Short Courses of the 17th Unified Meeting on Computing in Piauí
Keywords:
Smart Contracts, Immersive Digital Experiences, Video Mapping, Neural Networks, Scientific Research Assistant, LangGraph, Deep Learning, Image Classification, Convolutional Neural Networks, Task Automation, APIs, Google Calendar, WhatsApp, Process Optimization, Rigging, Normal Map, UnitySynopsis
The XVII ENUCOMPI (Unificado Computing Meeting of Piauí) 2025 Short Courses Book brings together a selection of practical and innovative content that reflects the dynamism and diversity of today’s computing landscape. Organized as part of the IV Congress on Law, Business, and Technology (DNT), hosted by iCEV in Teresina, Brazil, this volume serves as a technical and educational record of the hands-on workshops held during the event, aimed at both beginners and professionals seeking updated knowledge and deeper insights.
The chapters explore emerging technologies and real-world applications, encouraging problem-solving and creativity. Topics include the development of immersive digital experiences through real-time video mapping with neural networks, creating personalized scientific research assistants using LangGraph, an introduction to Smart Contracts, facial image classification using Convolutional Neural Networks, task automation via integration between APIs like Google Calendar and WhatsApp, and the use of rigging and normal maps in Unity to build 2D animations with depth and dynamic lighting from a single image.
With accessible and practice-oriented language, this book offers an up-to-date view of the state of the art in Computing, contributing to the technical and intellectual growth of its readers. It is essential reading for anyone looking to actively, creatively, and critically engage with the digital transformation.
Chapters
-
1. Introduction to Smart Contracts
-
2. Development of Immersive Digital Experiences through Real-Time Video Mapping with Neural Networks
-
3. How to Create Your Own Scientific Research Assistant with LangGraph
-
4. Deep Learning in Practice: Classifying Facial Images with Convolutional Neural Networks
-
5. Task Automation with APIs: Integrating Google Calendar and WhatsApp for Process Optimization
-
6. Applying Rigging and Normal Map techniques in Unity to create 2D animations with depth and dynamic lighting from a single image
Downloads
References
A. M. Antonopoulos and G. Wood, Mastering Ethereum: Building Smart Contracts and DApps. O’Reilly Media, 2018.
ALMEIDA DA SILVA, Wildemarkes de et al. Mitigation of Hallucinations in Language Models in Education: A New Approach of Comparative and Cross-Verification. In: 2024 IEEE International Conference on Advanced Learning Technologies (ICALT). [S.l.: s.n.], 2024. P. 207–209. DOI: 10.1109/ICALT61570.2024.00066.
Alves Rodrigues, J. N., Teixeira Aires, K. R., Branco Soares, A. C., Machado, V. P., and de Melo Souza Veras, R. (2023). Classification of facial images using deep learning models to support asd identification. In 2023 XLIX Latin American Computer Conference (CLEI), pages 1–9. IEEE.
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (DSM-5). American Psychiatric Pub.
ANTHROPIC. Anthropic key. [S.l.: s.n.], 2024. Acessado em 20 de março de 2025. Available from: [link].
Antonopoulos, A. M., & Wood, G. (2018). Mastering Ethereum: Building Smart Contracts and DApps. O’Reilly Media.
Aragon. [link], acesso em: Maio de 2025.
Asif, R., Naveed, A., Farasat, M., and Khan, M. I. (2024). Impact of digital signage and social media advertising on consumer buying behavior: Mediating role of emotional processes. Journal of Asian Development Studies, 13(1):1147–1160.
Azagaya (2025). Laigter - normal maps for 2d sprites. [link]. Acesso em: 12 maio 2025.
BARBARROXA, Rafael; GOMES, Luis; VALE, Zita. Benchmarking Large Language Models for Multi-agent Systems: A Comparative Analysis of AutoGen, CrewAI, and TaskWeaver. In . Advances in Practical Applications of Agents, Multi-Agent Systems, and Digital Twins: The PAAMS Collection. Cham: Springer Nature Switzerland, 2024. P. 39–48. ISBN 978-3-031-70415-4.
BARRETO, Danilo Alves Paes et al. AUTOMAÇÃO E PROCESSOS ADMINISTRATIVOS: DESAFIOS E OPORTUNIDADES NA ERA DIGITAL. Revista ft, Revista ft Ltda, 2024.
