2nd GranDSI-BR: Grand Research Challenges in Information Systems in Brazil 2026-2036
Keywords:
Accessibility, Equity, Information Systems, Digital Inclusion, User Experience, Artificial Intelligence, Diversity, Inclusion, GRANDSI-BR, Organizations, Process Models, Alternative Representation, Process Understanding, Trustworthy AI, Human-Centered AI, Intelligent Information Systems, Large Language Models (LLMs), Information Systems (IS), Developers with AI Expertise, Ethical and Social Challenges, Digital Twins, Socio-technical Systems, Socio-technical Information Systems, Interoperability, Regulatory frameworks, Organizational adaptation, Ethical and legal challenges, Modeling and Simulation, M&S, Decentralized Systems, Security, Decentralized System Integration, Plural Worldviews, Plural Epistemologies, Digital Sovereignty, Cognitive Justice, Intercultural Design, Agency in IS, IS Implications, Power Relations in IS, Transparency in IS, Speculative Design, Desirable Futures, Post-anthropocentrism, Science, Technology, and Society (STS), Responsible Innovation, Technological, Economic, and Social Macrotrends, Research, Technological Development, and Innovation in Information Systems, Sociotechnical Studies, Challenges of Research and Practice in IS, Responsible Artificial Intelligence (RAI), Data Justice, Algorithmic Governance, Digital Sustainability, Generative AI, Social Transformation, Ethics, Education, Digital Inequality, Intellectual Autonomy, Methodological Foundations in Information Systems, Educational Foundations In information Systems, Technocentrism, Interdisciplinarity, Critical ComputingSynopsis
The Brazilian Computing Society (SBC), through the Special Committee on Information Systems (CESI), produced the 2nd GranDSI-BR: Grand Research Challenges in Information Systems in Brazil 2026-2036. This initiative involved the collaboration of several SBC members who contributed by submitting proposals for Information Systems challenges and/or by participating in the discussions and in the construction of the grand challenges of Information Systems in Brazil for the period from 2026 to 2036.
How to cite this document:
SOCIEDADE BRASILEIRA DE COMPUTAÇÃO. II GranDSI-Br Grandes Desafios de Sistemas de Informação no Brasil 2026-2036. Organização de Renata Mendes de Araujo, Sean Wolfgand Matsui Siqueira, Tadeu Moreira de Classe, Rita Suzana Pitangueira Maciel e Clodis Boscarioli. Porto Alegre: SBC, Novembro/2025. 131p. DOI 10.5753/sbc.rt.2025.181.
Chapters
-
1. Introduction
-
2. Challenge: Inclusion, Diversity, Equity, and Accessibility of and for People, Technologies, and Organizations
-
3. Challenge: Intelligent Information Systems from a Sociotechnical Perspective
-
4. Challenge: Eco(Systems2) of Information – Ecosystems of Information Systems
-
5. Challenge: Sociotechnical Perspectives, Macrotrends, and Plural Worldviews
-
6. Challenge: Transforming Education and Practice in Information Systems in the Age of Generative AI
-
7. Information Systems Development Focused on Accessibility and Equity: A Challenge for Digital Inclusion in Brazil
-
8. The Challenges of Diversity, Equity, and Inclusion in Information Systems
-
9. Simplifying Organizational Models: Representing Processes in a More User-Friendly and Understandable Way
-
10. Building Trustworthy and Human-Centered Intelligent Information Systems for a Sustainable Future
-
11. Challenges in Developing AI-Integrated Information System Ecosystems
-
12. Information Systems and Artificial Intelligence Integration Challenges
-
13. Conceiving Socio-technical Information Systems from the Perspective of Digital Twins
-
14. Interoperability in Complex and Socio-Technical Information Systems: A Critical Challenge for the Next Decade
-
15. Modeling and Simulation: A Major Challenge for Information Systems
-
16. The Evolution Towards Decentralized and Privacy-Oriented Integration: Challenges and a New Perspective
-
17. Plural Worldviews in Information Systems
-
18. Understanding Agency and Power Relations Between Humans and Non-Humans and Their Implications for Information Systems
-
19. Desirable Futures Through Speculative Design: A New Look at Information Systems
-
20. Information Systems and National and Global Macrotrends
-
21. For the Creation of a Strong Community of Sociotechnical Study and Practice in Information Systems
-
22. Challenges and Opportunities for Enhancing the Value of Information Systems Programs in Brazil
-
23. Artificial Intelligence and Society: Rethinking the Impact of AI on the Development of Critical Thinking
-
24. Methodological and Educational Foundations for Information Systems in the Age of Generative Artificial Intelligence
-
25. Beyond Technocentrism: Transforming the Education of Information Systems Professionals for the Next Decade
Downloads
References
Abitbol, R., Cohen, E., Kanaan, M., Agrawal, B., Li, Y., Bhamidipaty, A., and Bilgory, E. (2024). Kmodels: Unlocking ai for business applications. arXiv preprint arXiv:2409.05919.
