Topics in Data Management and Information: Short Courses of SBBD 2023
Keywords:
SBBD 2023, SBBD, Short courses of SBBD, Short courses of SBBD 2023, Topics in Data Management and InformationSynopsis
This book of the XXXVIII Brazilian Symposium on Databases (SBBD 2023) includes two book chapters written by the authors of the selected short courses and presented in the edition of the event held from September 25 to 29, 2023. They aim to present relevant topics related to Databases. Moreover, they promote discussions on the topics' fundamentals, trends, and challenges. Each short course lasts four hours and is an excellent opportunity to update academics and professionals participating in the event.
The chapters address the OpenAI programming interface and the manipulation of geospatial data. The short course program committee was composed of Humberto Razente (UFU), Denio Duarte (UFFS), and Ronaldo dos Santos Mello (UFSC) under the coordination of the former.
The richness of this issue can be mainly credited to the authors and reviewers. We greatly thank them for their insightful contributions and discussions during SBBD 2023.
Chapters
-
1. Introduction to the OpenAI API
-
2. Geospatial Data: From Theory to Practice
Downloads
References
(2023). The Home of Location Technology Innovation and Collaboration | OGC. [Online; accessed 7. Aug. 2023].
Agathokleous, E., Rillig, M. C., Peñuelas, J., and Yu, Z. (2023). One hundred important questions facing plant science derived using a large language model. Trends in Plant Science. Disponível em: <https://doi.org/10.1016/j.tplants.2023.06.008>.
Barbosa, H., Barthelemy, M., Ghoshal, G., James, C. R., Lenormand, M., Louail, T., Menezes, R., Ramasco, J. J., Simini, F., e Tomasini, M. (2018). Human mobility: Models and applications. Physics Reports, 734:1–74.
Bolstad, P. (2016). GIS Fundamentals: A First Text on Geographic Information Systems. Eider Press, 5 edition.
Brainard, J. (2023). Journals take up arms against AI-written text. Science, 379(6634):740–741.
Castro, P. S., Zhang, D., e Li, S. (2012). Urban traffic modelling and prediction using large scale taxi gps traces. In International Conference on Pervasive Computing, pages 57–72. Springer.
Cebrian, M. (2021). The past, present and future of digital contact tracing. Nature Electronics, 4(1):2–4.
Celes, C., Silva, F. A., Boukerche, A., d. C. Andrade, R. M., e Loureiro, A. A. F. (2017). Improving vanet simulation with calibrated vehicular mobility traces. IEEE Transactions on Mobile Computing, 16(12):3376–3389.
Chen, G., Viana, A. C., e Sarraute, C. (2017). Towards an adaptive completion of sparse call detail records for mobility analysis. In 2017 IEEE international conference on pervasive computing and communications workshops (PerCom workshops), pages 302–305. IEEE.
Cheng, K., Li, Z., He, Y., Guo, Q., Lu, Y., Gu, S., and Wu, H. (2023). Potential Use of Artificial Intelligence in Infectious Disease: Take ChatGPT as an Example. Annals of Biomedical Engineering, 51:1130–1135.
Cheng, K., Sun, Z., He, Y., Gu, S., and Wu, H. (2023). The potential impact of ChatGPT/GPT-4 on surgery: will it topple the profession of surgeons? International Journal of Surgery, 109(5):1545–1547.
Cho, E., Myers, S. A., e Leskovec, J. (2011). Friendship and mobility: user movement in location-based social networks. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1082–1090.
Cotton, R. (2023). Using GPT-3.5 and GPT-4 via the OpenAI API in Python. Disponível em: [link]. Acesso em: 26 de jul. de 2023.
de Mattos, E. P., Domingues, A. C., e Loureiro, A. A. (2019). Give me two points and i’ll tell you who you are. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 1081–1087. IEEE.
de Melo, P. O. V., Viana, A. C., Fiore, M., Jaffrès-Runser, K., Le Mouël, F., Loureiro, A. A., Addepalli, L., e Guangshuo, C. (2015). Recast: Telling apart social and random relationships in dynamic networks. Performance Evaluation, 87:19–36.
Domingues, A. C., de Souza Santana, H., Silva, F. A., de Melo, P. O. V., e Loureiro, A. A. (2022). Socialroute: A low-cost opportunistic routing strategy based on social contacts. Ad Hoc Networks, 135:102949.
Duckham, M. e Kulik, L. (2005a). A formal model of obfuscation and negotiation for location privacy. In International conference on pervasive computing, pages 152–170. Springer.
Duckham, M. e Kulik, L. (2005b). Simulation of obfuscation and negotiation for location privacy. In International conference on spatial information theory, pages 31–48. Springer.
Ekman, F., Keränen, A., Karvo, J., e Ott, J. (2008). Working day movement model. In Proceedings of the 1st ACM SIGMOBILE workshop on Mobility models, pages 33–40.
Finkel, R. A. e Bentley, J. L. (1974). Quad trees a data structure for retrieval on composite keys. Acta informatica, 4(1):1–9.
Firestone, S. M., Ward, M. P., Christley, R. M., e Dhand, N. K. (2011). The importance of location in contact networks: Describing early epidemic spread using spatial social network analysis. Preventive Veterinary Medicine, 102(3):185 – 195. Special Issue: GEOVET 2010.
González, M. C., Hidalgo, C. A., e Barabási, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196):779–782.
Gu, Y., Yao, Y., Liu, W., e Song, J. (2016). We know where you are: Home location identification in location-based social networks. In 2016 25th International Conference on Computer Communication and Networks (ICCCN), pages 1–9. IEEE.
Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD international conference on Management of data, pages 47–57.
