Short Courses of ERCEMAPI 2024

Authors

Eduilson Livio Neves da Costa Carneiro (ed)
IFPI
Rodrigo Augusto Rocha Souza Baluz (ed)
UESPI
Romuere Rodrigues Veloso e Silva (ed)
UFPI

Keywords:

Blockchain, Hyperledger FireFly, TinyML, Machine Learning, Embedded Systems, Industry 5.0, Data-Driven Decision Systems, Data Imbalance, Web Design, Material Design, BeerCSS, Non-Fungible Tokens (NFTs), Data Analysis, Ethereum Blockchain, OpenSea

Synopsis

This book presents a detailed and innovative approach to Industry 5.0, machine learning, and the impact of data imbalance on the performance of predictive models. Exploring the integration between humans and machines, the authors discuss how personalization and sustainability become central elements in the new industrial era. Additionally, it highlights the crucial role of data-driven decision systems, from the preparation and processing of large volumes of information to their integration into industrial environments. The objective is to demonstrate how these systems contribute to operational efficiency and personalization, emphasizing the importance of ethical and sustainable practices.

Throughout its chapters, the book delves into the technical challenges of implementing artificial intelligence and machine learning-based solutions, focusing on issues such as data imbalance, which directly affects model accuracy. It discusses preprocessing techniques, synthetic data generation, and advanced methodologies, such as reinforcement learning, which improve performance in unbalanced data scenarios. Furthermore, the book presents the use of blockchainbased applications, including the creation, commercialization, collection, and analysis of data in the blockchain network. Thus, the work offers a comprehensive and practical perspective, essential for professionals and researchers looking to understand the trends and challenges of Industry 5.0 and machine learning in imbalanced environments.

Chapters

  • 1. Building blockchain-based applications with Hyperledger FireFly
    Maria do Rosário de Fátima Martins Ferreira, Bernardo Ferreira de Moura Ribeiro, Alcemir Rodrigues Santos, Ricardo de Andrade Lira Rabêlo
  • 2. Tiny ML: Introduction to Machine Learning in Embedded Systems
    Ramon Santos Nepomuceno, Luís Fagner de Carvalho da Silva, Dorgival Pereira da Silva Netto, Rafael Perazzo Barbosa Mota Carlos, Carlos Vinicius Gomes Costa Lima, Carlos Julian Menezes Araujo
  • 3. Industry 5.0: Implementing Data-Driven Decision Systems
    Júlio V. M. Marques, Clésio A. Gonçalves, Armando L. Borges, Viviane B. Leal Dias, Willians S. Santos, Romuere R. V. Silva
  • 4. Strategies for Handling Data Imbalance in Machine Learning
    Hector Batista Ribeiro, Leandro Oliveira da Silva, Ricardo de Andrade Lira Rabêlo
  • 5. Intuitive Web Design: Enhancing Projects with Material Design and BeerCSS
    Matusalen Costa Alves, Maria Steffany da Silva Viana, Iallen Gábio de Sousa Santos
  • 6. Non-Fungible Tokens (NFTs): Creation, Trading, Collecting, and Data Analysis on the Ethereum Blockchain and OpenSea Platform
    Samuel de Oliveira Ribeiro, Saul S. da Rocha, Dayan Ramos Gomes, Nara Raquel D. Andrade, Emanuel Aurélio F. de Miranda, Glauber Dias Gonçalves

Downloads

Download data is not yet available.

References

A. Dogan and D. Birant (2019). A Weighted Majority Voting Ensemble Approach for Classification. In: 2019 4th International Conference on Computer Science and Engineering (UBMK), Samsun, Turkey, 2019, pp. 1-6, DOI: 10.1109/UBMK.2019.8907028.

A. K. Ilavarasi (2020). Class imbalance learning for Identity Management in Healthcare. In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2020, pp. 995-1000, DOI: 10.1109/I-SMAC49090.2020.9243420.

A. Martins and R. Astudillo. From softmax to sparsemax: A sparse model of attention and multi-label classification. In International Conf. on Machine Learning - ICML, volume 48, pages 1614–1623, June 2016.

Abdi, L., Hashemi, S.: To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE transactions on Knowledge and Data Engineering 28(1), 238–251 (2015).

Adele Cutler, D. Richard Cutler, and John R. Stevens. Random Forests, pages 157–175. Springer New York, New York, NY, 2012.

Ahmad Talal Ali. Systems and methods for predicting environmental conditions, 2021.

Al-Stouhi Samir and Reddy Chandan (2015). Transfer Learning for Class Imbalance Problems with Inadequate Data. Knowledge and Information Systems. 48. 10.1007/s10115-015-0870-3.

Alchemy API (2024). How to create an nft on ethereum tutorial. [link]. (Accessed on 05/26/2024).

