Short Courses of the 25th Brazilian Symposium on Computing Applied to Health

Authors

Mariana Recamonde-Mendoza (ed)
UFRGS
Lina Garcés (ed)
USP

Keywords:

Cybersecurity, Data Retrieval, MIMIC-IV, Algorithmic Fairness, AI Ethics, Biofeedback, Immersive Environments, Mental Health, Clinical Medicine, Retrieval-Augmented Generation (RAG), Imaging Photoplethysmography, Big Data Linkage, Databases, Public Health, Data Analysis

Synopsis

The Short Courses of the 25th Brazilian Symposium on Computing Applied to Health (SBCAS 2025) brings together a collection of eight chapters corresponding to the minicourses selected for this edition of the event. The topics covered reflect contemporary and highly relevant issues in the field of computing applied to health, ranging from information security to artificial intelligence and biomedical data analysis.

Chapter 1, “Health Under Attack: From Risk Assessment to Cybersecurity Investment Strategies in the Healthcare Sector”, examines the primary cyber risks faced by healthcare institutions. The chapter discusses methodologies for assessing and mitigating these risks. It proposes cybersecurity investment strategies that consider technical, financial, and regulatory aspects, aiming to protect sensitive data and ensure service continuity.

Chapter 2, “Accessing and Retrieving Biomedical Data in MIMIC-IV”, offers a practical introduction to using the MIMIC-IV database. It presents procedures for accessing, extracting, and retrieving clinical data for health research, highlighting the tools and languages used and applied examples.

Chapter 3, “Data Science in Health: First Steps in Data Preparation and Analysis”, addresses the fundamentals of data science in healthcare. It guides the reader through the initial stages of the analytical process – from data cleaning and preprocessing to exploratory analysis – with practical examples relevant to the biomedical domain.

Chapter 4, “Building Fair Models: Foundations, Strategies, and Challenges for Ethical and Equitable AI in Health”, discusses the challenges related to bias in predictive models in the healthcare domain. It covers key concepts such as algorithmic fairness, AI ethics, and strategies to identify and mitigate inequalities in data and automated decisions.

Chapter 5, “Biofeedback in the Evaluation of User Experience in Immersive Environments”, explores physiological signals in assessing user experience in immersive environments such as virtual and augmented reality. The chapter presents the fundamentals of biofeedback and its applications aimed at well-being and mental health.

Chapter 6, “Answering Clinical Questions Using Retrieval-Augmented Generation (RAG)”, introduces the RAG architecture, which combines document retrieval techniques with text generation to answer clinical questions more accurately. The text discusses practical applications and the challenges involved in this approach.

Chapter 7, “Exploring Imaging Photoplethysmography: A Practical Approach for Biomedical Applications”, presents the non-invasive technique of imaging photoplethysmography, which monitors vital signs from videos. The chapter covers its fundamental principles, healthcare applications, and practical implementation.

Finally, Chapter 8, “Big Data Linkage in Brazil: Methodological and Practical Aspects”, focuses on using record linkage in large databases within the Brazilian context. It discusses the technical and methodological challenges and case studies aimed at data integration for public health research.

This book is a record of the knowledge shared during the SBCAS 2025 minicourses and a significant contribution to the training of professionals aware of the technical, ethical, and social challenges of health-related computing.

Chapters

  • 1. Health Under Attack: From Risk Assessment to Cybersecurity Investment Strategies in the Healthcare Sector
    Muriel Figueredo Franco, Laura Rodrigues Soares, Jéferson Campos Nobre
  • 2. Accessing and Retrieving Biomedical Data in MIMIC-IV
    Willian de Vargas, André Gonçalves Jardim, Viviane Rodrigues Botelho, Thatiane Alves Pianoschi, Ana Trindade Winck
  • 3. Data Science in Health: First Steps in Data Preparation and Analysis
    Ivan Rodrigues de Moura, Francisco José da Silva e Silva, Luciano Reis Coutinho, Ariel Soares Teles, Nailton dos Reis Maciel, Danilo Gameleira Dias
  • 4. Building Fair Models: Foundations, Strategies, and Challenges for Ethical and Equitable AI in Health
    Bianca Matos de Barros, Diego Dimer Rodrigues, Gabriela Bellardinelli Oliveira, Mariana Recamonde-Mendoza
  • 5. Biofeedback in the evaluation of user experience in immersive environments
    Ingrid Winkler, Paulo E. Ambrósio, Regina M. C. Leite, André M. Cordeiro, Lucas G. G. Almeida, Yasmim Thasla, Alexandre G. Siqueira, Marcio F. Catapan, Luciana O. Berretta
  • 6. Answering clinical questions using Retrieval-Augmented Generation (RAG)
    Luciana Bencke
  • 7. Exploring Imaging Photoplethysmography: A Practical Approach for Biomedical Applications
    Vitor Kauã Oliveira de Souza, Alan Floriano, Teodiano Freire Bastos-Filho
  • 8. Big Data Linkage in Brazil: Methodological and practical aspects
    Robespierre Pita, Roberto P. Carreiro, Carlos J. C. Santos, Laianne dos S. Protasio, Marcos E. Barreto, Victor B. Orrico, José A. D. Gomes, Fernanda S. Eustáquio, Samila Sena, Mauricio L. Barreto, Pablo I. P. Ramos, Denis Rangel, Bethânia de A. Almeida

Downloads

Download data is not yet available.

References

Abou Jaoude, J. and Saade, R. G. (2019). Blockchain applications–usage in different domains. Ieee Access, 7:45360–45381.

Abramitzky, R. e. a. (2021). Automated linking of historical data. Journal of Economic Literature, 59(3):865–918.

Adebayo, J. (2016). Fairml: Toolbox for diagnosing bias in predictive modeling.

Adebukola, A., Navya, A., Jordan, F., Jenifer, N., and Begley, R. D. (2022). Cyber security as a threat to health care. Journal of Technology and Systems, 4(1):32–64.

Adil, M., Khan, M. K., Kumar, N., Attique, M., Farouk, A., Guizani, M., and Jin, Z. (2024). Healthcare internet of things: Security threats, challenges, and future research directions. IEEE Internet of Things Journal, 11(11):19046–19069.

Agarwal, A., Beygelzimer, A., Dudík, M., Langford, J., and Wallach, H. (2018). A reductions approach to fair classification. In Proceedings of the 35th International Conference on Machine Learning, pages 60–69. PMLR.

Ahmed, S. G., Verbert, K., Zaki, N., Khalil, A., Aljassmi, H., and Alnajjar, F. (2025). Ai innovations in rppg systems for driver monitoring: Comprehensive systematic review and future prospects. IEEE Access, 13:22893–22913.

Akkaoui, R., Hei, X., and Cheng, W. (2020). Edgemedichain: A hybrid edge blockchain-based framework for health data exchange. IEEE access, 8:113467–113486.

Alder, S. (2024). Healthcare Data Breaches Due to Phishing. [link].

Aldwean, A. and Tenney, D. (2023). Artificial intelligence in healthcare sector: a literature review of the adoption challenges. Open Journal of Business and Management, 12(1):129–147.

Aljedaani, B. and Babar, M. A. (2021). Challenges With Developing Secure Mobile Health Applications: Systematic Review. JMIR mHealth and uHealth, 9(6):e15654.

Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiological measurement, 28(3):R1.

Almeida, L. G. G. et al. (2023) “Innovating Industrial Training with Immersive Metaverses: A Method for Developing Cross-Platform Virtual Reality Environments” Applied Sciences, v. 13, n. 15, p. 8915, 2 ago. 2023.

Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., Aldairem, A., Alrashed, M., Bin Saleh, K., Badreldin, H. A., Yami, M. S. A., Harbi, S. A., and Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Medical Education, 23(1):689.

Alsentzer, E., Murphy, J., Boag, W., Weng, W.-H., Jindi, D., Naumann, T., and McDermott, M. (2019). Publicly available clinical BERT embeddings. In Rumshisky, A., Roberts, K., Bethard, S., and Naumann, T., editors, Proceedings of the 2nd Clinical Natural Language Processing Workshop, pages 72–78, Minneapolis, Minnesota, USA. Association for Computational Linguistics.

Alves, A. O. (2025) Turismo imersivo em fazendas de cacau: diretrizes para a criação e desenvolvimento de conteúdos em 360º. Dissertação (Mestrado em Modelagem Computacional em Ciência e Tecnologia). Universidade Estadual de Santa Cruz, Ilhéus, 2025.

Aouedi, O., Sacco, A., Piamrat, K., and Marchetto, G. (2023). Handling privacy-sensitive medical data with federated learning: Challenges and future directions. IEEE Journal of Biomedical and Health Informatics, 27(2):790–803.

Aragão, S. M. d. and Schiocchet, T. (2020). Lei Geral de Proteção de Dados: Desafio do Sistema Único de Saúde. Revista Eletrônica de Comunicação, Informação e Inovação em Saúde, 14(3).

Arbabi, M. S., Lal, C., Veeraragavan, N. R., Marijan, D., Nygård, J. F., and Vitenberg, R. (2023). A survey on blockchain for healthcare: Challenges, benefits, and future directions. IEEE Communications Surveys Tutorials, 25(1):386–424.

Arctic Wolf Labs (2025). 2025 Cybersecurity Predictions. [link].

Arellano, A. M., Dai, W., Wang, S., Jiang, X., and Ohno-Machado, L. (2018). Privacy policy and technology in biomedical data science. Annual review of biomedical data science, 1(1):115–129.

Arora, R. and Dell, R. (2023). Linktransformer: A unified package for record linkage with transformer language models.

Associated Press (2020). German hospital hacked, patient taken to another city dies. [link].

Autoridade Nacional de Proteção de Dados (2023). ANPD aplica a primeira multa por descumprimento à LGPD. [link].

Awrahman, B. J., Aziz Fatah, C., and Hamaamin, M. Y. (2022). A review of the role and challenges of big data in healthcare informatics and analytics. Computational intelligence and neuroscience, 2022(1):5317760.

Azuma, R. T. A. (1997) Survey of augmented reality. Presence: Teleoperators and Virtual Environments, v. 6, n. 4, p. 355–385, 1997.

Badawy, M., Ramadan, N., and Hefny, H. A. (2023). Healthcare predictive analytics using machine learning and deep learning techniques: a survey. Journal of Electrical Systems and Information Technology, 10(1):40.

Bao, Y., Chen, Z., Wei, S., Xu, Y., Tang, Z., and Li, H. (2019). The state of the art of data science and engineering in structural health monitoring. Engineering, 5(2):234–242.

Barbosa, B. M., Ribeiro, M. W., Berretta, L, O,, Carvalho, S. T. (2024) “DiagnosTEA: a digital game as a tool for the diagnosis/therapy of Autism Spectrum Disorder” In: Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGAMES) - Trilha Saúde, 2024, Manaus. Anais do SBGAMES 2024. Porto Alegre: SBC, 2024. p. 1707-1718.

Barbosa, G. C. G., Ali, M. S., Araujo, B., Reis, S., Sena, S., Ichihara, M. Y. T., Pescarini, J., Fiaccone, R. L., Amorim, L. D., Pita, R., Barreto, M. E., Smeeth, L., and Barreto, M. L. (2020). Cidacs-rl: a novel indexing search and scoring-based record linkage system for huge datasets with high accuracy and scalability. BMC Medical Informatics and Decision Making, 20(1).