Abreu, C. G., Coelho, C. G. C., Ralha, C. G., and Macchiavello, B. (2014). A model and simulation framework for exploring potential impacts of land use policies: The brazilian cerrado case. In 47th HICSS, pages 847–856, Waikoloa, HI, USA. IEEE Computer Society.
Abreu, C. G., Coelho, C. G. C., Ralha, C. G., Zaghetto, A., and Macchiavello, B. (2011). Ferramenta de simulação com abordagem de sistema multiagente híbrida para gestão ambiental. Braz. J. Inf. Syst., 4.
Agarwal, P. K. (2018). Public administration challenges in the world of ai and bots. Public Administration Review, 78(6):917–921.
Aguiar, L. H. M., Zaghetto, A., Zaghetto, C., Ralha, C. G., and de Barros Vidal, F. (2016). Demiourgos: Simulação baseada em agentes para análise da evolução de camuflagem em seres vivos. In Siqueira, F., Vilain, P., Cappelli, C., and Wazlawick, R. S., editors, XII SBSI, pages 92–99, Florianópolis, SC, Brasil. ACM.
Ahmed Abbas, H. (2015). Organization of multi-agent systems: An overview. International Journal of Intelligent Information Systems, 4(3):46.
Alter, S. (2008). Defining information systems as work systems: implications for the IS field. European Journal of Information Systems, 17(5):448–469.
Amershi, S. et al. (2019) “Software engineering for machine learning: A case study”. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). 2019. p. 291-300.
Anthias, P. and Asher, K. (2024). Indigenous natures and the anthropocene: Racial capitalism, violent materialities, and the colonial politics of representation. Antipode.
Antunes, P., Pino, J. A., Tate, M., e Barros, A. (2020). Eliciting process knowledge through process stories. Information Systems Frontiers, 22(5):1179–1201.
Araújo, R. and Siqueira, S. (2023). Vamos ampliar nossa visão sobre sistemas de informação? SBC Horizontes. Acesso em: 17 fev. 2025.
Araujo, R. M. (2017). Information systems and the open world challenges. In Boscarioli, C., Araujo, R. M., e Maciel, R. S. P., editors, I GranDSI-BR – Grand Research Challenges in Information Systems in Brazil 2016-2026, chapter 4, pages 42–51. Brazilian Computer Society (SBC), Porto Alegre.
Araujo, R., Fornazin, M., Pimentel, M. (2017). “An Analysis of the Production of Scientific Knowledge in Research Published in the First 10 years of iSys (20082017)”. ISys - Brazilian Journal of Information Systems, 10(4), 45–65.
Araujo, R., Maciel, R., and Boscarioli, C. (2017). Grand Challenges in Information Systems for the Next 10 years. Brazilian Computer Society, Porto Alegre, Brazil. 1st Edition. 184 p.
Araujo, R., Siqueira, S. (2023). “Vamos ampliar nossa visão sobre Sistemas de Informação?”. SBC Horizontes. Disponível em: [link]
Atoum, I. (2025). Revolutionizing ai governance: Addressing bias and ensuring accountability through the holistic ai governance framework. International Journal of Advanced Computer Science & Applications, 16(2).