BENDER, Emily M. et al. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? In: PROCEEDINGS of the 2021 ACM Conference on Fairness, Accountability, and Transparency. Virtual Event, Canada: Association for Computing Machinery, 2021. (FAccT ’21), p. 610–623. ISBN 9781450383097. DOI: 10.1145/3442188.3445922.
Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. In Neural networks: Tricks of the trade, pages 437–478. Springer.
Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(2):281–305.
Binance Smart Chain. [link], acesso em: Maio de 2025.
Blockchain Ganache. [link], acesso em: Maio de 2025.
Boureau, Y.-L., Ponce, J., and LeCun, Y. (2010). A theoretical analysis of feature pooling in visual recognition. In Proceedings of the 27th international conference on machine learning (ICML-10), pages 111–118.
BRANDÃO, Rodrigo. O futuro do trabalho: Entre a automação e a integração entre humanos e máquinas. Revista Eletrônica Internacional de Economia Política da Informação da Comunicação e da Cultura, v. 23, n. 3, p. 39–55, 2021.
BrightSign LLC (2025). Brightsign®: Soluções de mídia para sinalização digital. Empresa líder global em players de mídia para sinalização digital, fundada em 2002 e sediada em Los Gatos, Califórnia.
Brignull, H. and Rogers, Y. (2003). Enticing people to interact with large public displays in public spaces. In Interact, volume 3, pages 17–24.
Brummit, L. (2023). Matter.js is a 2d physics engine for the web. Disponível em: [link]. Acesso em: 14 de março de 2025.
Buterin, V. (2013). Ethereum Whitepaper: A Next-Generation Smart Contract and Decentralized Application Platform.
Carvalho, C. A., & Ávila, L. V. (2020). A Tecnologia Blockchain Aplicada aos Contratos Inteligentes.
Centers for Disease Control and Prevention (2023). Data and statistics on autism spectrum disorder. Accessed: 2025-05- 25.
CHASE, Harrison. LangGraph Documentation. [S.l.: s.n.], 2024. Acessado em 14 de março de 2025. Available from: [link].
Chen, Q., Malric, F., Zhang, Y., Abid, M., Cordeiro, A., Petriu, E. M., and Georganas, N. D. (2009). Interacting with digital signage using hand gestures. In Kamel, M. and Campilho, A., editors, Image Analysis and Recognition, pages 347–358, Berlin, Heidelberg. Springer Berlin Heidelberg.
Chung, S. Z. (2017). Smart digital signage with eye tracking system. Masters thesis, Universiti Sains Malaysia.
Cignoni, P., Montani, C., and Scopigno, R. (1998). A comparison of mesh simplification algorithms. Computers & Graphics, 22(1):37–54.
Claro, M. L., Vogado, L. H. S., Santos, J. D., and Veras, R. M. S. (2020). Utilização de técnicas de data augmentation em imagens: Teoria e prática. In Teles, A. S., Calçada, D. B., and Veras, N. L., editors, Livro de Minicursos - VIII Escola Regional de Computação Ceará, Maranhão e Piauí (ERCEMAPI 2020), chapter 3, pages 47–71. Sociedade Brasileira de Computação, Porto Alegre.
CodeAndWeb (2023). Spriteilluminator – normal map editor. [link].
Coldewey, D. (2019). This hand-tracking algorithm could lead to sign language recognition. [link]. Acessado em 9 de maio de 2025.
Cpetry (2025). Normalmap-online. [link]. Acesso em: 12 maio 2025.
Davies, N., Clinch, S., and Alt, F. (2022). Pervasive displays: understanding the future of digital signage. Springer Nature.
de Oliveira, B. V. N. and de Melo, F. T. (2022). Fundamentos da visão computacional: Arcabouço teórico do reconhecimento artificial de imagens e vídeos. Humanidades & Inovação, 10(17):313–324.
Digital, T. (2025). Google lança recurso de publicidade para digital outof- home. Disponível em: [link]. Acesso em: 22 de abril de 2025.