Hess, A., Hummel, K. A., Gansterer, W. N., e Haring, G. (2015). Data-driven human mobility modeling: a survey and engineering guidance for mobile networking. ACM Computing Surveys (CSUR), 48(3):1–39.
Hoteit, S., Chen, G., Viana, A., e Fiore, M. (2016). Filling the gaps: On the completion of sparse call detail records for mobility analysis. In Proceedings of the Eleventh ACM Workshop on Challenged Networks, pages 45–50. ACM.
Hung, C. C., Chang, C. W., e Peng, W. C. (2009). Mining trajectory profiles for discovering user communities. In Proceedings of the 2009 International Workshop on Location Based Social Networks, pages 1–8.
Ingole, P. e Nichat, M. M. K. (2013). Landmark based shortest path detection by using dijkestra algorithm and haversine formula. International Journal of Engineering Research and Applications (IJERA), 3(3):162–165.
Johnson, G. T. e Watson, I. D. (1984). The determination of view-factors in urban canyons. Journal of Climate and Applied Meteorology, 23(2):329–335.
Jurdak, R., Zhao, K., Liu, J., AbouJaoude, M., Cameron, M., e Newth, D. (2015). Understanding human mobility from twitter. PloS one, 10(7):e0131469– e0131469.
Kang, J. H., Welbourne, W., Stewart, B., e Borriello, G. (2004). Extracting places from traces of locations. In Proceedings of the 2nd ACM international workshop on Wireless mobile applications and services on WLAN hotspots, pages 110–118. ACM.
Kosta, S., Mei, A., e Stefa, J. (2012). Large-scale synthetic social mobile networks with swim. IEEE Transactions on Mobile Computing, 13(1):116–129.
Krumm, J. (2009). A survey of computational location privacy. Personal and Ubiquitous Computing, 13(6):391–399.
Lisboa Filho, J. e Iochpe, C. (2001). Modelagem de bancos de dados geográficos. In Apostila do XX Congresso Brasileiro de Cartografia, Porto Alegre.
Maouche, M., Mokhtar, S. B., e Bouchenak, S. (2017). Ap-attack: a novel user re-identification attack on mobility datasets. In Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pages 48–57. ACM.
Marques-Neto, H. T., Xavier, F. H., Xavier, W. Z., Malab, C. H. S., Ziviani, A., Silveira, L. M., e Almeida, J. M. (2018). Understanding human mobility and workload dynamics due to different large-scale events using mobile phone data. Journal of Network and Systems Management, 26(4):1079–1100.
Morales, A. J., Vavilala, V., Benito, R. M., e Bar-Yam, Y. (2017). Global patterns of synchronization in human communications. Journal of the Royal Society Interface, 14(128):20161048.
Morton, G. M. (1966). A computer oriented geodetic data base and a new technique in file sequencing.
Motlagh, N. H., Taleb, T., e Arouk, O. (2016). Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives. IEEE Internet of Things Journal, 3(6):899–922.
Naboulsi, D., Fiore, M., Ribot, S., e Stanica, R. (2016). Largescale mobile traffic analysis: a survey. IEEE Communications Surveys & Tutorials, 18(1):124–161.
Newson, P. e Krumm, J. (2009). Hidden markov map matching through noise and sparseness. In Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, pages 336–343.
Niszczota, P., and Rybicka, I. (2023). The credibility of dietary advice formulated by ChatGPT: robo-diets for people with food allergies. Nutrition, 112:112076.
Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti, F., e Barabási, A.-L. (2015). Returners and explorers dichotomy in human mobility. Nature communications, 6(1):8166.
Rettore, P. H., Santos, B. P., Lopes, R. R. F., Maia, G., Villas, L. A., e Loureiro, A. A. (2020). Road data enrichment framework based on heterogeneous data fusion for its. IEEE Transactions on Intelligent Transportation Systems, 21(4):1751– 1766.
Sakai, T., Tamura, K., e Kitakami, H. (2014). Extracting attractive local-area topics in georeferenced documents using a new density-based spatial clustering algorithm. IAENG International Journal of Computer Science, 41(3):185–192.
Sanderson, K. (2023). GPT-4 is here: what scientists think. Nature, 615(7954):773.
Silva, F. A., Celes, C., Boukerche, A., Ruiz, L. B., e Loureiro, A. A. (2015). Filling the gaps of vehicular mobility traces. In Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pages 47–54.
Smigel, L. (2023). OpenAI Python API: How to Use & Examples (July 2023). Disponível em: [link]. Acesso em: 26 de jul. de 2023.
Training, P. (2023). The Complete Guide for Using the OpenAI Python API. Disponível em: [link]. Acesso em: 26 de jul. de 2023.
Tran, K. A., Barbeau, S. J., e Labrador, M. A. (2013). Automatic identification of points of interest in global navigation satellite system data: A spatial temporal approach. In Proceedings of the 4th ACM SIGSPATIAL international workshop on geostreaming, pages 33–42.
Uber (2015). H3: A hexagonal hierarchical geospatial indexing system.
van Dis, E. A., Bollen, J., Zuidema, W., van Rooij, R., and Bockting, C. L. (2023). ChatGPT: five priorities for research. Nature, 614(7947):224–226.
Wang, Q. e Taylor, J. E. (2014). Quantifying human mobility perturbation and resilience in hurricane sandy. PLoS one, 9(11).
Wang, S. H. (2023). OpenAI - explain why some countries are excluded from ChatGPT. Nature, 615(7950):34–34.
Zheng, Y., Capra, L., Wolfson, O., e Yang, H. (2014). Urban computing: concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 5(3):1–55.