Barocas, S., Hardt, M., and Narayanan, A. (2023). Fairness and machine learning: Limitations and opportunities. MIT press.

Barreto, M. L., Ichihara, M. Y., Almeida, B. A., Barreto, M. E., Cabral, L., Fiaccone, R. L., Carreiro, R. P., Teles, C. A. S., Pitta, R., Penna, G. O., Barral-Netto, M., Ali, M. S., Barbosa, G., Denaxas, S., Rodrigues, L. C., and Smeeth, L. (2019). The centre for data and knowledge integration for health (cidacs): Linking health and social data in brazil. International Journal of Population Data Science, 4(2).

Barreto, M. L., Ichihara, M. Y., Pescarini, J. M., Ali, M. S., Borges, G. L., Fiaccone, R. L., Ribeiro-Silva, R. D. C., Teles, C. A., Almeida, D., Sena, S., Carreiro, R. P., Cabral, L., Almeida, B. A., Barbosa, G. C. G., Pita, R., Barreto, M. E., Mendes, A. A. F., Ramos, D. O., Brickley, E. B., and Smeeth, L. (2022). Cohort profile: The 100 million brazilian cohort. International Journal of Epidemiology, 51(2):E27–E38.

Bazzan, A. L., Tavares, A. R., Pereira, A. G., Jung, C. R., Scharcanski, J., Carbonera, J. L., Lamb, L. C., Recamonde-Mendoza, M., da Silveira, T. L., and Moreira, V. (2023). “A nova eletricidade": Aplicações, riscos e tendências da IA moderna – “The new electricity": Applications, risks, and trends in current AI. arXiv preprint arXiv:2310.18324.

Beckers, K., Heisel, M., and Hatebur, D. (2015). Pattern and security requirements. Pattern Secur. Requir. Eng. Establ. Secur. Stand, pages 1–474.

Beerman, J., Berent, D., Falter, Z., and Bhunia, S. (2023). A review of colonial pipeline ransomware attack. In IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW 2023), pages 8–15.

Bellamy, R. K. E., Dey, K., Hind, M., Hoffman, S. C., Houde, S., Kannan, K., Lohia, P., Martino, J., Mehta, S., Mojsilovic, A., Nagar, S., Ramamurthy, K. N., Richards, J., Saha, D., Sattigeri, P., Singh, M., Varshney, K. R., and Zhang, Y. (2018). AI Fairness 360: An extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias.

Bencke, L., Paula, F. S., dos Santos, B. G., and Moreira, V. P. (2024). Can we trust llms as relevance judges? In Simpósio Brasileiro de Banco de Dados (SBBD), pages 600–612. SBC.

Bhattacharya, I. and Getoor, L. (2007). Collective entity resolution in relational data. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1):5–es.

BigID (2024). A cost comparison of data breaches. [link].

Blake, H., Sharples, L., Harron, K., Van der Meulen, J., and Walker, K. (2022). Linkage of national clinical datasets without patient identifiers using probabilistic methods. International Journal of Population Data Science, 7(3).

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Communications of the ACM, 13(7):422–426.

Bobbia, S., Macwan, R., Benezeth, Y., Mansouri, A., and Dubois, J. (2019). Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recognition Letters, 124:82–90. Award Winning Papers from the 23rd International Conference on Pattern Recognition (ICPR).

Bogan, R., Gaievski, M., Shah, M., and Kolchina, F. (2025). Introducing reciprocal rank fusion for hybrid search.

Borgese, M., Joyce, C., Anderson, E. E., Churpek, M. M., and Afshar, M. (2022). Bias assessment and correction in machine learning algorithms: a use-case in a natural language processing algorithm to identify hospitalized patients with unhealthy alcohol use. In AMIA Annual Symposium Proceedings, volume 2021, page 247.

Boritz, J. E. (2005). Is practitioners’ views on core concepts of information integrity. International Journal of Accounting Information Systems, 6(4):260–279.

Bradski, G. and Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV library. "O’Reilly Media, Inc.".

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901.

Brunner, U. and Stockinger, K. (2020). Entity matching with transformer architectures-a step forward in data integration. In 23rd International Conference on Extending Database Technology, pages 463–473. OpenProceedings.

Buolamwini, J. and Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on fairness, accountability and transparency, pages 77–91. PMLR.

Burkov, A. (2020). Machine Learning Engineering. True Positive Inc.

Burlina, P., Joshi, N., Paul, W., Pacheco, K. D., and Bressler, N. M. (2021). Addressing artificial intelligence bias in retinal diagnostics. Translational Vision Science & Technology, 10(2):13–13.

Calders, T., Kamiran, F., and Pechenizkiy, M. (2009). Building classifiers with independency constraints. In Proceedings of the 2009 IEEE International Conference on Data Mining Workshops, ICDMW ’09, page 13–18, USA. IEEE Computer Society.

Calegari, L. (2025). ANPD não multou empresas por violação da LGPD em 2024. [link].

Camargo Jr, K. R. d. and Coeli, C. M. (2000). Reclink: aplicativo para o relacionamento de bases de dados, implementando o método probabilistic record linkage. Cadernos de Saúde Pública, 16:439–447.

Camargo Jr, K. R. d. and Coeli, C. M. (2015). Going open source: some lessons learned from the development of openreclink. Cadernos De Saude Publica, 31:257–263.

Camargo Júnior, K. and Coeli, C. (2002). Reclink ii: Guia do usuário.

Camargo Junior, K. R. d. and Coeli, C. M. (2006). Reclink 3: nova versão do programa que implementa a técnica de associação probabilística de registros (probabilistic record linkage). Cad. saúde colet.,(Rio J.), pages 399–404.

Camargo, K. and Coeli, C. (2011). Openreclink a free and open source solution for probabilistic record linkage. In AMERICAN JOURNAL OF EPIDEMIOLOGY, volume 173, pages S108–S108. OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA.

Cambricoli, F. (2020). Nova falha do Ministério da Saúde Expõe Dados Pessoais de mais de 200 Milhões de Brasileiros. [link].

Carchiolo, V. and Malgeri, M. (2025). Trends, challenges, and applications of large language models in healthcare: A bibliometric and scoping review. Future Internet, 17(2):76.

Cartwright, A. J. (2023). The Elephant in the Room: Cybersecurity in Healthcare. Journal of Clinical Monitoring and Computing, 37(5):1123–1132.

Caton, S. and Haas, C. (2024). Fairness in machine learning: A survey. ACM Computing Surveys, 56(7):1–38.

Cha, S.-H. (2008). Taxonomy of nominal type histogram distance measures. City, 1(2):1.

Chamberlaim, A., de Azevedo Flor, B., da Silva Pereira, E., Almeida, L. S., Martins, L. D., Silva, Y. S., Siqueira, G. G., Maiczak, T., and Bovo, F. (2023). Inteligência artificial (ia) e suas aplicações em exames de imagem: uma nova era para diagnósticos na área da saúde. Cuadernos de Educación y Desarrollo, 15(12):17605–17624.

Chattu, V. K. (2021). A review of artificial intelligence, big data, and blockchain technology applications in medicine and global health. Big Data and Cognitive Computing, 5(3):41.

CheckPoint (2025). The State of Cyber Security 2025. [link].

Chen, I. Y., Pierson, E., Rose, S., Joshi, S., Ferryman, K., and Ghassemi, M. (2021). Ethical machine learning in healthcare. Annual Review of Biomedical Data Science Annu. Rev. Biomed. Data Sci, 2021:123–144.

Chen, W. and McDuff, D. (2018). Deepphys: Video-based physiological measurement using convolutional attention networks. pages 356–373.

Chowdhury, M., He, Y. V., Higham, A., and Lim, E. (2025). Astrid–an automated and scalable triad for the evaluation of rag-based clinical question answering systems. arXiv preprint arXiv:2501.08208.

Christen, P. (2011). A survey of indexing techniques for scalable record linkage and deduplication. IEEE transactions on knowledge and data engineering, 24(9):1537–1555.

Christen, P. (2012). Data matching: Concepts and techniques for record linkage, entity resolution, and duplicate detection. Springer Science & Business Media.

Christen, P. (2014). Privacy aspects in big data integration: Challenges and opportunities. In Proceedings of the First International Workshop on Privacy and Secuirty of Big Data, PSBD ’14, page 1, New York, NY, USA. Association for Computing Machinery.

Christen, P. (2019). Data linkage: The big picture. Harvard Data Science Review, 1(2).

Christen, P., Ranbaduge, T., and Schnell, R. (2020). Linking Sensitive Data: Methods and Techniques for Practical Privacy-Preserving Information Sharing. Springer Cham.

Christen, P., Schnell, R., and Vidanage, A. (2025). Information leakage in data linkage. arXiv preprint arXiv:2505.08596.

Christen, P., Ziyad, S., Vidanage, A., Nanayakkara, C., and Schnell, R. (2024). A single parameter method for secure privacy preserving record linkage. International Journal of Population Data Science, 9(5).

Claroty (2025). State of cps security: Healthcare exposures 2025. [link].

Coeli, C. M. e. a. (2021). Record linkage under suboptimal conditions for data-intensive evaluation of primary care in rio de janeiro, brazil. BMC Medical Informatics and Decision Making, 21(1):190.

Coeli, C., Pinheiro, R., Camargo Jr, K., et al. Achievements and challenges for employing record linkage techniques in health research and evaluation in brazil. epidemiol e serviços saúde. 2015.

Colacci, M., Huang, Y. Q., Postill, G., Zhelnov, P., Fennelly, O., Verma, A., Straus, S., and Tricco, A. C. (2024). Sociodemographic bias in clinical machine learning models: a scoping review of algorithmic bias instances and mechanisms. Journal of Clinical Epidemiology, page 111606.

Collins, F. S. and Varmus, H. (2015). A new initiative on precision medicine. New England journal of medicine, 372(9):793–795.

Coots, M., Linn, K. A., Goel, S., Navathe, A. S., and Parikh, R. B. (2025). Racial bias in clinical and population health algorithms: a critical review of current debates. Annual Review of Public Health, 46.

Cordeiro, A. et al. (2025) “Immersive Technologies to Height Safety: Training Evaluation and Insights” 2025 IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR), Lisbon, Portugal, 2025, pp. 435-440, DOI: 10.1109/AIxVR63409.2025.00082.

Cordeiro, A., Almeida, L., Neves, C., Leite, R., Catapan, M., Siqueira, A., Silva, T., Winkler, I. (2024) IX International Symposium on Innovation and Technology, Innovation and Global Transformations for a Sustainable World - 2024. ISSN: 2357-759.

Cordeiro, A., Santos, F., Winkler, I. (2023) “Effectiveness of industrial training using virtual reality to mitigate risks associated with the work environment: a literature review” International Symposium on Innovation and Technology, Engineering and the Future of the Industry, 2023. ISSN: 2357-759.

Cormack, G. V., Clarke, C. L., and Buettcher, S. (2009). Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pages 758–759.