Alves, M. C. (2024). Código do beercss. Acesso em: agosto 26, 2024.

Anaïs Barbier, C. Rousselière, Laurine Robert, E Cousein, and Bertrand Décaudin. Elaboration d’un guide méthodologique sur l’implantation d’un système d’aide à la décision pharmaceutique: retour d’expérience d’un centre hospitalier universitaire français. Annales pharmaceutiques françaises, 81(1):163–172, 2022.

Andreas Eschbach. Postagem do conselho: Como o setor 5.0 transformará a manufatura de processos como a conhecemos, 2021. Acessado em: 12 de agosto de 2024.

Andrij Zaverbnyj and Vitalii Ilnytskyi. Phases of the life cycle of projects as a key factor in the success of their implementation. Ìnfrastruktura rinku, (78), 2023.

Apple (2024). Human interface guidelines. Acesso em: 16 de agosto de 2024.

Arihant Chhajer. Expert systems for emulating the decision making ability of a human expert. TechnoareteTransactions on Intelligent Data Mining and Knowledge Discovery, 1(1):15–18, 2022.

Ashok Vajravelu, Yamunarani Thanikachalam, Mohd Helmy Bin Abd Wahab, Muhammad Mahadi Abdul Jamil, and S. Sivaranjani. Human-machine collaboration and emotional intelligence in industry 5.0. Advances in computational intelligence and robotics book series, pages 220–232, 2024.

Azank F.: Dados Desbalanceados — O que são e como lidar com eles. Disponível em: [link]. Acesso em: 23 ago. 2024.

Bahar Asgarova, Elvin Jafarov Elvin Jafarov, Nicat Babayev, Allahshukur Ahmadzada, Abdullayev V.H, and Triwiyanto Triwiyanto. Development process of decision support systems using data mining technology. Indonesian Journal of Electrical Engineering and Computer Science, 36(1):703–703, 2024.

Baran, P. (1964). On distributed communications networks. IEEE Transactions on Communications Systems, 12(1):1–9.

Barry de Ville. Decision trees. WIREs Computational Statistics, 5(6):448–455, 2013.

BeerCSS (2022). Beercss: A lightweight css framework. Disponível em: [link]. Acessado em: 31 de maio de 2024.

BeerCSS (2024). Beercss settings documentation. [link]. Acesso em: 24 ago. 2024.

Bergmann Dave (2023). What is self-supervised learning? Disponível em: [link]. Acesso em 26 ago. 2024.

Bhujel, S. and Rahulamathavan, Y. (2022). A survey: Security, transparency, and scalability issues of nft’s and its marketplaces. Sensors, 22(22):8833.

Bored Ape Yatch Club (2024). Bored Ape Yatch Club. [link]. Accessed: 2024-08-26.

Buterin, V. (2013). Ethereum white paper: A next generation smart contract & decentralized application platform.

C. Nguyen Dinh, Ding Ming, Pathirana Pubudu, Seneviratne Aruna, Li Jun and Poor H. Vincent. (2021). In: Federated Learning for Internet of Things: A Comprehensive Survey.

Carolina Narvaez Rojas, Gustavo Adolfo Alomia Peñafiel, Diego Fernando Loaiza Buitrago, and Carlos Andrés Tavera Romero. Society 5.0: A japanese concept for a superintelligent society. Sustainability, 13(12):6567, 2021.

Casino, F., Dasaklis, T. K., and Patsakis, C. (2019). A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telematics and informatics, 36:55–81.

Chaudhary, K.: How to Deal with Imbalanced Data in Classification. Medium. Disponível em: [link]. Acesso em: 23 ago. 2024.

Chaum, D. (1983). Blind signatures for untraceable payments. In Chaum, D., Rivest, R. L., e Sherman, A. T., editors, Advances in Cryptology, pages 199–203, Boston, MA. Springer US.

Chawla Nitesh, Bowyer Kevin, Hall Lawrence, Kegelmeyer W. (2002). SMOTE: Synthetic Minority Over-sampling Technique. In: J. Artif. Intell. Res. (JAIR). 16. 321-357. 10.1613/jair.953.

Chowdhury, M. J. M., Ferdous, M. S., Biswas, K., Chowdhury, N., e Muthukkumarasamy, V. (2020). A survey on blockchain-based platforms for iot use-cases. The Knowledge Engineering Review, 35:e19.

Clarke, A. (2023). SEO 2023: Learn Search Engine Optimization with Smart Internet Marketing Strategies. Simple Effectiveness LLC. Focado em estratégias atualizadas de SEO para 2023.

Claus Weihs and Katja Ickstadt. Data science: the impact of statistics. International Journal of Data Science and Analytics, 6:189–194, 2018.