Attaran, M. e Celik, B. G. (2023). Digital twin: Benefits, use cases, challenges, and opportunities. Decision Analytics Journal, 6:100165.
Auger, J. (2013) “Speculative design: crafting the speculation”. Digital Creativity, v. 24, n. 1, p. 11-35.
Aydın, Ö. and Karaarslan, E. (2023). Is chatgpt leading generative ai? what is beyond expectations? Academic Platform Journal of Engineering and Smart Systems, 11(3):118–134.
Baldassarre, M. T., Gigante, D., Kalinowski, M., and Ragone, A. (2024a). Polaris: A framework to guide the development of trustworthy ai systems. In Proceedings of the IEEE/ACM 3rd International Conference on AI Engineering-Software Engineering for AI, pages 200–210.
Baldassarre, M. T., Gigante, D., Kalinowski, M., Ragone, A., and Tibido`, S. (2024b). Trustworthy ai in practice: an analysis of practitioners’ needs and challenges. In Proceedings of the 28th International Conference on Evaluation and Assessment in Software Engineering, pages 293–302.
Barad, K. (2007). Meeting the universe halfway: Quantum physics and the entanglement of matter and meaning. Duke University Press.
Barbosa, G. D. J., Nunes, J. L., De Souza, C. S., and Barbosa, S. D. J. (2024). Investigating the Extended Metacommunication Template: How a semiotic tool may encourage reflective ethical practice in the development of machine learning systems. In Proceedings of the XXII Brazilian Symposium on Human Factors in Computing Systems, IHC ’24, pages 1–12, New York, NY, USA. Association for Computing Machinery.
Barbosa, S. D. J., Barbosa, G. D. J., Souza, C. S. d., and Leitaõ, C. F. (2021). A Semiotics-based epistemic tool to reason about ethical issues in digital technology design and development. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, pages 363–374, New York, NY, USA. Association for Computing Machinery.
Bastos, P. A. L. S., Silva, M. S., Ribeiro, N. M., Mota, R. d. S., and Galvão Filho, T. (2023). Tecnologia assistiva e políticas públicas no Brasil. Cadernos Brasileiros de Terapia Ocupacional, 31:e3401.
Batista, E., Silva, T., and Silva, G. (2024). Gender Diversity in Digital Games: a Tertiary Literature Review. In Anais do XX Simpósio Brasileiro de Sistemas de Informação, Porto Alegre, RS, Brasil. SBC.
BAUMAN, Zygmunt. Modernidade Líquida. Rio de Janeiro: Zahar, 2021.
Belli, L., Curzi, Y., and Gaspar, W. B. (2023). Ai regulation in brazil: Advancements, flows, and need to learn from the data protection experience. Computer Law & Security Review, 48:105767.
BENJAMIN, Ruha. Race after Technology: Abolitionist Tools for the New Jim Code. Cambridge: Polity, 2019.
Biswas Mellamphy, N. and Vangeest, J. (2024). Human, all too human? anthropocene narratives, posthumanisms, and the problem of “post-anthropocentrism”. The Anthropocene Review, 11(3):599–613.
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E. and others (2021). On the Opportunities and Risks of Foundation Models. preprint arXiv:2108.07258. DOI: 10.48550/arXiv.2108.07258
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., et al. (2021). On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258.
Borsatto, J. M. L. S., Marcolin, C. B., Abdalla, E. C., and Amaral, F. D. (2024). Aligning community outreach initiatives with sdgs in a higher education institution with artificial intelligence. Cleaner and Responsible Consumption, 12:100160.
Boscarioli, C.,; Araujo, R. M. and Maciel, R. S. P. (2017) “I GranDSI-BR – Grand Research Challenges in Information Systems in Brazil 2016-2026”. Special Committee on Information Systems (CE-SI). Brazilian Computer Society (SBC). ISBN: [978-85-7669-384-0], 184p. [link]
BOWDEN, Sean. Human and nonhuman agency in Deleuze. In Deleuze and the non/human, pp. 60-80. London: Palgrave Macmillan UK, 2015.