Coronado, A. ; Carvalho, S.; Berretta, L. O. (2024) Escape-INF-VR: An Accessible VR Escape Game Proposal for Blind Individuals. In: IFIP International Conference on Entertainment Computing (ICEC), 2024, Manaus. Proceedings of the Entertainment Computing - ICEC 2024: 23rd IFIP TC 14 International Conference , ICEC 2024, Lecture Notes in Computer Science. Cham: Springer, 2024. v. 15192. p. 337-341.

Cortes, E. G., Vieira, R., and Barone, D. A. C. (2024). Perguntas e respostas. In Caseli, H. M. and Nunes, M. G. V., editors, Processamento de Linguagem Natural: Conceitos, Técnicas e Aplicações em Português, book chapter 16. BPLN, 2 edition.

Coventry, L. and Branley, D. (2018). Cybersecurity in Healthcare: a Narrative Review of Trends, Threats and Ways Forward . International Journal of Midlife Health and Beyond (MATURITAS), (113):48–52.

Cybersecurity Ventures (2024). Global ransomware damage costs predicted to reach $275 billion by 2031. [link].

Cybersecurity Ventures, Herjavec Group (2021). The 2020-2021 Healthcare Cybersecurity Report. [link].

Dalgarno, B.; Lee, M. J. W. (2010) What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, 41(1), 10-32. 2010.

Damerau, F. J. (1964). A technique for computer detection and correction of spelling errors. Communications of the ACM, 7(3):171–176.

Daneshjou, R., Vodrahalli, K., Novoa, R. A., Jenkins, M., Liang, W., Rotemberg, V., Ko, J., Swetter, S. M., Bailey, E. E., Gevaert, O., et al. (2022). Disparities in dermatology AI performance on a diverse, curated clinical image set. Science advances, 8(31):eabq6147.

De Haan, G. and Jeanne, V. (2013). Robust pulse rate from chrominance-based rppg. IEEE transactions on biomedical engineering, 60(10):2878–2886.

De Neira, A. B., Kantarci, B., and Nogueira, M. (2023). Distributed denial of service attack prediction: Challenges, open issues and opportunities. Computer Networks, 222:109553.

Deschodt-Arsac, V.; Lalanne, R.; Spiluttini, B.; Bertin, C.; Arsac, L.M. (2018) Effects of Heart Rate Variability Biofeedback Training in Athletes Exposed to Stress of University Examinations. PLoS ONE, 13(7): e0201388. 2018.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2023). Qlora: Efficient finetuning of quantized llms. Advances in neural information processing systems, 36:10088–10115.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), pages 4171–4186.

Dey, A.; Chatburn, A.; Billinghurst, M. (2019) Exploration of an EEG-Based Cognitively Adaptive Training System in Virtual Reality. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 2019, pp. 220-226.

Díaz, M., Johnson, I., Lazar, A., Piper, A. M., and Gergle, D. (2018). Addressing age-related bias in sentiment analysis. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–14.

Dillinger, P. C. and Manolios, P. (2004). Fast and accurate bitstate verification for spin. In Graf, S. and Mounier, L., editors, Model Checking Software, pages 57–75, Berlin, Heidelberg. Springer Berlin Heidelberg.

Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Su, Y., Hu, S., Chen, Y., Chan, C.-M., Chen, W., et al. (2023). Parameter-efficient fine-tuning of large-scale pre-trained language models. Nature Machine Intelligence, 5(3):220–235.

Ding, R., Zhong, H., Ma, J., Liu, X., and Ning, J. (2019). Lightweight privacy-preserving identity-based verifiable iot-based health storage system. IEEE Internet of Things Journal, 6(5):8393–8405.

Doidge, J. C. and Harron, K. L. (2019). Reflections on modern methods: linkage error bias. International journal of epidemiology, 48(6):2050–2060.

Dong, X. L. and Srivastava, D. (2013). Big data integration. In Proceedings of the International Conference on Data Engineering, pages 1245–1248.

dos Santos Filho, W. (2008). Algoritmo paralelo e eficiente para o problema de pareamento de dados.

Duarte, A. V., Marques, J. D., Graça, M., Freire, M., Li, L., and Oliveira, A. L. (2024b). LumberChunker: Long-form narrative document segmentation. In Al-Onaizan, Y., Bansal, M., and Chen, Y.-N., editors, Findings of the Association for Computational Linguistics: EMNLP 2024, pages 6473–6486, Miami, Florida, USA. Association for Computational Linguistics.

Duarte, A., Marques, J., Graça, M., Freire, M., Li, L., and Oliveira, A. (2024a). Lumberchunker: Long-form narrative document segmentation. In Findings of the Association for Computational Linguistics: EMNLP 2024, pages 6473–6486.

Duede, E., Dolan, W., Bauer, A., Foster, I., and Lakhani, K. (2024). Oil & water? Diffusion of AI within and across scientific fields. arXiv preprint arXiv:2405.15828.

Dunn, H. L. and Chief, F. (1946). Record linkage.

Durham, E. A., Kantarcioglu, M., Xue, Y., Toth, C., Kuzu, M., and Malin, B. (2013). Composite bloom filters for secure record linkage. IEEE Transactions on Knowledge and Data Engineering, 26(12):2956–2968.

Dusetzina, S. B. e. a. (2014). Linking Data for Health Services Research: A Framework and Instructional Guide. Agency for Healthcare Research and Quality (US), Rockville (MD). Report No.: 14-EHC033-EF. Available at: [link]. Accessed: 6 May 2025.

EC-Councl (2022). DREAD Threat Modeling: An Introduction to Qualitative Risk Analysis. [link].

Edemekong, P., Annamaraju, P., Afzal, M., and Haydel, M. (2024). Health insurance portability and accountability act (hipaa) compliance. StatPearls.

Eminagaoglu, M. (2022). A new similarity measure for vector space models in text classification and information retrieval. Journal of Information Science, 48(4):463–476.

Es, S., James, J., Espinosa Anke, L., and Schockaert, S. (2024). RAGAs: Automated evaluation of retrieval augmented generation. In Aletras, N. and De Clercq, O., editors, Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 150–158, St. Julians, Malta. Association for Computational Linguistics.

Estiri, H., Strasser, Z. H., Rashidian, S., Klann, J. G., Wagholikar, K. B., McCoy Jr, T. H., and Murphy, S. N. (2022). An objective framework for evaluating unrecognized bias in medical AI models predicting COVID-19 outcomes. Journal of the American Medical Informatics Association, 29(8):1334–1341.

European Commission (2024). EU Action Plan to Increase Healthcare Cybersecurity. [link].

Faceli, K., Lorena, A. C., Gama, J., Almeida, T. A. d., and Carvalho, A. C. P. d. L. F. d. (2021). Inteligência artificial: uma abordagem de aprendizado de máquina. LTC.

Fan, A., Lewis, M., and Dauphin, Y. (2018). Hierarchical neural story generation. In Gurevych, I. and Miyao, Y., editors, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 889–898, Melbourne, Australia. Association for Computational Linguistics.

Fan, X., Xu, J., Ye, R., Zhang, Q., and Wang, Y. (2025). Retrospective cohort study based on the mimic-iv database: analysis of factors influencing all-cause mortality at 30 days, 90 days, 1 year, and 3 years in patients with different types of stroke. Frontiers in Neurology, 15.

Fatumo, S., Chikowore, T., Choudhury, A., Ayub, M., Martin, A. R., and Kuchenbaecker, K. (2022). A roadmap to increase diversity in genomic studies. Nature Medicine, 28(2):243–250.

Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., and Venkatasubramanian, S. (2015). Certifying and removing disparate impact. KDD ’15, page 259–268, New York, NY, USA. Association for Computing Machinery.

Fellegi, I. P. and Sunter, A. B. (1969). A theory for record linkage. Journal of the American Statistical Association, 64(328):1183–1210.

Ferreira, R. A., Meira, W., Guedes, D., Drummond, L. M., Coutinho, B., Teodoro, G., Tavares, T., Araujo, R., and Ferreira, G. T. (2005). Anthill: A scalable run-time environment for data mining applications. In 17th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’05), pages 159–166. IEEE.

Fletcher, S., Islam, M. Z., et al. (2018). Comparing sets of patterns with the jaccard index. Australasian Journal of Information Systems, 22.

Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Craglia, P., Dignum, M., Dignum, V., Lütge, C., Pagallo, R., Pasquale, F., et al. (2018). AI4People – an ethical framework for a good ai society: Opportunities, risks, principles, and recommendations. Minds and Machines, 28(4):689–707.

Fonseca, F. (2025). Saúde é Setor que mais Sofre Ataque Cibernético. [link].

França, A. C. P.; Soares, M. (2017) Review of Virtual Reality Technology: An Ergonomic Approach and Current Challenges. 8th International Conference on Applied Human Factors and Ergonomics (AHFE) and the Affiliated Conferences, 2017.

Franco, M. F., Granville, L. Z., and Stiller, B. (2023a). CyberTEA: a Technical and Economic Approach for Cybersecurity Planning and Investment. In 36th IEEE/IFIP Network Operations and Management Symposium (NOMS 2023), pages 1–6, Miami, USA.

Franco, M. F., Granville, L. Z., and Stiller, B. (2023b). CyberTEA: a Technical and Economic Approach for Cybersecurity Planning and Investment. In 36th IEEE/IFIP Network Operations and Management Symposium (NOMS 2023), pages 1–6, Miami, USA.

Franco, M. F., Künzler, F., von der Assen, J., Feng, C., and Stiller, B. (2024a). RCVaR: an Economic Approach to Estimate Cyberattacks Costs using Data from Industry Reports. Computers & Security, page 103737.

Franco, M. F., Lacerda, F. M., and Stiller, B. (2022). A framework for the planning and management of cybersecurity projects in small and medium-sized enterprises. Journal of Business and Projects (Revista de Gestão e Projetos), 13(3):1–25.

Franco, M. F., Mullick, A. R., and Jha, S. (2024b). QBER: Quantifying Cyber Risks for Strategic Decisions. [link].

Franco, M., Rodrigues, B., Killer, C., Scheid, E. J., De Carli, A., Gassmann, A., Schoenbaechler, D., and Stiller, B. (2021). WeTrace: a Privacy-preserving Tracing Approach. Journal of Communications and Networks, 1(1):1–16.

Franke, M., Sehili, Z., Rohde, F., and Rahm, E. (2021). Evaluation of hardening techniques for privacy-preserving record linkage. In EDBT, pages 289–300.

Freitag, M. and Al-Onaizan, Y. (2017). Beam search strategies for neural machine translation. In Luong, T., Birch, A., Neubig, G., and Finch, A., editors, Proceedings of the First Workshop on Neural Machine Translation, pages 56–60, Vancouver. Association for Computational Linguistics.

Friedman, D. (2022) Virtual Reality Therapy for Anxiety, Depression and Stress. Springer, 2022.

Fuentes, M. R. and Huq, N. (2018). Securing Connected Hospitals: A Research on Exposed Medical Systems and Supply Chain Risks. [link].