Coelho, G.M.C., Ramos, A.C., de Sousa, J., Cavaliere, M., de Lima, M.J., Mangeth, A., Frajhof, I.Z., Cury, C., Casanova, M.A.: Text classification in the brazilian legal domain. In: Intern. Conference on Enterprise Information Systems. pp. 355–363 (2022).

Colavizza, G. (2023). Seller-buyer networks in nft art are driven by preferential ties. Frontiers in Blockchain, 5:1073499.

Costa, D., La Cava, L., and Tagarelli, A. (2023). Show me your nft and i tell you how it will perform: Multimodal representation learning for nft selling price prediction. In Proceedings of the ACM Web Conference 2023, pages 1875–1885.

Daniel Durstewitz, Georgia Koppe, and Andreas Meyer-Lindenberg. Deep neural networks in psychiatry. Molecular Psychiatry, 24(11):1583–1598, Nov 2019.

Daniel J Power. Decision support systems: concepts and resources for managers, volume 13. Quorum Books Westport, 2002.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating errors. Nature, 323(6088):533–536, 1986.

De Souza Emanuel (2019). Entendendo o que é Matriz de Confusão com Python. Disponível em: [link]. Acesso em 26 ago 2024.

Dr. Ram Bajaj. (6) "mastering the art of strategic planning: A blueprint for success". Journal for ReAttach therapy and developmental diversities, 2023.

Dulsrud, A. and Bygstad, B. (2022). Digital ecosystems as social institutions: exploring the role of consumption through four research streams of digital ecosystems. Consumption and Society, 1(1):99 – 119.

Dwork, C. e Naor, M. (1993). Pricing via processing or combatting junk mail. In Brickell, E. F., editor, Advances in Cryptology — CRYPTO’ 92, pages 139–147, Berlin, Heidelberg. Springer Berlin Heidelberg.

Ecanorea. Industry 5.0: The new business revolution, 2023. Disponível em: [link]. Acesso em: 25 ago. 2024.

Edvânia da Glória Silva. O efeito da indústria 5.0 na produção. PhD thesis, 2023.

Enoch, J. D., Omijeh, B. O., e Okeke, R. O. (2023). Comparative analysis of blockchain and database. European Journal of Science, Innovation and Technology, 3(3):454–463.

Entriken, W., Shirley, D., Evans, J., and Sachs, N. (2018). Eip-721: Non-fungible token standard," ethereum improvement proposals, no. 721, january 2018. [link].

ERCEMAPI (2024). Portfólio ercemapi. Acesso em: agosto 26, 2024.

Ewerton Alex Avelar and Ricardo Vinícius Dias Jordão. The role of artificial intelligence in the decision-making process: a study on the financial analysis and movement forecasting of the world’s largest stock exchanges. Management Decision, 2024.

Eyal, N. and Hoover, R. (2014). Hooked: How to Build Habitforming Products. Penguin Business. Portfolio Penguin.

F Khodadadi, A V Dastjerdi, and R Buyya. Internet of things: An overview. In Internet of Things, pages 3–27. Elsevier, 2016.

Feng, W., Dauphin, G., Huang, W., Quan, Y., Bao, W., Wu, M., Li, Q.: Dynamic synthetic minority over-sampling technique-based rotation forest for the classification of imbalanced hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12(7), 2159–2169 (2019).

Foundation, H. (2016). Open source blockchain effort for the enterprise elects leadership positions and gains new investments. [link]. Accessed June 2024.

Foundation, H. (2024). An overview of hyperledger foundation. [link]. Accessed: 18 May 2024.

François Chollet et al. Keras. [link], 2015.

Franz, B. and Kauer-Franz, M. (2024). Usability and User Experience Design: The Comprehensive Guide to Data-Driven UX Design. Rheinwerk Computing. Rheinwerk Publishing.

Galar Mikel, Fernández Alberto, Barrenechea Edurne, Sola Humberto and Herrera, Francisco (2012). A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. In: Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on. 42. 463 - 484. 10.1109/TSMCC.2011.2161285.

Garrett, J. J. (2010). The Elements of User Experience: User-Centered Design for the Web and Beyond. Voices That Matter. Pearson Education, 2nd edition.

George Anthony Gorry and Michael S Scott Morton. A framework for management information systems. 1971.

George S Fishman. Discrete-event simulation: modeling, programming, and analysis, volume 537. Springer, 2001.

Gerald Van Amburg. Management information system (mis), 2022.

Gonçalo Carvalho, Bruno Cabral, Vasco Pereira, and Jorge Bernardino. Edge computing: current trends, research challenges and future directions. Computing, 103(5):993–1023, May 2021.

Google (2014). Material design 1.0. Disponível em: [link]. Acessado em: 16 de agosto de 2024.