BRAIDOTTI, Rosi. The Posthuman. Cambridge: Polity Press, 2013.
Brasil (2018). Lei n.º 13.709, de 14 de agosto de 2018. Lei Geral de Proteção de Dados Pessoais (LGPD). [link]. Acessado em 13 abr. 2025.
Brasil (2025). Acessibilidade digital. [link], Acesso em: 21 Fevereiro 2025.
Bridging gaps, building futures: Advancing software developer diversity and inclusion through future-oriented research.
Broussard, M. (2019). Artificial Unintelligence: How Computers Misunderstand the World. The MIT Press.
Buolamwini, J. and Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Proceedings of Machine Learning Research, volume 81, pages 77–91.
Cafezeiro, I. et al. (2017) “Strengthening of the Sociotechnical Approach in Information Systems Research”. Grand Research Challenges in Information Systems in Brazil 2016-2026. p. 133-147.
Cafezeiro, I., da Costa Marques, I., Severo, F., and Cukierman, H. Informática e sociedade. In Informática na Educação: sociedade e políticas. EO Santos, FF Sampaio and M. Pimentel. Porto Alegre, Sociedade Brasileira de Computação Série Informática na Educação, 4.
Cafezeiro, I., Viterbo, J., Costa, L. C., Salgado, L., Rocha, M., Monteiro, R. S. (2017) “Strengthening of the Sociotechnical Approach in Information Systems Research”. Em: I GranDSI-BR – Grand Research Challenges in Information Systems in Brazil 2016-2026. Boscarioli, C.; Araujo, R. M.; Maciel, R. S. P. (eds.). Special Committee on Information Systems (CE-SI). Brazilian Computer Society (SBC). ISBN: [978-857669-384-0]. pp. 133-147.
CAFEZEIRO, Isabel; FORNAZIN, Marcelo. Computação e interdisciplinaridade: estágio atual e possibilidades de diálogo. In: MACIEL, Cristiano; VITERBO, José (Org.). Computação & Sociedade, v. 1. Porto Alegre: Sociedade Brasileira de Computação, 2020.
CAFEZEIRO, Isabel; MARQUES, Ivan da Costa; GONÇALVES, Fernando; CUKIERMAN, Henrique. Informática é Sociedade. In: SANTOS, Edméa O.; SAMPAIO, Fábio F.; PIMENTEL, Mariano (Org.). Informática na Educação: sociedade e políticas. Porto Alegre: Sociedade Brasileira de Computação, 2021. (Série Informática na Educação, v. 4) Disponível em: [link]
Camozzato, S. T., Perondi, M. A., and Mello, N. A. (2015). Políticas públicas de inclusão digital: desafios educacionais na sociedade contemporânea. COLOQUIO – Revista do Desenvolvimento Regional, 12(1):101–115.
Cappelli, C., Oliveira, R. and Nunes, V. (2023) “Linguagem simples como pilar da transparência”, Humanidades & Inovação, v. 10, n. 9, p. 32–45.
Carney, T. (2020). Artificial intelligence in welfare: Striking the vulnerability balance? Monash University Law Review, 46(2):23–51.
CARR, Nicholas. Geração Superficial: O que a Internet está fazendo com os nossos cérebros. São Paulo: Editora Agir, 2019.
CARRASCO, Laís B. Decolonizing Information Systems: A Literature Review on Indigenous Data. In: CAPSI 2024 Proceedings. [link]
Carvalho, L. P., Cappelli, C., e Santoro, F. M. (2022). Bpmn pra geral: a framework to translate bpmn to a citizen language. Business Process Management Journal, 28(2):508–531.
Cath, C. (2018). Governing artificial intelligence: ethical, legal and technical opportunities and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2133):20180080.