Gallopeni, G., Rodrigues, B., Franco, M., and Stiller, B. (2020). A Practical Analysis on Mirai Botnet Traffic. In 2020 IFIP Networking Conference (Networking), pages 667–668. IEEE.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Wang, H., and Wang, H. (2023). Retrieval-augmented generation for large language models: A survey. arXiv preprint arXiv:2312.10997, 2:1.

GDPR.EU Horizon 2020 (2021). Complete guide to GDPR compliance. [link].

Geffner, H. (2018). Model-free, model-based, and general intelligence. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI2018.

Gehman, S. e. a. (2020). Realtoxicityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint arXiv:2009.11462.

Ghafur, S., Kristensen, S., Honeyford, K., Martin, G., Darzi, A., and Aylin, P. (2019). A retrospective impact analysis of the WannaCry cyberattack on the NHS. npj Digital Medicine, 2:98.

Giavarina, D. (2015). Understanding bland altman analysis. Biochemia medica, 25(2):141–151.

Goes, E. F. and Nascimento, E. R. d. (2013). Mulheres negras e brancas e os níveis de acesso aos serviços preventivos de saúde: uma análise sobre as desigualdades. Saúde em Debate, 37:571–579.

Gomes, PV et al. (2023) The use of artificial intelligence in interactive virtual reality adaptive environments with real-time biofeedback applied to phobias psychotherapy. In: VI Congreso Xove TIC: impulsando el talento científico. Outubro, 2023, A Coruña. Universidade da Coruña, Servizo de Publicacións, 2023. p. 275-279.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial networks.

Gordon, L. A., Loeb, M. P., and Zhou, L. (2016). Investing in Cybersecurity: Insights from the Gordon-Loeb Model. Journal of Information Security, 7:49–59.

Gordon, L. A., Loeb, M. P., Lucyshyn, W., and Zhou, L. (2018). Empirical evidence on the determinants of cybersecurity investments in private sector firms. Journal of Information Security, 9(2):49–61.

Grannis, S. J., Overhage, J. M., and McDonald, C. J. (2002). Analysis of identifier performance using a deterministic linkage algorithm. In Proceedings of the AMIA Symposium, page 305.

Greenwood, B. N., Hardeman, R. R., Huang, L., and Sojourner, A. (2020). Physician–patient racial concordance and disparities in birthing mortality for newborns. Proceedings of the National Academy of Sciences, 117(35):21194–21200.

Gruzelier, J. H. (2014) EEG-neurofeedback for optimising performance. Progress in Brain Research, 215, 193–213. 2014.

Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama, N., Liu, X., Naumann, T., Gao, J., and Poon, H. (2021). Domain-specific language model pretraining for biomedical natural language processing. ACM Transactions on Computing for Healthcare (HEALTH), 3(1):1–23.

Gudi, A., Bittner, M., and van Gemert, J. (2020). Real-time webcam heart-rate and variability estimation with clean ground truth for evaluation. CoRR, abs/2012.15846.

Guerrero, S., López-Cortés, A., Indacochea, A., García-Cárdenas, J. M., Zambrano, A. K., Cabrera-Andrade, A., Guevara-Ramírez, P., González, D. A., Leone, P. E., and Paz-y Miño, C. (2018). Analysis of racial/ethnic representation in select basic and applied cancer research studies. Scientific Reports, 8(1):1–8.

Guillen, L. C., Domenico, J., Camargo, K., Pinheiro, R., and Coeli, C. (2017). Match quality of a linkage strategy based on the combined use of a statistical linkage key and the levenshtein distance to link birth to death records in brazil.: Ijpds (2017) issue 1, vol 1: 036, proceedings of the ipdln conference (august 2016). International Journal of Population Data Science, 1(1).

Gupta, A., Tripathi, M., Shaikh, T. J., and Sharma, A. (2019). A lightweight anonymous user authentication and key establishment scheme for wearable devices. Computer Networks, 149:29–42.

Haenlein, M. and Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4):5–14.

Hajkowicz, S., Sanderson, C., Karimi, S., Bratanova, A., and Naughtin, C. (2023). Artificial intelligence adoption in the physical sciences, natural sciences, life sciences, social sciences and the arts and humanities: A bibliometric analysis of research publications from 1960-2021. Technology in Society, 74:102260.

Han, B., Ivanov, K., Wang, L., and Yan, Y. (2015). Exploration of the optimal skin-camera distance for facial photoplethysmographic imaging measurement using cameras of different types. In Proceedings of the 5th EAI International Conference on Wireless Mobile Communication and Healthcare, pages 186–189.

Hardt, M., Chen, X., Cheng, X., Donini, M., Gelman, J., Gollaprolu, S., He, J., Larroy, P., Liu, X., McCarthy, N., Rathi, A., Rees, S., Siva, A., Tsai, E., Vasist, K., Yilmaz, P., Zafar, M. B., Das, S., Haas, K., Hill, T., and Kenthapadi, K. (2021). Amazon sagemaker clarify: Machine learning bias detection and explainability in the cloud. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21, page 2974–2983, New York, NY, USA. Association for Computing Machinery.

Hardt, M., Price, E., Price, E., and Srebro, N. (2016). Equality of opportunity in supervised learning. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.

Harron, K., Goldstein, H., and Dibben, C. (2016). Methodological developments in data linkage. Wiley.

Hasanzadeh, F., Josephson, C. B., Waters, G., Adedinsewo, D., Azizi, Z., and White, J. A. (2025). Bias recognition and mitigation strategies in artificial intelligence healthcare applications. npj Digital Medicine, 8(1):154.

Hatoum, A. S., Wendt, F. R., Galimberti, M., Polimanti, R., Neale, B., Kranzler, H. R., Gelernter, J., Edenberg, H. J., and Agrawal, A. (2021). Ancestry may confound genetic machine learning: Candidate-gene prediction of opioid use disorder as an example. Drug and Alcohol Dependence, 229:109115.

He, D. and Zeadally, S. (2014). An analysis of rfid authentication schemes for internet of things in healthcare environment using elliptic curve cryptography. IEEE internet of things journal, 2(1):72–83.

Healthcare Information and Management Systems Society (2024). 2024 himss healthcare cybersecurity survey. [link].

Hellström, T., Dignum, V., and Bensch, S. (2020). Bias in machine learning – what is it good for? arXiv preprint arXiv:2004.00686.

Herzog, T. N., Scheuren, F. J., Winkler, W. E., Herzog, T. N., Scheuren, F. J., and Winkler, W. E. (2007). Phonetic coding systems for names. Data Quality and Record Linkage Techniques, pages 115–121.

Heusch, G., Anjos, A., and Marcel, S. (2017). A reproducible study on remote heart rate measurement. CoRR, abs/1709.00962.

HIMSS, FinThrive (2025). Survey Reveals Cybersecurity Funding is a Top Challenge for Smaller Hospitals. [link].

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de Weijer, J. (2011) Eye tracking: A comprehensive guide to methods and measures. Oxford University Press, 2011.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. (2019). The curious case of neural text degeneration. In International Conference on Learning Representations.

Hort, M., Chen, Z., Zhang, J. M., Harman, M., and Sarro, F. (2023). Bias mitigation for machine learning classifiers: A comprehensive survey.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W., et al. (2022). Lora: Low-rank adaptation of large language models. ICLR, 1(2):3.

Huang, J., Galal, G., Etemadi, M., and Vaidyanathan, M. (2022). Evaluation and mitigation of racial bias in clinical machine learning models: scoping review. JMIR Medical Informatics, 10(5):e36388.

Huggingface (2024). Rag worfflow.

Hülsbusch, M. (2008). An Image-Based Functional Method for Opto-Electronic Detection of Skin-Perfusion. Phd thesis, RWTH Aachen University.

IBM Security (2024). Cost of a data breach report 2024. [link].

Islam, T., Sheakh, M. A., Jui, A. N., Sharif, O., and Hasan, M. Z. (2023). A review of cyber attacks on sensors and perception systems in autonomous vehicle. Journal of Economy and Technology, 1:242–258.

Izacard, G., Caron, M., Hosseini, L., Riedel, S., Bojanowski, P., Joulin, A., and Grave, E. (2021). Unsupervised dense information retrieval with contrastive learning. arXiv preprint arXiv:2112.09118.

J. R. Reeder, P. F. McQuade, S. A. Schipma (2021). Cybersecurity’s Pearl Harbor Moment: Lessons Learned from the Colonial Pipeline Ransomware Attack. Greenberg-Traurig Data, Privacy Cybersecurity, 1:1–25.

Jacobs, J., Romanosky, S., Edwards, B., Adjerid, I., and Roytman, M. (2021). Exploit Prediction Scoring System (EPSS). Digital Threats: Research and Practice, 2(3):1–17.

Janosi, Andras, S. W. P. M. and Detrano, R. (1989). Heart Disease. UCI Machine Learning Repository. DOI: 10.24432/C52P4X.

Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information Systems (TOIS), 20(4):422–446.

Javaid, M., Haleem, A., Singh, R. P., and Suman, R. (2023). Towards insighting cybersecurity for healthcare domains: A comprehensive review of recent practices and trends. Cyber Security and Applications, 1:100016.

Jeong, M., Sohn, J., Sung, M., and Kang, J. (2024). Improving medical reasoning through retrieval and self-reflection with retrieval-augmented large language models. Bioinformatics, 40(Supplement_1):i119–i129.

Jerald, J. (2015) The VR Book: Human-Centered Design for Virtual Reality. Association for Computing Machinery and Morgan & Claypool, 2015.

Jobin, A., Ienca, M., and Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9):389–399.

Johnson, A. E. W., Bulgarelli, L., Shen, L., Gayles, A., Shammout, A., Horng, S., Pollard, T. J., Hao, S., Moody, B., Gow, B., Lehman, L.-W. H., Celi, L. A., and Mark, R. G. (2023). MIMIC-IV, a freely accessible electronic health record dataset. Sci. Data, 10(1):1.

Johnson, A. E. W., Pollard, T. J., Shen, L., Lehman, L.-W. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A., and Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Sci. Data, 3(1):160035.

Johnson, A., Bulgarelli, L., Pollard, T., Gow, B., Moody, B., Horng, S., Celi, L. A., and Mark, R. (2024). Mimic-iv.

Jordão, C. C. and Rosa, J. L. G. (2012). Metaphone-pt_br: the phonetic importance on search and correction of textual information. In International Conference on Intelligent Text Processing and Computational Linguistics, pages 297–305. Springer.

Joynt Maddox, K. E., Reidhead, M., Hu, J., Kind, A. J., Zaslavsky, A. M., Nagasako, E. M., and Nerenz, D. R. (2019). Adjusting for social risk factors impacts performance and penalties in the hospital readmissions reduction program. Health Services Research, 54(2):327–336.

Jung, J., Kim, D., and Hwang, I. (2024). Exploring predictive factors for heart failure progression in hypertensive patients based on medical diagnosis data from the mimic-iv database. Bioengineering, 11(6):531.

Junger, W. L. (2006). Estimação de parâmetros em relacionamento probabilístico de bancos de dados: uma aplicação do algoritmo em para o reclink. Cad. saúde colet.,(Rio J.), pages 225–232.