Google (2022). Material design 3.0. Disponível em: [link]. Acessado em: 16 de agosto de 2024.

Greve, F., Sampaio, L., Abijaude, J., Coutinho, A. A., Brito, I., and Queiroz, S. (2018). Blockchain e a Revolução do Consenso sob Demanda. In Proc. of SBRC Minicursos.

Greve, F., Sampaio, L., Abijaude, J., Coutinho, A. A., Brito, I., e Queiroz, S. (2018). Blockchain e a Revolução do Consenso sob Demanda, page v. 30. SBC.

Gui Q., Zhou H., Guo N. et al. (2024). A survey of class-imbalanced semi-supervised learning. In: Mach Learn 113, 5057–5086 (2024). DOI: 10.1007/s10994-023-06344-7.

H. Cao, X. -L. Li, D. Y. -K. Woon and S. -K. Ng (2013). Integrated Oversampling for Imbalanced Time Series Classification. In: IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 12, pp. 2809-2822, Dec. 2013, DOI: 10.1109/TKDE.2013.37.

H. Shamsudin, U. K. Yusof, A. Jayalakshmi and M. N. Akmal Khalid (2020). Combining oversampling and undersampling techniques for imbalanced classification: A comparative study using credit card fraudulent transaction dataset. In: 2020 IEEE 16th International Conference on Control & Automation (ICCA), Singapore, 2020, pp. 803-808.

Haber, S. e Stornetta, W. S. (1991). How to time-stamp a digital document. J. Cryptology, 3:99–111.

Haibo He, Yang Bai, E. A. Garcia, Shutao Li (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, 2008, pp. 1322-1328, DOI: 10.1109/IJCNN.2008.4633969.

Hasib K., Iqbal Md., Shah F., Mahmud J., Popel M., Showrov Md. I. H., Ahmed S., Rahman O. (2020). A Survey of Methods for Managing the Classification and Solution of Data Imbalance Problem. Journal of Computer Science. 16. 1546 - 1557. 10.3844/jcssp.2020.1546.1557.

Hassija, V., Zeadally, S., Jain, I., Tahiliani, A., Chamola, V., e Gupta, S. (2021). Framework for determining the suitability of blockchain: Criteria and issues to consider. Transactions on Emerging Telecommunications Technologies, 32(10):e4334.

Henning Kagermann, Johannes Helbig, Ariane Hellinger, and Wolfgang Wahlster. Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Forschungsunion, 2013.

İbrahim Yazıcı and Emre Gures. A novel approach for machine learning-based load balancing in high-speed train system using nested cross validation. In 2023 10th International Conference on Wireless Networks and Mobile Communications (WIN-COM), pages 1–6, 2023.

Idrus Assagaf, Agus Sukandi, and Abdul Azis Abdillah. Machine failure detection using deep learning. Recent in Engineering Science and Technology, 1(03):26–31, Jul. 2023.

Inc., G. (2024). Google. Acesso em: 15 de agosto de 2024.

ISO Central Secretary (2024). Blockchain and distributed ledger technologies—vocabulary. Standard ISO 22739:2024, International Organization for Standardization, Geneva, CH.

J. -R. Jiang and Y. -T. Chen (2022). Industrial Control System Anomaly Detection and Classification Based on Network Traffic. In IEEE Access, vol. 10, pp. 41874-41888, 2022.

J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. JSTOR: Applied Statistics, 28(1):100–108, 1979.

James A O’brien and George M Marakas. Administração de sistemas de informação. AMGH, 2013.

Jie Cao, Quan Zhang, and Weisong Shi. Edge Computing: A Primer. Springer International Publishing, Cham, 2018.

Jiewu Leng, Weinan Sha, Baicun Wang, Pai Zheng, Cunbo Zhuang, Qiang Liu, Thorsten Wuest, Dimitris Mourtzis, and Lihui Wang. Industry 5.0: Prospect and retrospect. Journal of Manufacturing Systems, 65:279–295, 2022.

João Barata and Ina Kayser. Industry 5.0 – past, present, and near future. Procedia Computer Science, 219:778–788, 2023. CENTERIS – International Conference on ENTERprise Information Systems / ProjMAN – International Conference on Project MANagement / HCist – International Conference on Health and Social Care Information Systems and Technologies 2022.

John Andrew van der Poll. Problematizing the adoption of formal methods in the 4ir–5ir transition. Applied System Innovation, 5(6):127, 2022.

Johnson Justin and Khoshgoftaar Taghi (2019). Survey on deep learning with class imbalance. In: Journal of Big Data. 6. 27. 10.1186/s40537-019-0192-5.

