D., and Ok, J. (2022). Fewshot unlearning by model inversion. arXiv preprint arXiv:2205.15567.
Yu, G., Yang, G., Li, T., Han, X., Guan, S., Zhang, J., and Gu, G. (2020). MinerGate: A novel generic and accurate defense solution against Web based cryptocurrency mining attacks. In Proceedings of the 17th China Cyber Security Annual Conference, pages 50–70, Beijing, China. Springer.
Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar. Practical gan-based synthetic ip header trace generation using netshare. In Proceedings of the ACM SIGCOMM 2022 Conference, SIGCOMM ’22, page 458–472, New York, NY, USA, 2022. Association for Computing Machinery.
Yuxiu Hua, Rongpeng Li, Zhifeng Zhao, Honggang Zhang, and Xianfu Chen. Gan-based deep distributional reinforcement learning for resource management in network slicing, 2019.
Z. Houmani, D. Balouek-Thomert, E. Caron, and M. Parashar. Enabling microservices management for deep learning applications across the edge-cloud continuum. In 2021 IEEE 33rd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), pages 137–146, 2021.
Zakai, A. (2011). Emscripten: An LLVM-to-JavaScript compiler. In Proceedings of the International Conference Companion on Object Oriented Programming Systems Languages and Applications Companion, pages 301–312, Portland, Oregon, USA. ACM.
Zehui Xiong, Yang Zhang, Dusit Niyato, Ruilong Deng, Ping Wang, and Li-Chun Wang. Deep reinforcement learning for mobile 5g and beyond: Fundamentals, applications, and challenges, 2019.
Zeng, Y., Wang, J. T., Chen, S., Just, H. A., Jin, R., and Jia, R. (2023). Modelpred: A framework for predicting trained model from training data. In 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), pages 432–449. IEEE.
Zhang, J., Cheng, X., Wang, W., Yang, L., Hu, J., and Chen, K. (2023). {FLASH}: Towards a high-performance hardware acceleration architecture for cross-silo federated learning. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), pages 1057–1079.
Zhang, Y., Zheng, S., Wang, H., Wu, L., Huang, G., and Liu, X. (2024). VM matters: A comparison of WASM VMs and EVMs in the performance of blockchain smart contracts. ACM Transactions on Modeling and Performance Evaluation of Computer Systems, 9(2).
Zhu, X., Li, G., and Hu, W. (2023). Heterogeneous federated knowledge graph embedding learning and unlearning. In Proceedings of the ACM Web Conference 2023, pages 2444–2454.
Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using gans for sharing networked time series data: Challenges, initial promise, and open questions, 2020.
Downloads
Data de publicação
Categorias
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.