Junior, A. A. G., Pereira, R. G., Gurgel, E. I., Cherchiglia, M., Dias, L. V., Ávila, J. D., Santos, N., Reis, A., Acurcio, F. A., and Junior, W. M. (2018). Building the national database of health centred on the individual: administrative and epidemiological record linkage-brazil, 2000-2015. International Journal of Population Data Science, 3(1):446.

Jurafsky, D. and Martin, J. H. (2025). Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition. Prentice Hall.

Kamath, U., Liu, J., and Whitaker, J. (2019). Deep learning for NLP and speech recognition, volume 84. Springer.

Kamiran, F. and Calders, T. (2009). Classifying without discriminating. In Proceedings 2nd IEEE International Conference on Computer, Control and Communication (IC4 2009, Karachi, Pakistan, February 17-18, 2009), pages 1–6, United States. Institute of Electrical and Electronics Engineers.

Kamiran, F., Calders, T., and Pechenizkiy, M. (2010). Discrimination aware decision tree learning. In 2010 IEEE International Conference on Data Mining, pages 869–874.

Kamiran, F., Karim, A., and Zhang, X. (2012). Decision theory for discrimination-aware classification. In 2012 IEEE 12th International Conference on Data Mining, pages 924–929.

Kamishima, T., Akaho, S., Asoh, H., and Sakuma, J. (2012). Fairness-aware classifier with prejudice remover regularizer. In Proceedings of the 2012th European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part II, ECMLPKDD’12, page 35–50, Berlin, Heidelberg. Springer-Verlag.

Kamradt, G. (2024). Semantic chunking. [link].

Kapoor, S. and Narayanan, A. (2023). Leakage and the reproducibility crisis in machine-learning-based science. Patterns, 4(9).

Karakasidis, A. and Koloniari, G. (2017). Phonetics-based parallel privacy preserving record linkage. pages 179–190.

Ke, Y., Jin, L., Elangovan, K., Abdullah, H. R., Liu, N., Sia, A. T. H., Soh, C. R., Tung, J. Y. M., Ong, J. C. L., and Ting, D. S. W. (2024). Development and testing of retrieval augmented generation in large language models–a case study report. arXiv preprint arXiv:2402.01733.

Kent, Lee et al. (2021) Mixed reality in design prototyping: A systematic review. Design Studies, v. 77, p. 101046, nov. 2021.

Keshtkaran, E. (2025). Automated Methods for Estimating Blood Alcohol Concentration Level from Facial Cues. Ph.d. thesis, Edith Cowan University.

Kirsch, A. and Mitzenmacher, M. (2006). Less hashing, same performance: Building a better bloom filter. In Proceedings of the European Symposium on Algorithms, volume 4168, pages 456–467.

Knight, A. V. (2021). All That We Let In: Hacking 30 Mobile Health Apps and APIs . [link].

Koch, R. (2020). What is the LGPD? Brazil’s version of the GDPR. [link].

Koelstra, S., Muhl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., and Patras, I. (2011). Deap: A database for emotion analysis; using physiological signals. IEEE transactions on affective computing, 3(1):18–31.

Kosinski, M., Stillwell, D., and Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences, 110(15):5802–5805.

Krauẞ, Veronika et al. (2021) Research and Practice Recommendations for Mixed Reality Design – Different Perspectives from the Community. In: VRST ’21: 27TH ACM Symposium on Virtual Reality Software and Technology, Osaka Japan: ACM, 8 dez. 2021.

Kritikos, Jacob; ALEVIZOPOULOS, Georgios; KOUTSOURIS, Dimitris. (2021) Personalized virtual reality human-computer interaction for psychiatric and neurological illnesses. Frontiers in Human Neuroscience, v. 15, p. 596980, 2021.

Kuriki P., Kay F., B. C. and R., P. (2024). Rag worfflow. Disponível em: [link], último acesso em 21.04.2025.

Kyriacou, P. A. and Allen, J. (2021). Photoplethysmography: technology, signal analysis and applications. Academic Press.

L. A. Gordon, M. P. Loeb, L. Zhou (2021). Information Segmentation and Investing in Cybersecurity. Journal of Information Security, 12:115–136.

Lampier, L. C., Floriano, A., Valadão, C. T., Silva, L. A., Caldeira, E. M. D. O., and Bastos-Filho, T. F. (2023). A deep learning approach for estimating spo 2 using a smartphone camera. IEEE Transactions on Instrumentation and Measurement, 72:1–8.

Lampier, L. C., Valadão, C. T., Silva, L. A., Delisle-Rodríguez, D., Caldeira, E. M. d. O., and Bastos-Filho, T. F. (2022). A deep learning approach to estimate pulse rate by remote photoplethysmography. Physiological Measurement, 43(7):075012.

Lantyer, A. S.; Viana, M. B.; Padovani, R. C. (2013) Biofeedback no Tratamento de Transtornos Relacionados ao Estresse e à Ansiedade: Uma Revisão Crítica. Psico-USF, Bragança Paulista, v. 18, n. 1, p. 131 – 140, jan/abr 2013.

Larrazabal, A. J., Nieto, N., Peterson, V., Milone, D. H., and Ferrante, E. (2020). Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proceedings of the National Academy of Sciences, 117(23):12592–12594.

Latif, S., Usman, M., Manzoor, S., Iqbal, W., Qadir, J., Tyson, G., Castro, I., Razi, A., Boulos, M. N. K., Weller, A., et al. (2020). Leveraging data science to combat covid-19: A comprehensive review. IEEE Transactions on Artificial Intelligence, 1(1):85–103.

Leal, M. d. C., Gama, S. G. N. d., and Cunha, C. B. d. (2005). Desigualdades raciais, sociodemográficas e na assistência ao pré-natal e ao parto, 1999-2001. Revista de saude publica, 39:100–107.

Lee, J., Wettig, A., and Chen, D. (2021). Phrase retrieval learns passage retrieval, too. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3661–3672.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., and Kang, J. (2020). Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4):1234–1240.

Lehrer, P. M.; Gevirtz, R. (2014) Heart Rate Variability Biofeedback: How and Why Does it Work? Frontiers in Psychology, Vol 5, Article 756, July 2014.

Levina, A., Iliashenko, V. M., Kalyazina, S., and Overes, E. (2022). Smart hospital architecture: It and digital aspects. In Jahn, C., Ungvári, L., and Ilin, I., editors, Algorithms and Solutions Based on Computer Technology, pages 235–247, Cham. Springer International Publishing.

Lewandowska, M. and Nowak, J. (2012). Measuring pulse rate with a webcam. Journal of Medical Imaging and Health Informatics, 2(1):87–92.

Lewis, D., Lasek-Markey, M., Golpayegani, D., and Pandit, H. J. (2025). Mapping the regulatory learning space for the eu ai act. arXiv preprint arXiv:2503.05787.

Li, P. and Liu, H. (2022). Achieving fairness at no utility cost via data reweighing with influence. In International Conference on Machine Learning, pages 12917–12930. PMLR.

Li, X., Chen, J., Zhao, G., and Pietikainen, M. (2014). Remote heart rate measurement from face videos under realistic situations. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pages 4264–4271. IEEE.

Li, X., Ren, W., Qin, W., Wang, L., Zhao, T., and Hong, R. (2025). Analyzing and reducing catastrophic forgetting in parameter efficient tuning. In ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5.

Li, Y. e. a. (2020). Deep entity matching with pre-trained language models. arXiv preprint arXiv:2004.00584.

Li, Y., Li, Z., Zhang, K., Dan, R., Jiang, S., and Zhang, Y. (2023). Chat-doctor: A medical chat model fine-tuned on a large language model meta-ai (llama) using medical domain knowledge. Cureus, 15(6).

Lin, J., Gan, C., and Han, S. (2019). Tsm: Temporal shift module for efficient video understanding. In Proceedings of the IEEE/CVF international conference on computer vision, pages 7083–7093.

Lin, N., Paul, R., Guerra, S., Liu, Y., Doulgeris, J., Shi, M., Lin, M., Engeberg, E. D., Hashemi, J., and Vrionis, F. D. (2024). The frontiers of smart healthcare systems. In Healthcare, volume 12, page 2330. MDPI.

Lin, S., Lu, W., Wang, T., Wang, Y., Leng, X., Chi, L., Jin, P., and Bian, J. (2024). Predictive model of acute kidney injury in critically ill patients with acute pancreatitis: a machine learning approach using the mimic-iv database. Renal Failure, 46(1).

Liu, I., Liu, F., Zhong, Q., Ma, F., and Ni, S. (2024). Your blush gives you away: detecting hidden mental states with remote photoplethysmography and thermal imaging. PeerJ Computer Science, 10:e1912.

Lugaresi, C., Tang, J., Nash, H., McClanahan, C., Uboweja, E., Hays, M., Zhang, F., Chang, C.-L., Yong, M., Lee, J., et al. (2019). Mediapipe: A framework for perceiving and processing reality. In Third workshop on computer vision for AR/VR at IEEE computer vision and pattern recognition (CVPR), volume 2019.

Luo, H., Li, G., Feng, Q., Yang, Y.; Zuo, M. (2021) Virtual reality in K-12 and higher education: A systematic review of the literature from 2000 to 2019. Journal of Computer Assisted Learning, 887–901. 2021.

Luong, B. T., Ruggieri, S., and Turini, F. (2011). k-nn as an implementation of situation testing for discrimination discovery and prevention. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11, page 502–510, New York, NY, USA. Association for Computing Machinery.

Makransky, G., Terkildsen, T. S., Mayer, R. E. (2020) Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225-236. 2020.

Mark Billinghurst. Short course on the Psychology of XR at the University of South Australia.

Marques, B., Moreira, D., Neves, M., Brás, S., Fernandes, J. M. (2025) “Battle Against Your Fears: Virtual Reality Serious Games and Physiological Analysis for Phobia Treatment” IEEE Computer Graphics and Applications, vol. 45, no. 1, pp. 67-75, Jan.-Feb. 2025 Cardoso, A.; Lamounier Jr, E. (2006) “A Realidade Virtual na Educação e Treinamento” In: Tori, R.; Kirner, C.; Siscoutto, R. Fundamentos e Tecnologia de Realidade Virtual e Aumentada. Livro do Pré-simpósio, VIII Symposium on Virtual Reality. Porto Alegre: Editora SBC, 2006.

Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M., and Daly, M. J. (2019). Clinical use of current polygenic risk scores may exacerbate health disparities. Nature Genetics, 51(4):584–591.

Mccarthy, C. R. (1994). Historical background of clinical trials involving women and minorities. Academic Medicine, 69(9):695–8.

McDuff, D., Wander, M., Liu, X., Hill, B. L., Hernandez, J., Lester, J., and Baltrusaitis, T. (2022). Scamps: Synthetics for camera measurement of physiological signals.

Meade, R., Camilleri, A., Geoghegan, R., Osorio, S., and Zou, Q. (2021). Bias in machine learning: how facial recognition models show signs of racism, sexism and ageism.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Comput. Surv., 54(6).

Mendonça, T. S., (2022) Desenvolvimento de um serious game de educação em saúde bucal com participação de especialistas e usuários. 2022. Dissertação - Universidade Federal de Goiás.

Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., Davis, T. J. (2014) Effectiveness of virtual reality-based instruction on students' learning outcomes in K-12 and higher education: A meta-analysis. Computers & Education, 70, 29-40. 2014.

Meziati Sabour, R., Benezeth, Y., De Oliveira, P., Chappé, J., and Yang, F. (2021). Ubfc-phys: A multimodal database for psychophysiological studies of social stress. IEEE Transactions on Affective Computing.

Meziatisabour, R., Benezeth, Y., Oliveira, P., Chappé, J., and Yang, F. (2021). Ubfc-phys: A multimodal database for psychophysiological studies of social stress. IEEE Transactions on Affective Computing, PP:1–1.

Microsoft (2022). Microsoft Threat Modeling Tool Threats. [link].

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

Mirsky, Y., Mahler, T., Shelef, I., and Elovici, Y. (2019). CT-GAN: Malicious Tampering of 3D Medical Imagery using Deep Learning. In 28th USENIX Conference on Security Symposium, SEC’19, page 461–478, USA. USENIX Association.

Mishra, V. (2024). Cyberattacks on healthcare: A global threat that can’t be ignored. [link].

MIT Laboratory for Computational Physiology (2023). MIMIC-IV Documentation. [link]. Acesso em: Abril de 2025.

Mitchell, T. M. (1980). The need for biases in learning generalizations.

Mohammed, S., Budach, L., Feuerpfeil, M., Ihde, N., Nathansen, A., Noack, N., Patzlaff, H., Naumann, F., and Harmouch, H. (2025). The effects of data quality on machine learning performance on tabular data. Information Systems, 132:102549.

Molnar, C. (2025). Interpretable Machine Learning. 3 edition.

Moreira, V. P. (2024). Recuperação de informação. In Caseli, H. M. and Nunes, M. G. V., editors, Processamento de Linguagem Natural: Conceitos, Técnicas e Aplicações em Português, book chapter 21. BPLN, 3 edition.

Moura, I., Teles, A., Coutinho, L., and Silva, F. (2022). Towards identifying context-enriched multimodal behavioral patterns for digital phenotyping of human behaviors. Future Generation Computer Systems, 131:227–239.

Moura, I., Teles, A., Viana, D., Marques, J., Coutinho, L., and Silva, F. (2023). Digital phenotyping of mental health using multimodal sensing of multiple situations of interest: A systematic literature review. Journal of Biomedical Informatics, 138:104278.

Nankya, M., Mugisa, A., Usman, Y., Upadhyay, A., and Chataut, R. (2024). Security and privacy in e-health systems: A review of ai and machine learning techniques. IEEE Access, 12:148796–148816.

Nasri, Mahsa. (2025) Towards Intelligent VR Training: A Physiological Adaptation Framework for Cognitive Load and Stress Detection. arXiv preprint, arXiv:2504.06461, 2025.

National Audit Office (2018). Investigation: WannaCry Cyber Attack and the NHS. [link].

National Library of Medicine (US) (2025). PubMed: Trending articles. [link]. Accessed: 2025-05-07.

Navruzov, E. and Kabulov, A. (2022). Detection and analysis types of ddos attack. In 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pages 1–7. IEEE.

Neprash, H. T., McGlave, C. C., Cross, D. A., Virnig, B. A., Puskarich, M. A., Huling, J. D., Rozenshtein, A. Z., and Nikpay, S. S. (2022). Trends in Ransomware Attacks on US Hospitals, Clinics, and Other Health Care Delivery Organizations, 2016-2021. JAMA Health Forum, 3(12):e224873.

Ng, K. K. Y., Matsuba, I., and Zhang, P. C. (2025). Rag in health care: a novel framework for improving communication and decision-making by addressing llm limitations. NEJM AI, 2(1):AIra2400380.

NHS Foundation Trust (2023). NHS England business continuity management toolkit case study: WannaCry attack. [link].

Niu, X., Han, H., Shan, S., and Chen, X. (2018). VIPL-HR: A multi-modal database for pulse estimation from less-constrained face video. CoRR, abs/1810.04927.

Norris, K.; Spicer, T.; Byrd. (2019) Virtual reality: the new pathway for effective safety training. Professional Safety, 64(6):36–39, 2019.

Nunes, J., Franco, M., Scheid, E., Kozenieski, G., Lindemann, H., Soares, L., Nobre, J., and Granville, L. (2024). SIM-Ciber: Uma Soluçao Baseada em Simulaçoes Probabilısticas para Quantificaçao de Riscos e Impactos de Ciberataques Utilizando Relatórios Estatısticos. Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg), pages 570–585.

O Globo (2024). Em um mês, autoridade brasileira de dados abre mais investigações contra empresas do que em quatro anos. Acessado em 8 de maio de 2025.

O’connor, S. (2018). Big data and data science in health care: What nurses and midwives need to know. Journal of Clinical Nursing.

O’Neil, C. (2021). Algoritmos de destruição em massa. Editora Rua do Sabão.

Obermeyer, Z., Powers, B., Vogeli, C., and Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464):447–453.

Oliveira, G. P. d., Bierrenbach, A. L. d. S., Camargo Júnior, K. R. d., Coeli, C. M., and Pinheiro, R. S. (2016). Accuracy of probabilistic and deterministic record linkage: the case of tuberculosis. Revista de saude publica, 50:49.

Olsen, E. (2025). UnitedHealth hikes number of Change cyberattack breach victims to 190 million. [link].

Orengo, V. M. and Huyck, C. R. (2001). A stemming algorithmm for the portuguese language. In spire, volume 8, pages 186–193.

Orphanidou, C. (2019). A review of big data applications of physiological signal data. Biophysical reviews, 11(1):83–87.

Ostad-Sharif, A., Abbasinezhad-Mood, D., and Nikooghadam, M. (2019). A robust and efficient ecc-based mutual authentication and session key generation scheme for healthcare applications. Journal of medical systems, 43(1):10.

Ouerghemmi, C., Ertz, M., Bouslama, N., Tandon, U. (2023) “The impacto f virtual reality (vr) tour experience on tourists’ intention to visit”, Information, v. 14, n. 10, p. 546.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., et al. (2022). Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155.

Paes, A., Vianna, D., and Rodrigues, J. (2024). Modelos de linguagem. In Caseli, H. M. and Nunes, M. G. V., editors, Processamento de Linguagem Natural: Conceitos, Técnicas e Aplicações em Português, book chapter 17. BPLN, 3 edition.

Paixao, E. S., Cardim, L. L., Falcao, I. R., Ortelan, N., Silva, N. D. J., Rocha, A. D. S., Sena, S., Almeida, D., Ramos, D. O., Alves, F. J. O., Bispo, N., Ali, S., Fiaccone, R., Rodrigues, M., Smeeth, L., Brickley, E. B., Cabral, L., Teles, C., Costa, M. C. N., and Teixeira, M. G. (2021). Cohort profile: Centro de integração de dados e conhecimentos para saúde (cidacs) birth cohort. International Journal of Epidemiology, 50(1):37–38H.

Pan, J. J., Wang, J., and Li, G. (2024). Survey of vector database management systems. The VLDB Journal, 33(5):1591–1615.

Papakyriakopoulos, O., Hegelich, S., Serrano, J. C. M., and Marco, F. (2020). Bias in word embeddings. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pages 446–457.

Parikh, R. B., Teeple, S., and Navathe, A. S. (2019). Addressing bias in artificial intelligence in health care. Jama, 322(24):2377–2378.

Parsons, K., McCormac, A., Pattinson, M., Butavicius, M., and Jerram, C. (2013). Phishing for the Truth: A Scenario-Based Experiment of Users’ Behavioural Response to Emails. In Security and Privacy Protection in Information Processing Systems, pages 366–378, Berlin, Heidelberg. Springer.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Peeters, R. and Bizer, C. (2023). Using chatgpt for entity matching. In European Conference on Advances in Databases and Information Systems, pages 221–230. Springer Nature Switzerland.

Peeters, R., Steiner, A., and Bizer, C. (2023). Entity matching using large language models. arXiv preprint arXiv:2310.11244.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532–1543.

Pérez-Tome, J. C., Parrón-Carreño, T., Castaño-Fernández, A. B., Nievas-Soriano, B. J., and Castro-Luna, G. (2024). Sepsis mortality prediction with machine learning tecniques. Medicina Intensiva (English Edition), 48(10):584–593.

PhysioNet (2025). Physionet credentialed health data use agreement 1.5.0. [link]. Acesso em: 22 abr. 2025.

Pirzada, P., Wilde, A., and Harris-Birtill, D. (2024). Remote photo-plethysmography for heart rate and blood oxygenation measurement: A review. IEEE Sensors Journal, 24(15):23436–23453.

Pita, R., Pinto, C., Sena, S., Fiaccone, R., Amorim, L., Reis, S., Barreto, M. L., Denaxas, S., and Barreto, M. E. (2018). On the accuracy and scalability of probabilistic data linkage over the brazilian 114 million cohort. IEEE Journal of Biomedical and Health Informatics, 22(2):346–353.

Poh, M.-Z., McDuff, D. J., and Picard, R. W. (2010). Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express, 18(10):10762–10774.

Population Data BC (2024). About us.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3):130–137.

Provost, F. and Fawcett, T. (2013). Data Science for Business: What you need to know about data mining and data-analytic thinking. "O’Reilly Media, Inc.".

Qdrant (2025). Fusion vs reranking.

R. Mccrimmon and M. Matishak (2021). Cyberattack on Food Supply Followed Years of Warnings. [link].

Radianti, J., Majchrzak, T. A., Fromm, J., Wohlgenannt, I. (2020) A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 103778. 2020.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Ermon, S., and Finn, C. (2023). Direct preference optimization: Your language model is secretly a reward model. Advances in Neural Information Processing Systems, 36:53728–53741.

Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G., and Chin, M. H. (2018). Ensuring fairness in machine learning to advance health equity. Annals of Internal Medicine, 169(12):866–872.

Rajpurkar, P., Chen, E., Banerjee, O., and Topol, E. J. (2022). Ai in health and medicine. Nature medicine, 28(1):31–38.

Rana, M. S., Nobi, M. N., Murali, B., and Sung, A. H. (2022). Deep-fake detection: A systematic literature review. IEEE access, 10:25494–25513.

Ranbaduge, T. and Schnell, R. (2020). Securing bloom filters for privacy-preserving record linkage. In Proceedings of the 29th ACM international conference on information & knowledge management, pages 2185–2188.

Rasch, A., Schulze, R., Gorus, W., Hiller, J., Bartholomäus, S., and Gorlatch, S. (2019). High-performance probabilistic record linkage via multi-dimensional homomorphisms. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC ’19, page 526–533, New York, NY, USA. Association for Computing Machinery.

Revanur, A., Li, Z., Ciftci, U. A., Yin, L., and Jeni, L. A. (2021). The first vision for vitals (V4V) challenge for non-contact video-based physiological estimation. CoRR, abs/2109.10471.

Robertson, S., Zaragoza, H., et al. (2009). The probabilistic relevance framework: Bm25 and beyond. Foundations and Trends® in Information Retrieval, 3(4):333–389.