Johnson, J. (2014). Designing with the Mind in Mind: Simple Guide to Understanding User Interface Design Guidelines. Elsevier, London, 2 edition.

Junsomboon Nutthaporn and Phienthrakul Tanasanee (2017). Combining Over-Sampling and Under-Sampling Techniques for Imbalance Dataset. In: Proceedings of the 9th International Conference on Machine Learning and Computing, 2017, pp. 243-247, DOI: 10.1145/3055635.3056643.

K C S Murti. Design principles for embedded systems. Transactions on Computer Systems and Networks. Springer, Singapore, Singapore, 1 edition, September 2021.

Kakavand, H., Sevres, N. K. D., e Chilton, B. (2017). The blockchain revolution: An analysis of regulation and technology related to distributed ledger technologies. SSRN. Disponível em SSRN: [link] ou DOI: 10.2139/ssrn.2849251.

Kao, D. and Archer, N. P. (1997). Abstraction in conceptual model design. International Journal of Human-Computer Studies, 46(1):125–150.

Kosolwattana Tanapol, Liu Chenang, Hu Renjie, Han Shizhong, Chen Hua, Lin Ying (2022). A Self-inspected Adaptive SMOTE Algorithm (SASMOTE) for Highly Imbalanced Data Classification in Healthcare. DOI: 10.21203/rs.3.rs-1647776/v1.

Krug, S. (2000). Don’t Make Me Think!: A Common Sense Approach to Web Usability. Circle.com Library. New Riders.

L. A. Jeni, J. F. Cohn, F. De La Torre (2013). Facing Imbalanced Data--Recommendations for the Use of Performance Metrics. In: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva, Switzerland, 2013, pp. 245-251, DOI: 10.1109/ACII.2013.47.

Le Louvre (2024). From the ’Mona Lisa’ to ’The Wedding Feast at Cana’. [link]. Accessed: 2024-08-26.

Lin E., Chen Q. and Qi X (2020). Deep reinforcement learning for imbalanced classification. In: Appl Intell 50, 2488–2502 (2020). DOI: 10.1007/s10489-020-01637-z.

Longadge Rushi, Dongre Snehlata. (2013). Class Imbalance Problem in Data Mining Review. In: Int. J. Comput. Sci. Netw.. 2.

M Bruccoleri, G Lo Nigro, S La Noto Diega, P Renna, and G Perrone. A dss for strategic planning. Design of Advanced Manufacturing Systems: Models for Capacity Planning in Advanced Manufacturing Systems, pages 37–71, 2005.

M. Bader-El-Den, E. Teitei and T. Perry (2019). Biased Random Forest For Dealing With the Class Imbalance Problem. In: IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 7, pp. 2163-2172, July 2019, DOI: 10.1109/TNNLS.2018.2878400.

M. R. Rezaei-Dastjerdehei, A. Mijani and E. Fatemizadeh (2020). Addressing Imbalance in Multi-Label Classification Using Weighted Cross Entropy Loss Function. In: 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 2020, pp. 333-338, DOI: 10.1109/ICBME51989.2020.9319440.

Marcellino Bonamutial and Simeon Yuda Prasetyo. Exploring the impact of feature data normalization and standardization on regression models for smartphone price prediction. In 2023 International Conference on Information Management and Technology (ICIMTech), pages 294–298, 2023.

Marcotte, E. (2011). Responsive Web Design. Book Apart. A Book Apart.

Mariusz Żytniewski. Autopoietic knowledge management systems. pages 364–379. IGI Global, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks, 2018. cite arxiv:1801.04381.

MarketsandMarkets. Global microcontroller market: Analysis and forecast. Technical report, MarketsandMarkets, 2021.

Material (2024). Material theme builder. [link]. Acessado em: agosto 20, 2024.

Mayra dos Santos Guidorizzi Ana Paula Bispo dos Santos André Barbosa de Oliveira Fabrizio Leonardi. SimulaÇÃo como apoio a tomada de decisÃo para a soluÇÃo de problemas causados pelos gargalos formados no trÂnsito. In XXIX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO, Salvador, Bahia, oct 2009.

Md Abdul Kadir, Abdulrahman Mohamed Selim, Michael Barz, and Daniel Sonntag. A user interface for explaining machine learning model explanations. In Companion Proceedings of the 28th International Conference on Intelligent User Interfaces, IUI ’23 Companion, page 59–63, New York, NY, USA, 2023. Association for Computing Machinery.

Michael P. LaValley. Logistic regression. Circulation, 117(18):2395–2399, 2008.

Microsoft (2024). Fluent design system. Acesso em: 16 de agosto de 2024. O Fluent Design System foi introduzido em 2017.