CETIC.BR (2024). TIC Domicílios 2024: Pesquisa sobre o uso das tecnologias de informação e comunicação nos domicílios brasileiros. Relatório técnico, Comitê Gestor da Internet no Brasil (CGI.br).
Chakraborty, S., Talukder, M. B. U., Hasan, M. M., Noor, J., and Uddin, J. (2023). Bigruann based hybrid architecture for intensified classification tasks with explainable ai. International Journal of Information Technology, 15(8):4211–4221.
Chen, Y., Lehmann, C. U., and Malin, B. (2024). Digital information ecosystems in modern care coordination and patient care pathways and the challenges and opportunities for ai solutions. Journal of Medical Internet Research, 26:e60258.
Cisterna, D., Gloser, F.-F., Martinez, E., and Lauble, S. (2024). Understanding professional perspectives about ai adoption in the construction industry: A survey in germany. In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, volume 41, pages 347–354. IAARC Publications.
Classe, T. M. e Castro, R. M. (2025). Alternative representations of business process models for enhanced understanding by people: A systematic mapping study. In Anais do XXI Simpósio Brasileiro de Sistemas de Informação, pages 1–10, Porto Alegre. SBC.
Classe, T. M. e de Araujo, R. M. (2023). Games as mediating platforms in an open and digital world. In Santos, R. P. e Hounsell, M. d. S., editors, Grand Research Challenges in Games and Entertainment Computing in Brazil - GranDGamesBR 2020-2030, pages 67–88, Cham. Springer Nature Switzerland.
Coelho, C. G. C. and Ralha, C. G. (2022). MASE-EGTI: an agent-based simulator for environmental land change. Environ. Model. Softw., 147:105252.
Coelho, C. G. C., Abreu, C. G., Ramos, R. M., Mendes, A. H. D., Teodoro, G., and Ralha, C. G. (2016). MASE-BDI: agent-based simulator for environmental land change with efficient and parallel auto-tuning. Appl. Intell., 45(3):904–922.
Cozman, F. G. and Kaufman, D. (2021). Viés no aprendizado de máquina em sistemas de inteligência artificial: a diversidade de origens e os caminhos de mitigação. Revista Brasileira de Política Internacional, 64(2):206235.
Cukierman, H. L., Teixeira, C., & Prikladnicki, R. (2007). “Um Olhar Sociotécnico sobre a Engenharia de Software”. Revista De Informática Teórica E Aplicada, 14(2), 199–219. DOI: 10.22456/2175-2745.5696 Acesso em: 10 de jan. 2025.
D’Ignazio, C. and Klein, L. F. (2020). Data Feminism. MIT Press.
de Almeida, P. G. R., dos Santos, C. D., and Farias, J. S. (2021). Artificial intelligence regulation: a framework for governance. Ethics and Information Technology, 23(3):505–525.
de Oliveira, G. D., Porto, P. P. G., de Maria Albuquerque Alves, C., and Ralha, C. G. (2021). An agent-based model for simulating irrigated agriculture in the samambaia basin in goiás. RITA, 28(2):107–123.
DeepSeek-AI (2024). Deepseek-v2: A strong, economical, and efficient mixture-ofexperts language model. arXiv preprint, arXiv:2405.04434.
DEIBERT, Ronald. Reset: Reclaiming the Internet for Civil Society. Toronto: House of Anansi, 2020.
Deloitte. Tech Trends 2025 Report. Disponível em: [link] Acesso em: 20/02/2025.
Dignum, V. (2019). Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way. Springer.
Dumas, M., Rosa, L. M., Mendling, J., e Reijers, A. H. (2018). Fundamentals of business process management. Springer, Cham.
Dunne, A. and Raby, F. (2024). Speculative Everything, With a new preface by the authors: Design, Fiction, and Social Dreaming. MIT Press.
Dunne, A., Raby, F. (2024) Speculative everything: design, fiction, and social dreaming. With a new preface by the authors. Cambridge: MIT Press.
ESCOBAR, Arturo. Designs for the Pluriverse: Radical Interdependence, Autonomy, and the Making of Worlds. Durham: Duke University Press, 2018.