Rodrigues, D. D. (2023). Assessing pre-training bias in health data and estimating its impact on machine learning algorithms.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pages 234–241. Springer.

Roussou, M. (2004) Learning by doing and learning through play: An exploration of interactivity in virtual environments for children. Computers in Entertainment (CIE), 2(1), 1-23. 2004.

Ru, D., Qiu, L., Hu, X., Zhang, T., Shi, P., Chang, S., Jiayang, C., Wang, C., Sun, S., Li, H., et al. (2024). Ragchecker: A fine-grained framework for diagnosing retrieval-augmented generation. arXiv preprint arXiv:2408.08067.

Ruback, L., Carvalho, D., and Avila, S. (2022). Mitigando vieses no aprendizado de máquina: Uma análise sociotécnica. iSys-Brazilian Journal of Information Systems, 15(1):23–1.

Runte, C. (2024). GDPR Enforcement Tracker Report. [link].

Sanni Ali, M., Ichihara, M. Y., Lopes, L. C., Barbosa, G. C. G., Pita, R., Carreiro, R. P., dos Santos, D. B., Ramos, D., Bispo, N., Raynal, F., Canuto, V., de Araujo Almeida, B., Fiaccone, R. L., Barreto, M. E., Smeeth, L., and Barreto, M. L. (2019). Administrative data linkage in brazil: Potentials for health technology assessment. Frontiers in Pharmacology, 10(SEP).

Santos, J. A., Inacio, P. R., and Silva, B. M. (2021). Towards the use of blockchain in mobile health services and applications. Journal of Medical Systems, 45(2):17.

Santos, W., Teixeira, T., Machado, C., Meira Jr, W., Ferreira, R., Guedes, D., and Da Silva, A. S. (2007). A scalable parallel deduplication algorithm. In 19th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’07), pages 79–86. IEEE.

Saxen, F. and Al-Hamadi, A. (2014). Color-based skin segmentation: an evaluation of the state of the art. In 2014 IEEE International Conference on Image Processing (ICIP), pages 4467–4471. IEEE.

Scheid, E. J., Knecht, A., Strasser, T., Killer, C., Franco, M., Rodrigues, B., and Stiller, B. (2021a). Edge2BC: a Practical Approach for Edge-to-Blockchain IoT Transactions. In IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2021), pages 1–9.

Scheid, E. J., Rodrigues, B., Killer, C., Franco, M., Niya, S. R., and Stiller, B. (2021b). Blockchains and Distributed Ledgers Uncovered: Clarifications, Achievements, and Open Issues, pages 1–29. Number 1 in IFIP AICT Festschrifts. Springer, Cham, Switzerland.

Schnell, R. (2015). Privacy-preserving record linkage. Methodological developments in data linkage, pages 201–225.

Schnell, R., Bachteler, T., and Reiher, J. (2009). Privacy-preserving record linkage using bloom filters. BMC Medical Informatics and Decision Making, 9:1–11.

Schnell, R., Bachteler, T., and Reiher, J. (2011). A novel error-tolerant anonymous linking code. Available at SSRN 3549247.

Schwalbe, N. and Wahl, B. (2020). Artificial intelligence and the future of global health. The Lancet, 395(10236):1579–1586.

Secureworks (2024). Boardroom cybersecurity report 2024. [link].

SENAI CIMATEC. (2025) Immersive Technologies for a Sustainable and Human-centric Industry 5.0 Lab. . Salvador, 10 abr. 2025.

Shaffer, F., & Ginsberg, J. P. (2017) An Overview of Heart Rate Variability Metrics and Norms. Frontiers in Public Health, 5, 258. 2017.

Shailaja, K., Seetharamulu, B., and Jabbar, M. (2018). Machine learning in healthcare: A review. In 2018 Second international conference on electronics, communication and aerospace technology (ICECA), pages 910–914. IEEE.

Shinn, N., Cassano, F., Berman, E., Gopinath, A., Narasimhan, K., and Yao, S. (2023). Reflexion: Language agents with verbal reinforcement learning.

Shukla, V. (2015). Elasticsearch for Hadoop. Packt Publishing Ltd.

Silva, A. D. S. D.; Valenciano, P. J.; Fujisawa, D. S. (2017) Atividade lúdica na fisioterapia em pediatria: Revisão de literatura. Revista Brasileira de Educação Especial, 23:623 – 636, 2017.

Silva, T. (2022). Racismo algorítmico: inteligência artificial e discriminação nas redes digitais. Edições Sesc SP.

Singer, P. W. and Friedman, A. (2013). Cybersecurity and Cyberwar: What Everyone Needs to Know®. Oxford University Press.

Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J., Chung, H. W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al. (2023). Large language models encode clinical knowledge. Nature, 620(7972):172–180.

Singhal, K., Tu, T., Gottweis, J., Sayres, R., Wulczyn, E., Amin, M., Hou, L., Clark, K., Pfohl, S. R., Cole-Lewis, H., et al. (2025). Toward expert-level medical question answering with large language models. Nature Medicine, pages 1–8.

Slater, M., & Sanchez-Vives, M. V. (2016) Enhancing Our Lives with Immersive Virtual Reality. Frontiers in Robotics and AI, 3, 74. 2016.

Slater, Mel et al. (2022) A separate reality: an update on place illusion and plausibility in virtual reality. Frontiers in Virtual Reality, v. 3, 2022.

Slater, Mel, et al. (2022) A separate reality: An update on place illusion and plausibility in virtual reality. Frontiers in Virtual Reality, 3, 914392. 2022.

Smart Eye (2023). Driver monitoring system (dms). [link].

Smart, W. (2018). Lessons learned review of the WannaCry Ransomware Cyber Attack.

Smith, S. R., & Hamilton, M. (2015) The efficacy of virtual reality technologies for educational purposes: A case study of special needs education. Journal of Educational Technology, 12(3), 15-25. 2015.

Soares, L. R., Nobre, J. C., and Kerschner, G. (2023). Design of a blockchain-based secure storage architecture for resource-constrained healthcare. In 2023 IEEE Symposium on Computers and Communications (ISCC), pages 1–6.

Solans Noguero, D., Ramírez-Cifuentes, D., Ríssola, E. A., and Freire, A. (2023). Gender bias when using artificial intelligence to assess anorexia nervosa on social media: data-driven study. Journal of Medical Internet Research, 25:e45184.

Soleymani, M., Lichtenauer, J., Pun, T., and Pantic, M. (2011). A multimodal database for affect recognition and implicit tagging. IEEE transactions on affective computing, 3(1):42–55.

Souza, CHR, Oliveira, DM, Berretta, LO, Carvalho, ST. (2021) Jogos Sérios e Elementos de Jogos na Promoção de Engajamento em Contextos de Telerreabilitação de Pacientes. In: Simpósio Brasileiro de Jogos e Entretenimento Digital, 2021, Brasil. Anais Estendidos do XX Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames Estendido 2021). p. 896.

Spetlik, R., Cech, J., Franc, V., and Matas, J. (2018). Visual heart rate estimation with convolutional neural network.

Stricker, R., Müller, S., and Gross, H.-M. (2014). Non-contact video-based pulse rate measurement on a mobile service robot. Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, 2014:1056–1062.

Stypinska, J. (2023). AI ageism: a critical roadmap for studying age discrimination and exclusion in digitalized societies. AI & society, 38(2):665–677.

Subrahmanya, S. V. G., Shetty, D. K., Patil, V., Hameed, B. Z., Paul, R., Smriti, K., Naik, N., and Somani, B. K. (2022). The role of data science in healthcare advancements: applications, benefits, and future prospects. Irish Journal of Medical Science (1971-), 191(4):1473–1483.

Sun, B., Man, Y.-l., Zhou, Q.-y., Wang, J.-d., Chen, Y.-m., Fu, Y., and Chen, Z.-h. (2024). Development of a nomogram to predict 30-day mortality of sepsis patients with gastrointestinal bleeding: An analysis of the mimic-iv database. Heliyon, 10(4):e26185.

Sun, Y. and Thakor, N. (2016). Photoplethysmography revisited: From contact to noncontact, from point to imaging. IEEE Transactions on Biomedical Engineering, 63(3):463–477.

Sun, Y., Lo, F. P.-W., and Lo, B. (2019). Security and privacy for the internet of medical things enabled healthcare systems: A survey. IEEE Access, 7:183339–183355.

Suresh, H. and Guttag, J. (2021). A framework for understanding sources of harm throughout the machine learning life cycle. In Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization, pages 1–9.

Sutarto, A. P.; Wahab, M. N. A.; Zin, N. M. (2010) Heart Rate Variability (HRV) Biofeedback: A New Training Approach for Operator’s Performance Enhancement. Journal of Industrial Engineering and Management, v3n1, p176-198, 2010.

Taddeo, M. and Floridi, L. (2018). How ai can be a force for good. Science, 361(6404):751–752.

Talwar, R., Sharma, M., Singh, H., and Sagar, P. (2023). A comparative analysis on image processing-based algorithms and approaches in healthcare. In Handbook of Research on Thrust Technologies’ Effect on Image Processing, pages 1–14. IGI Global.

Tang, J. e. a. (2022). Generic entity resolution models. In NeurIPS 2022 First Table Representation Workshop.

Tang, J., Chen, K., Wang, Y., Shi, Y., Patel, S., McDuff, D., and Liu, X. (2023). Mmpd: Multi-domain mobile video physiology dataset.

Tawakuli, A. and Engel, T. (2024). Make your data fair: A survey of data preprocessing techniques that address biases in data towards fair AI. Journal of Engineering Research.

Taylor, R., Kardas, M., Cucurull, G., Scialom, T., Hartshorn, A., Saravia, E., Poulton, A., Kerkez, V., and Stojnic, R. (2022). Galactica: A large language model for science. arXiv preprint arXiv:2211.09085.

Teles, A. S., de Moura, I. R., Silva, F., Roberts, A., and Stahl, D. (2025). Ehr-based prediction modelling meets multimodal deep learning: A systematic review of structured and textual data fusion methods. Information Fusion, page 102981.

The Telegraph (2018). WannaCry cyber attack cost NHS £92m as 19,000 appointments cancelled.

Thyagarajan, C., S.Suresh, Sathish, N., and Suthir, S. (2020). A Typical Analysis And Survey On Healthcare Cyber Security. International Journal of Scientific Technology Research, 9(3):1–5.

Todde, M., Beltrame, M., Marceglia, S., and Spagno, C. (2020). Methodology and Workflow to Perform the Data Protection Impact Assessment in Healthcare Information Systems. Informatics in Medicine Unlocked, 19:100361.

Tori, R.; Hounsell, M. S.; Kirner, C. (2018) Realidade Virtual. In: Tori, R.; Hounsell, M. S. (Org.) Introdução à Realidade Virtual e Aumentada. Porto Alegre: SBC, 2018.

Tori, R.; Kirner, C. (2006) Fundamentos de Realidade Virtual. In: Tori, R.; Kirner, C.; Siscoutto, R. Fundamentos e Tecnologia de Realidade Virtual e Aumentada. Livro do Pré-simpósio, VIII Symposium on Virtual Reality. Porto Alegre: Editora SBC, 2006.

Trulens (2024). The rag triad.