Mounia Achouch, Mariya Dimitrova, Rizck Dhouib, Hussein Ibrahim, Mehdi Adda, Sasan Sattarpanah Karganroudi, Khaled Ziane, and Ahmad Aminzadeh. Predictive maintenance and fault monitoring enabled by machine learning: Experimental analysis of a ta-48 multistage centrifugal plant compressor. Applied Sciences, 13(3), 2023.

Mqadi Nhlakanipho, Naicker Nalindren, Adeliyi Timothy (2021). A SMOTe based Oversampling Data-Point Approach to Solving the Credit Card Data Imbalance Problem in Financial Fraud Detection. In: International Journal of Computing and Digital Systems. 10. 277 - 286. 10.12785/ijcds/100128.

Mudita Uppal, Deepali Gupta, Nitin Goyal, Agbotiname Lucky Imoize, Arun Kumar, Stephen Ojo, Subhendu Kumar Pani, Yongsung Kim, and Jaeun Choi. A real-time data monitoring framework for predictive maintenance based on the internet of things. Complexity, 2023(1):9991029, 2023.

Muhammet Atalay and Enes Çelik. BÜyÜk verİ analİzİnde yapay zek ve makİne ÖĞrenmesİ uygulamalari - artificial intelligence and machine learning applications in big data analysis. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9(22):155–172, 2017.

Muralidhar KSV. What is Stratified Cross-Validation in Machine Learning? Disponível em: [link]. Acesso em: 26 ago. 2024.

Murray, A., Kim, D., and Combs, J. (2023). The promise of a decentralized internet: What is web3 and how can firms prepare? Business Horizons, 66(2):191–202.

Nadini, M., Alessandretti, L., Giacinto, F. D., Martino, M., Aiello, L. M., and Baronchelli, A. (2021). Mapping the nft revolution: market trends, trade networks and visual features.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. [link]. Accessed: 2021-Jun-09.

Narayanan, A. e Clark, J. (2017). Bitcoin’s academic pedigree: The concept of cryptocurrencies is built from forgotten ideas in research literature. Queue, 15(4):20–49.

Nielsen, J., Pernice, K., and Whitenton, K. (2014). How People Read on the Web: The Eyetracking Evidence. Nielsen Norman Group, New York.

Norman, D. A. (2002). The Design of Everyday Things. Basic Books, New York.

Okonkwo, I. E. (2021). Nft, copyright; and intellectual property commercialisation. SSRN. [link].

Oleksandr V. Darushyn, Sergiy Bodenchuk, and Ivan Buzian. Development and implementation technology of managerial decisions in enterprise management. Naukovij poglâd: ekonomìka ta upravlìnnâ, (2(86)), 2023.

Olugbenga Motunrayo (2023). Balanced Accuracy: When Should You Use It? Disponível em: [link]. Acesso em 26 ago. 2024.

Orr Zohar, Kuan-Chieh Wang, and Serena Yeung. Prob: Probabilistic objectness for open world object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 11444–11453, June 2023.

Palma, L., Martina, J., and Vigil, M. (2022). On and off: Extracting the transaction history of permissioned blockchain networks. Universidade Federal de Santa Catarina. Computing Science PhD Candidate Dissertation.

Partha Pratim Ray. A review on TinyML: State-of-the-art and prospects. J. King Saud Univ. - Comput. Inf. Sci., 34(4):1595–1623, April 2022.

Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross-Validation, pages 532–538. Springer US, Boston, MA, 2009.

Pete Warden. Tiny ML. O’Reilly Media, Sebastopol, CA, January 2020.

Pete Warden. Tiny ML. O’Reilly Media, Sebastopol, CA, January 2020.

Praveen Kumar Reddy Maddikunta, Quoc-Viet Pham, Prabadevi B, N Deepa, Kapal Dev, Thippa Reddy Gadekallu, Rukhsana Ruby, and Madhusanka Liyanage. Industry 5.0: A survey on enabling technologies and potential applications. Journal of Industrial Information Integration, 26:100257, 2022.

Pristyanto Yoga, Mukarabiman Zulfikar, Nugraha Anggit (2023). Extreme Gradient Boosting Algorithm to Improve Machine Learning Model Performance on Multiclass Imbalanced Dataset. In: JOIV: International Journal on Informatics Visualization. 7. 710-715. 10.30630/joiv.7.3.1102.

R. Bloemen and J. Maes. A dss for optimizing the aggregate production planning at monsanto antwerp. European Journal of Operational Research, 61(1):30–40, 1992. IFORS-SPC Conference on Decision Support Systems.

R. Mary Mathew, R. Gunasundari (2021). A Review on Handling Multiclass Imbalanced Data Classification In Education Domain. In: 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2021, pp. 752-755, DOI: 10.1109/ICACITE51222.2021.9404626.