Django frammework. [link], acesso: em Maio de 2025
DUAN, Zhihua; WANG, Jialin. Exploration of LLM Multi-Agent Application Implementation Based on LangGraph+CrewAI. [S.l.: s.n.], 2024. arXiv: 2411.18241 [cs.MA]. Available from: [link].
EILAM, Eldad. Reversing: Secrets of Reverse Engineering. Indianapolis: Wiley, 2011.
FIELDING, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. 2000. PhD thesis – University of California, Irvine. Disponível em: [link]. Acesso em: 23 maio 2025.
FIORILLO, Luca; MEHTA, Vini. Accelerating editorial processes in scientific journals: Leveraging AI for rapid manuscript review. Oral Oncology Reports, v. 10, p. 100511, 2024. ISSN 2772-9060. DOI: 10.1016/j.oor.2024.100511. Available from: [link].
Foundation, K. (2025). Tangent normal brush engine - krita manual. [link]. Acesso em: 12 maio 2025.
Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Networks, 1(2):119–130.
GDQuest (2020). Lighting with 2d normal maps. [link].
GDQuest (2025). Lighting with 2d normal maps - gdquest. [link]. Acesso em: 12 maio 2025.
Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings of the fourteenth international conference on artificial intelligence and statistics, pages 315–323. JMLR Workshop and Conference Proceedings.
Godot Engine (2025). 2d lights and shadows. Acesso em: 14 maio 2025.
Gonzalez, R. C. and Woods, R. E. (2002). Digital Image Processing. Prentice Hall.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
GOOGLE DEVELOPERS. Google Calendar API Overview. [S.l.: s.n.], 2025. [link]. Acesso em: 23 maio 2025.
Guinness World Records (2019). Most hand-drawn frames in a video game. Acesso em 28 abr. 2025.
H. Taherdoost, “Smart contracts in blockchain technology: A critical review,” Information, vol. 14, no. 2, p. 117, 2023.
H.Watanabe, S. Fujimura, A. Nakadaira, Y. Miyazaki, A. Akutsu, and J. Kishigami, “Blockchain contract: Securing a blockchain applied to smart contracts,” in Proc. 2016 IEEE Int. Conf. on Consumer Electronics (ICCE), pp. 467–468, 2016.
Hachilif, R., Baghdadi, R., and Benhamida, F. (2019). Graduation Thesis: Implementing and Optimizing Neural Networks using Tiramisu. Phd thesis, Unknown Institution.
Haykin, S. (2007). Redes neurais: princípios e prática. Bookman Editora.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pages 770–778.
HIIT (2025). Citywall. Disponível em: [link]. Acesso em: 25 de abril de 2025. Helsinki Institute for Information Technology.
IBM Brasil (2023). O que são redes neurais convolucionais? [link]. Acessado em maio de 2025.
id Software (2004). Doom 3. Game, id Tech 4 Engine.
Inc., T. B. A. (2025). Toon boom harmony. Disponível em: [link] Acesso em: 2 maio 2025.
Janocha, K. and Czarnecki, W. M. (2017). On loss functions for deep neural networks in classification. arXiv preprint arXiv:1702.05659.
Keskar, N. S., Nocedal, J., Tang, D., Mudigere, D., and Smelyanskiy, M. (2017). On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836.
Kevin (Klei Entertainment) (2012). What animation technique is used in ’Don˘2019t Starve’? [link]. Answer on GameDev StackExchange.
KHANDARE, Anand et al. Analysis of Python Libraries for Artificial Intelligence. In . Intelligent Computing and Networking. Singapore: Springer Nature Singapore, 2023. P. 157–177. ISBN 978-981-99-0071-8.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.
LEWIS, Patrick et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. [S.l.: s.n.], 2021. arXiv: 2005.11401 [cs.CL]. Available from: [link].
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (ICCV), pages 2980–2988.
LLC, L. M. (2025). Moho animation software. Disponível em: [link] Acesso em: 2 maio 2025.
Lorena, A., Faceli, K., Almeida, T., de Carvalho, A., and Gama, J. (2021). Inteligência Artificial: uma abordagem de Aprendizado de Máquina. LTC, 2 edition.
LUO, Tianze et al. Multi-Agent Collaborative Exploration through Graph-based Deep Reinforcement Learning. In: 2019 IEEE International Conference on Agents (ICA). [S.l.: s.n.], 2019. P. 2–7. DOI: 10.1109/AGENTS.2019.8929168.