U.S. Government (1996). Health insurance portability and accountability act of 1996. [link].

United States Department of Health and Human Services (2013). Breach Notification Rule. [link].

United States Department of Health and Human Services (2024a). Social Engineering Attacks Targeting the HPH Sector. [link].

United States Department of Health and Human Services (2024b). Solara Medical Supplies, LLC Resolution Agreement and Corrective Action Plan. [link].

United States Department of Health and Human Services. Breach Portal: Notice to the Secretary of HHS Breach of Unsecured Protected Health Information. [link].

Unlu, O., Shin, J., Mailly, C. J., Oates, M. F., Tucci, M. R., Varugheese, M., Wagholikar, K., Wang, F., Scirica, B. M., Blood, A. J., et al. (2024). Retrieval-augmented generation–enabled gpt-4 for clinical trial screening. NEJM AI, 1(7):AIoa2400181.

US Health Care Industry Cybersecurity Task Force (2017). Report On Improving Cyber-security in the Health Care Industry. [link].

Vaiwsri, S., Ranbaduge, T., and Christen, P. (2018). Reference values based hardening for bloom filters based privacy-preserving record linkage. In Australasian Conference on Data Mining, pages 189–202. Springer.

Van Der Zwan, J. E. et al. (2019) The Effect of Heart Rate Variability Biofeedback Training on Mental Health of Pregnant and Non-Pregnant Women: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 16, 1051, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

Vatsalan, D., Yu, J., Henecka, W., and Thorne, B. (2020). Fairness-aware privacy-preserving record linkage. In International Workshop on Data Privacy Management, pages 3–18. Springer.

Verizon Business (2025). 2025 data breach investigations report. [link].

Verkruysse, W., Svaasand, L. O., and Nelson, J. S. (2008). Remote plethysmographic imaging using ambient light. In Optics Express, volume 16, pages 21434–21445. Optical Society of America.

Vidal, E., Coeli, C., Pinheiro, R., and Camargo, K. (2006). Mortality within 1 year after hip fracture surgical repair in the elderly according to postoperative period: a probabilistic record linkage study in brazil. Osteoporosis international, 17:1569–1576.

Vidanage, A., Christen, P., Ranbaduge, T., and Schnell, R. (2023). A vulnerability assessment framework for privacy-preserving record linkage. ACM Transactions on Privacy and Security, 26(3):1–31.

Vidanage, A., Ranbaduge, T., Christen, P., and Schnell, R. (2019). Efficient pattern mining based cryptanalysis for privacy-preserving record linkage. In 2019 IEEE 35th International Conference on Data Engineering (ICDE), pages 1698–1701. IEEE.

Vieira, C., Coeli, C., Aguiar, F., Camargo Jr, K., Pinheiro, R., and Flores, P. (2017). Effect of short interdelivery interval between the first and second pregnancies in adolescence on low birth weight. International Journal of Population Data Science, 1(1):37.

Vogels, T., Van Gastel, M., Wang, W., and De Haan, G. (2018). Fully-automatic camera-based pulse-oximetry during sleep. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 1349–1357.

Wan, M., Zha, D., Liu, N., and Zou, N. (2022). In-processing modeling techniques for machine learning fairness: A survey. ACM Transactions on Knowledge Discovery from Data, 17.

Wanderley, L, Soares, S, Santos, SLV, Carvalho, ST. (2021) Desenvolvimento de um jogo para hipertensão utilizando a metodologia Design Science Research: equilibrando a Ciência e a Arte. In: Simpósio Brasileiro de Jogos e Entretenimento Digital, 2021, Brasil. Anais Estendidos do XX Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames Estendido 2021). p. 857.

Wang, H., Huang, J., Wang, G., Lu, H., and Wang, W. (2023). Contactless patient care using hospital iot: Cctv-camera-based physiological monitoring in icu. IEEE Internet of Things Journal, 11(4):5781–5797.

Wang, J., Shan, C., Liu, L., and Hou, Z. (2024). Camera-based physiological measurement: Recent advances and future prospects. Neurocomputing, 575.

Wang, L., Yang, N., Huang, X., Jiao, B., Yang, L., Jiang, D., Majumder, R., and Wei, F. (2022). Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint arXiv:2212.03533.

Wang, M., Guo, Y., Zhang, C., Wang, C., Huang, H., and Jia, X. (2021). Medshare: A privacy-preserving medical data sharing system by using blockchain. IEEE Transactions on Services Computing, 16(1):438–451.

Wang, Peng et al. (2020) A comprehensive survey of AR/MR-based co-design in manufacturing. Engineering with Computers, v. 36, n. 4, p. 1715–1738, 2020.

Wang, Peng et al. (2021) AR/MR Remote Collaboration on Physical Tasks: A Review. Robotics and Computer-Integrated Manufacturing, v. 72, p. 102071, 2021.

Wang, W. and Shan, C. (2020). Impact of makeup on remote-ppg monitoring. Biomedical Physics & Engineering Express, 6(3):035004.

Wang, W., den Brinker, A. C., Stuijk, S., and de Haan, G. (2017a). Algorithmic principles of remote-ppg. In IEEE Transactions on Biomedical Engineering, volume 64, pages 1479–1491. Institute of Electrical and Electronics Engineers (IEEE).

Wang, W., den Brinker, A. C., Stuijk, S., and de Haan, G. (2017b). Robust heart rate from fitness videos. Physiological measurement, 38(6):1023.

Weber, R, Dash, A, Wriessnegger, SC. (2024) Design of a Virtual Reality-Based Neuroadaptive System for Treatment of Arachnophobia. 2024 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), St Albans, United Kingdom, 2024, pp. 255-259.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al. (2022). Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35:24824–24837.

Wen, J., Zhang, Z., Lan, Y., Cui, Z., Cai, J., and Zhang, W. (2023). A survey on federated learning: challenges and applications. International Journal of Machine Learning and Cybernetics, 14(2):513–535.

Williamson, E. J. e. a. (2020). Opensafely: Factors associated with covid-19 death in 17 million patients. Nature, 584(7821):430–436.

Wilson, D. R. (2011). Beyond probabilistic record linkage: Using neural networks and complex features to improve genealogical record linkage. In The 2011 International Joint Conference on Neural Networks, pages 9–14. IEEE.

Wolford, B. (2020). What are the GDPR Fines? [link].

World Health Organization (2021). Ethics and governance of artificial intelligence for health. Accessado em 2025-05-07.

Wu, Y., Lim, J., and Yang, M.-H. (2013). Online object tracking: A benchmark. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2411–2418.

Wu, Z., Hasan, A., Wu, J., Kim, Y., Cheung, J., Zhang, T., and Wu, H. (2024). Knowlab_aimed at mediqa-corr 2024: Chain-of-though (cot) prompting strategies for medical error detection and correction. In proceedings of the 6th clinical natural language processing workshop, pages 353–359.

Xiao, H., Liu, T., Sun, Y., Li, Y., Zhao, S., and Avolio, A. (2024). Remote photoplethysmography for heart rate measurement: A review. Biomedical Signal Processing and Control, 88.

Xiong, G., Jin, Q., Lu, Z., and Zhang, A. (2024). Benchmarking retrieval-augmented generation for medicine. In Ku, L.-W., Martins, A., and Srikumar, V., editors, Findings of the Association for Computational Linguistics: ACL 2024, pages 6233–6251, Bangkok, Thailand. Association for Computational Linguistics.

Yang, X., Chen, A., PourNejatian, N., Shin, H. C., Smith, K. E., Parisien, C., Compas, C., Martin, C., Costa, A. B., Flores, M. G., et al. (2022). A large language model for electronic health records. NPJ digital medicine, 5(1):194.

Young, A. and Yung, M. (1996). Cryptovirology: Extortion-based security threats and countermeasures. In Proceedings 1996 IEEE Symposium on Security and Privacy, pages 129–140. IEEE.

Yu, Z., Li, X., and Zhao, G. (2019). Recovering remote photoplethysmo-graph signal from facial videos using spatio-temporal convolutional networks. CoRR, abs/1905.02419.

Zakka, C., Shad, R., Chaurasia, A., Dalal, A. R., Kim, J. L., Moor, M., Fong, R., Phillips, C., Alexander, K., Ashley, E., et al. (2024). Almanac—retrieval-augmented language models for clinical medicine. Nejm ai, 1(2):AIoa2300068.

Zehlike, M., Castillo, C., Bonchi, F., Baeza-Yates, R., Hajian, S., and Megahed", M. (2017). Fairness measures: A platform for data collection and benchmarking in discrimination-aware ml. [link].

Zeier, H. (1984) Biofeedback and Self-Regulation, 9: 497, 1984 Zelis, H, Kubanka, T, Williams, L. (2025) Adaptive Virtual Reality Exposure Therapy with Biofeedback. SoutheastCon 2025, Concord, NC, USA, 2025, pp. 1059-1060, DOI: 10.1109/SoutheastCon56624.2025.10971438.

Zeng, Y., Yu, D., Song, X., Wang, Q., Pan, L., Lu, H., and Wang, W. (2024). Camera-based cardiorespiratory monitoring of preterm infants in nicu. IEEE Transactions on Instrumentation and Measurement.

Zeng, Y., Zhu, Y., Song, X., Wang, Q., Yang, J., and Wang, W. (2025). Camera-based neonatal blood pressure estimation from multisite and multiwavelength pulse transit time-a proof of concept in nicu. IEEE Internet of Things Journal.

Zhan, Q., Wang, W., and De Haan, G. (2020). Analysis of cnn-based remote-ppg to understand limitations and sensitivities. Biomedical optics express, 11(3):1268–1283.

Zhang, B. H., Lemoine, B., and Mitchell, M. (2018). Mitigating unwanted biases with adversarial learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, AIES ’18, page 335–340, New York, NY, USA. Association for Computing Machinery.

Zhang, J., Yang, Y., Liu, X., and Ma, J. (2022). An efficient blockchain-based hierarchical data sharing for healthcare internet of things. IEEE Transactions on Industrial Informatics, 18(10):7139–7150.

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi, Y. (2020). Bertscore: Evaluating text generation with bert.

Zhang, T., Patil, S. G., Jain, N., Shen, S., Zaharia, M., Stoica, I., and Gonzalez, J. E. (2024). Raft: Adapting language model to domain specific rag. In First Conference on Language Modeling.

Zhang, Z., Girard, J., Wu, Y., Zhang, X., Liu, P., Ciftci, U., Canavan, S., Reale, M., Horowitz, A., Yang, H., Cohn, J., Ji, Q., and Yin, L. (2016). Multimodal spontaneous emotion corpus for human behavior analysis. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December.

Zhao, J., Ji, Z., Fan, Z., Wang, H., Niu, S., Tang, B., Xiong, F., and Li, Z. (2025). Moc: Mixtures of text chunking learners for retrieval-augmented generation system. arXiv preprint arXiv:2503.09600.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. (2023). Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623.

Zliobaite, I., Kamiran, F., and Calders, T. (2011). Handling conditional discrimination. pages 992–1001.

Downloads

Publication date

June 9, 2025

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: Full Volume

Full Volume

ISBN-13 (15)

978-85-7669-631-5