Raghubir Singh and Sukhpal Singh Gill. Edge AI: A survey. Internet of Things and Cyber-Physical Systems, 3:71–92, 2023.

Ramona Leenings, Nils Ralf Winter, Lucas Plagwitz, Vincent Holstein, Jan Ernsting, Kelvin Sarink, Lukas Fisch, Jakob Steenweg, Leon Kleine-Vennekate, Julian Gebker, Daniel Emden, Dominik Grotegerd, Nils Opel, Benjamin Risse, Xiaoyi Jiang, Udo Dannlowski, and Tim Hahn. Photonai—a python api for rapid machine learning model development. PLOS ONE, 16(7):1–19, 07 2021.

Raskin, J. (2000). The Humane Interface: New Directions for Designing Interactive Systems. ACM Press Series. Addison-Wesley Professional, illustrated edition.

Ray Y Zhong, Xun Xu, Eberhard Klotz, and Stephen T Newman. Intelligent manufacturing in the context of industry 4.0: a review. Engineering, 3(5):616–630, 2017.

Ribeiro, S. d. O., Gomes, D. R., Andrade, N. R. D., de Miranda, E. A. F., and Gonçalves, G. D. (2024). Classificação de coleções de nfts explorando metadados e aprendizagem de máquina. In Colóquio em Blockchain e Web Descentralizada (CBlockchain), pages 50–55. SBC.

Ribeiro, S. O., Gomes, D. R., Coutinho, E., and Gonçalves, G. D. (2023). Análise de características estruturais de tokens não fungíveis no ethereum. In Anais do VI Workshop em Blockchain: Teoria, Tecnologias e Aplicações, pages 1–14. SBC.

Richard G Lyons. Understanding digital signal processing. Prentice Hall, Philadelphia, PA, 3 edition, November 2010.

Rodrigues V.: Entenda o que é AUC e ROC nos modelos de Machine Learning. Disponível em: [link]. Acesso em: 26 ago 2024.

Rosário Macário, Vasco Reis, and Juan Pablo Antún. Assessment at different stages of implementation. pages 233–243. Elsevier BV, 2023.

Rosenfeld, M. et al. (2012). Overview of colored coins. White paper, bitcoil. co. il, 41:94.

Rubaidi Zainab, Ben Ammar Boulbaba, Ben Aouicha (2022). Fraud Detection Using Large-scale Imbalance Dataset. In: International Journal on Artificial Intelligence Tools. 31. 10.1142/S0218213022500373.

S. Pouyanfar, T. Wang and S. -C. Chen (2019). A Multi-label Multimodal Deep Learning Framework for Imbalanced Data Classification. In: 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), San Jose, CA, USA, 2019, pp. 199-204, DOI: 10.1109/MIPR.2019.00043.

S.J. Pan and Q. Yang. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345–1359, 2010.

Santos, A. R. (2021). Open scientist in the wonderland: advocating for blockchain-based decentralized applications for science. In Proceedings of the 1st Workshop on Open Science Practices for Software Engineering, pages 1–3, Porto Alegre, RS, BRA. SBC OpenLib.

Schär, F. (2021). Decentralized finance: On blockchain-and smart contractbased financial markets. FRB of St. Louis Review.

Shawn Hymel, Colby R. Banbury, Daniel Situnayake, Alex Elium, Carl Ward, Matthew Kelcey, Mathijs Baaijens, Mateusz Majchrzycki, Jenny Plunkett, David Tischler, Alessandro Grande, Louis Moreau, Dmitry Maslov, Arthur Beavis, Jan Jongboom, and Vijay Janapa Reddi. Edge impulse: An mlops platform for tiny machine learning. ArXiv, abs/2212.03332, 2022.

Shima Maniyan, Rouzbeh Ghousi, and Abdorrahman Haeri. Data mining-based decision support system for educational decision makers: Extracting rules to enhance academic efficiency. 2024.

Sina Shafiezadeh, Gian Marco Duma, Giovanni Mento, Alberto Danieli, Lisa Antoniazzi, Fiorella Del Popolo Cristaldi, Paolo Bonanni, and Alberto Testolin. Methodological issues in evaluating machine learning models for eeg seizure prediction: 77 Good cross-validation accuracy does not guarantee generalization to new patients. Applied Sciences, 13(7), 2023.

Sri Wulandari and Hapzi Ali. Determination of management decision quality: Integration, effectiveness, development of management information systems. Dinasti International Journal of Management Science (DIJMS), 2023.

Stuart Russell and Peter Norvig. Artificial intelligence. Pearson, Upper Saddle River, NJ, 4 edition, November 2020.

Sunil Kumar Prabhakar and Seong-Whan Lee. Transformation based tri-level feature selection approach using wavelets and swarm computing for prostate cancer classification. IEEE Access, 8:127462–127476, 2020.