Magnenat-Thalmann, N., Laperrière, R., and Thalmann, D. (1988). Joint-dependent local deformations for hand animation and object grasping. In Proc. Graphics Interface ’88, pages 25–34.
Mango Animate (2023). Animação e rigging de personagem 2d: Faça rigging 2d em 5 minutos. Disponível em: [link]. Acesso em: 31 de maio de 2024.
MANZOOR, Umar et al. Automating Academic Tasks (AAT) - An Agent Based Approach. In: 2012 IEEE 14th International Conference on High Performance Computing and Communication 2012 IEEE 9th International Conference on Embedded Software and Systems. [S.l.: s.n.], 2012. P. 1770–1775. DOI: 10.1109/HPCC.2012.266.
Marques Filho, O. and Neto, H. V. (1999). Processamento digital de imagens. Brasport.
MATHUR, Srushti; CHHABRA, Aayush. Vector Search Algorithms: A Brief Survey. In: 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS). [S.l.: s.n.], 2024. P. 365–371. DOI: 10.1109/ICUIS64676.2024.10866377.
McCarthy, L. L. (2025). P5.js - friendly tool for learning to code and make art. Disponível em: [link]. Acesso em: 14 de março de 2025.
McDonald’s Corporation (2020). Self-Ordering Kiosks Improve McDonald’s Customer Experience. [link]. Acesso em: 28 abr. 2025.
MDHR, S. (2017). Cuphead. Jogo eletrônico.
MediBang Inc. (2025). MediBang Paint Pro. [link]. Acesso em: 17 maio 2025.
MELO MESSIAS, Márcio de et al. O uso de ferramentas Google para a produção automatizada de relatórios da aprendizagem em turmas de séries iniciais para as escolas públicas do município de Fortaleza-CE. Research, Society and Development, v. 11, n. 17, e122111739151–e122111739151, 2022.
MELONI, Antonello et al. Integrating Conversational Agents and Knowledge Graphs Within the Scholarly Domain. IEEE Access, v. 11, p. 22468–22489, 2023. DOI: 10.1109/ACCESS.2023.3253388.
Mencari, M. A. (2007). O mundo animado nos comerciais: dos cobertores parahyba ao assolan. Unknown Journal.
Metamask. [link], acesso em: Maio de 2025.
Microsoft (2010). Kinect for Windows Sensor. [link]. Acesso em: 28 abr. 2025.
Microsoft (2019). Onnx.js: Run onnx models in browser using javascript. [link]. Acessado em: 2025-05-09.
ml5.js contributors (2018). ml5.js: Friendly machine learning for the web. [link]. Acessado em: 2025-05-09.
Moritz,W. (1996). Some critical perspectives on lotte reiniger. Animation Journal. Discusses early silhouette animation techniques and historical context.
Müller, J., Walter, R., Bailly, G., Nischt, M., and Alt, F. (2012). Looking glass: a field study on noticing interactivity of a shop window. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12, page 297–306, New York, NY, USA. Association for Computing Machinery.
Mumuni, A. and Mumuni, F. (2022). Data augmentation: A comprehensive survey of modern approaches. Array, 16:100258.
N. Szabo, “Smart contracts: Building blocks for digital markets,” 1996.
Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–814.
OpenSea. [link], acesso em: Maio de 2025.
Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345–1359.
Parisi, T. (2012). WebGL: up and running. " O’Reilly Media, Inc.".
Patel, R. and Desai, A. (2022). Animation techniques and trends in digital media. Journal of Engineering Design and Analysis, 4(2):15–22.
Peltonen, P., Kurvinen, E., Salovaara, A., Jacucci, G., Ilmonen, T., Evans, J., Oulasvirta, A., and Saarikko, P. (2008). It’s mine, don’t touch! interactions at a large multi-touch display in a city centre. In Proceedings of the SIGCHI conference on human factors in computing systems, pages 1285–1294.
Pereira, C. B. A. A., Barros, P., Rodrigues, J. N., Araújo, P., Borges, R., Almeida, K., and Veras, R. (2024). Identificação de parkinson em imagens faciais usando modelos de deep learning pré-treinados. In Anais da XII Escola Regional de Computação do Ceará, Maranhão e Piauí, pages 169–178. SBC.