Szabo, N. (1997). Formalizing and securing relationships on public networks. First monday.

Szabo, N. (2008). Bit gold. [link]. Accesso em: 02 jul. 2024.

Thabtah F., Hammoud S., Kamalov F., Gonsalvesv A. (2019). Data Imbalance in Classification: Experimental Evaluation. In: Information Sciences. 513. 10.1016/j.ins.2019.11.004.

Tharcylla Rebecca Negreiros Clemente Pedro Henrique Cavalcanti Lins Andre Gardi Koury Marcelo Hazin Alencar Cristiano Alexandre Virginio Cavalcante. Sistema de apoio a decisÃo para definiÇÃo de estratÉgias de manutenÇÃo a partir da abordagem mcc. In XXXI ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO, Belo Horizonte, Minas Gerais, oct 2011.

The Economist (2015). The trust machine. [link]. Accessed: 2024-05-14.

Tim Stobierski. The advantages of data-driven decision-making, 2019. Disponível em: [link]. Acesso em: 25 ago. 2024.

Valeonti, F., Bikakis, A., Terras, M., Speed, C., Hudson-Smith, A., and Chalkias, K. (2021). Crypto collectibles, museum funding and openglam: challenges, opportunities and the potential of non-fungible tokens (nfts). Applied Sciences, 11(21):9931.

Vasan, K., Janosov, M., and Barabási, A.-L. (2022). Quantifying nftdriven networks in crypto art. Scientific reports, 12(1):2769.

Venkata Sushma Chinta, Sowmya Kethi Reddi, and Nagini Yarramsetty. Optimal feature selection on serial cascaded deep learning for predictive maintenance system in automotive industry with fused optimization algorithm. Advanced Engineering Informatics, 57:102105, 2023.

Visal Rajapakse, Ishan Karunanayake, and Nadeem Ahmed. Intelligence at the extreme edge: A survey on reformable tinyml. ACM Comput. Surv., 55(13s), jul 2023.

Waldeilson, A. L. Z. and Paixão (2016). Influência da estética visual na usabilidade e experiência do usuário em interfaces humanocomputador. Ergodesign HCI, 4(Especial):93–101.

Weixing Su, Linfeng Li, Fang Liu, Maowei He, and Xiaodan Liang. Ai on the edge: a comprehensive review. Artif. Intell. Rev., 55(8):6125–6183, dec 2022.

William H. Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Numerical recipes 3rd edition. Cambridge University Press, Cambridge, England, 3 edition, September 2007.

Wlasinsky, O. (2023). Literature review on the most popular of nfts types. International Journal of Educational Technology and Artificial Intelligence, 2(1):8–12.

Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, 151:1–32.

Wood, G. (2019). Ethereum: A secure decentralised generalised transaction ledger.

Wust, K. e Gervais, A. (2018). Do you need a blockchain? In 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pages 45–54. IEEE.

Xiaofei Wang, Han Yu, Chunyan Miao, and Qiang Yang. Edge AI: Convergence of Edge Computing and Artificial Intelligence. Springer, 2020.

Xue Ying. An overview of overfitting and its solutions. Journal of Physics: Conference Series, 1168(2):022022, feb 2019.

Yilmaz, T., Sagfossen, S., and Velasco, C. (2023). What makes nfts valuable to consumers? perceived value drivers associated with nfts liking, purchasing, and holding. Journal of Business Research, 165:114056.

Yoshua Bengio. Deep Learning. Adaptive Computation and Machine Learning series. MIT Press, London, England, November 2016.

Zıle, K. e Strazdin, a, R. (2018). Blockchain use cases and their feasibility. Applied Computer Systems, 23(1):12–20.

Zaphiris, P., editor (2008). Human Computer Interaction: Concepts, Methodologies, Tools, and Applications, Volume 3. IGI Global, illustrated edition.

Zhang Fan, Petersen Melissa, Johnson Leigh, Hall James and O'Bryant Sid (2022). Hyperparameter Tuning with High Performance Computing Machine Learning for Imbalanced Alzheimer’s Disease Data. In: Applied Sciences. 12. 6670. 10.3390/app12136670.

Zhang Ping, Jia Yiqiao, Shang Youlin (2022). Research and application of XGBoost in imbalanced data. In: International Journal of Distributed Sensor Networks. 18. 155013292211069. 10.1177/15501329221106935.

Zheng, Z., Xie, S., Dai, H.-N., Chen, X., e Wang, H. (2018). Blockchain challenges and opportunities: a survey. International Journal of Web and Grid Services, 14(4):352–375.

Downloads

Publication date

September 11, 2024

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: Full Volume

Full Volume

ISBN-13 (15)

978-85-7669-602-5