PEROV, Vadim; PEROVA, Nina. AI Hallucinations: Is “Artificial Evil” Possible? In: 2024 IEEE Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). [S.l.: s.n.], 2024. P. 114–117. DOI: 10.1109/USBEREIT61901.2024.10584048.
Powerhoof (n.d.). Crawl art process vid 1. [link]. Acesso em: 12 maio 2025.
Rezende, S. O. (2003). Sistemas inteligentes: fundamentos e aplicações. Editora Manole Ltda.
Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3):211–252.
S. Nakamoto, “Bitcoin whitepaper,” 2008. [Online]. Available: [link]. Accessed: Jul. 17, 2019.
SANTOS, Elizabete. Gestão de processos: desafios e benefícios da implantação de uma plataforma de automação para a otimização de processos. Universidade Federal de Mato Grosso do Sul, 2023.
Scherer, D., Müller, A., and Behnke, S. (2010). Evaluation of pooling operations in convolutional architectures for object recognition. In International Conference on Artificial Neural Networks, volume 6354 of Lecture Notes in Computer Science, pages 92–101. Springer.
SEAT S.A. (2021). SEAT Creates Digital Showroom Experience. [link]. Acesso em: 28 abr. 2025.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradientbased localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages 618–626. IEEE.
Shiffman, D. et al. (2018). ml5.js: Friendly open source machine learning library for the web. [link]. Acessado em: 12 de maio de 2025.
Smith, L. N. (2017). Cyclical learning rates for training neural networks. 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 464–472.
Software, B. B. (2025a). Materialize - free texture map generator. [link]. Acesso em: 12 maio 2025.
Software, E. (2025b). Spine - animação 2d para jogos. Disponível em: [link] Acesso em: 2 maio 2025.
Solidity. [link], acesso em: Maio de 2025.
SOMMERVILLE, Ian. Engenharia de Software. 10. ed. São Paulo: Pearson Universidades, 2019. ISBN 9788543024974. Available from: [link].
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–1958.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pages 1–9.
Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B., Gotway, M. B., and Liang, J. (2016). Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Transactions on Medical Imaging, 35(5):1299–1312.
TAVILY. Tavily key. [S.l.: s.n.], 2024. Acessado em 20 de março de 2025. Available from: [link].
TensorFlow.js Team (2023). Platform and environment. [link]. Acessado em maio de 2025.
TV, O. (2023). Using Proximity Sensors with Digital Signage. [link]. Acesso em: 28 abr. 2025.
Unity (2025). Plataforma de desenvolvimento em tempo real do unity. Disponível em: [link]. Acesso em: 04 de outubro 2023.
Universal Market Access. [link], acesso em: Maio de 2025.
Vasseur, T. (2020). Art design deep dive: Using a 3d pipeline for 2d animation in dead cells. Game Developer. Acesso em: 12 maio 2025.
VeChain. [link], acesso em: Maio de 2025.
Vogado, L., Claro, M., Santos, J., and Veras, R. (2019). Deep learning em imagens: aplicando cnns com keras e tensorflow. In Minicursos ERCAS-PI e ENUCOMPI 2019, chapter 6, pages 65–96. Sociedade Brasileira de Computação, Porto Alegre.
W. Metcalfe et al., “Ethereum, smart contracts, DApps,” Blockchain and Crypt Currency, vol. 77, pp. 77–93, 2020. Springer Singapore.
Walter, R., Bailly, G., and Müller, J. (2013). Strikeapose: revealing mid-air gestures on public displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 841–850.
Web3 python. [link], acesso em: Maio de 2025.
Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht, B. (2017). The marginal value of adaptive gradient methods in machine learning. In Advances in Neural Information Processing Systems (NeurIPS), pages 4151–4161.
Wood, G. (2014). Ethereum: A Secure Decentralized Generalized Transaction Ledger.
WPPCONNECT. WPPConnect Server - API for WhatsApp integration. [S.l.: s.n.], 2025. [link]. Acesso em: 23 maio 2025.
Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems (NeurIPS), volume 27.