Eubanks, V. (2018). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin’s Press.
Eubanks, V. (2018). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin’s Press.
European. Union (2016) “Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46,” Off. J. European Union, v. 59, n. 1–88, p. 294.
Fedorowicz, J., Payton, F. C., Chan, Y. E., Kim, Y. J., and Te’eni, D. (2023). Dei in the is discipline: What can we do better? The Journal of Strategic Information Systems, 32(2):101775.
FEENBERG, Andrew. Critical Theory of Technology. New York: Oxford University Press, 1991.
FEENBERG, Andrew. Critical Theory of Technology. New York: Oxford University Press, 1991.
FIESP. “Macrotendências Mundiais até 2040” (2021). Disponível em: [link] Acesso em: 20/02/2025.
Fischer, B. and Piskorz-Ryní, A. (2021). Artificial intelligence in the context of data governance. International Review of Law, Computers & Technology, 35(3):419–428.
Floreidi, L. (2019) “The Ethics of Artificial Intelligence”. In: Frankish, Keith; Ramsey, William (orgs.). The Cambridge Handbook of Artificial Intelligence. Cambridge: Cambridge University Press.
Flores, R., y Espinal, J. (2022). “La pedagogía tecnicista fundamentos y concepciones”. Revista EDUCA UMCH, (20), 129-144. DOI: 10.35756/educaumch.202220.23 Acesso em: 10 de jan. 2025.
Floridi, L. and Cowls, J. (2022) A Unified Framework of Five Principles for AI in Society. Machine Learning and the City, ch. 22, John Wiley & Sons Ltd, pp. 535-545. DOI: 10.1002/9781119815075.ch45
Floridi, L. and Cowls, J. (2022). A Unified Framework of Five Principles for AI in Society, chapter 22, pages 535–545. John Wiley Sons, Ltd.
FLORIDI, Luciano; COWLS, Josh. A Unified Framework of Five Principles for AI in Society. Harvard Data Science Review, v. 1, n. 1, 2019. DOI: 10.1162/99608f92.8cd550d1.
Forbes. The 5 Biggest Technology Trends for 2025 Everyone Must Be Ready For Now. Disponível em: [link] Acesso em: 20/02/2025.
FOUCAULT, Michel. A Arqueologia do Saber. Rio de Janeiro: Forense Universitária, 2012.
Franca, A. G., Frantz, R. Z., and Neto, V. V. G. (2024). Unvealing a process for the establishment of interoperability links between software-intensive information systems. In Proceedings of the 20th Brazilian Symposium on Information Systems (SBSI), pages 1–10. ACM.
França, B. and Graciano Neto, V. V. (2021). Opportunities for simulation in software engineering. In III MSSiS, pages 50–54, Joinville, SC, Brasil. SBC.
França, B. B. N. d., Pfahl, D., Vicente Graciano Neto, V., and Ali, N. B. (2024). Teaching simulation as a research method in empirical software engineering. In Mendez, D., Avgeriou, P., Kalinowski, M., and Ali, N. B., editors, Handbook on Teaching Empirical Software Engineering, pages 363–385. Springer Nature Switzerland, Cham.
Frischmann, B. e Selinger, E. (2018). Re-Engineering Humanity. Cambridge University Press.
Gabriel, I. (2020). “Artificial intelligence, values, and alignment”. Minds and Machines, v. 30, n. 3, p. 411-437.
Gallik, F., Winter, M., Kirikkayis, Y., Pryss, R., e Reichert, M. (2021). Dyvpromo-a lightweight web-based tool for the dynamic visualization of additional information in business process models. In 2021 IEEE 25th International Enterprise Distributed Object Computing Workshop (EDOCW), pages 345–348, New York. IEEE.
Gao, T., Jin, J., Ke, Z. T., and Moryoussef, G. (2025). A comparison of deepseek and other llms. arXiv preprint, arXiv:2502.03688.
Gartner. (2025) “Gartner Top 10 Strategic Technology Trends for 2025”. Disponível em: [link] Acesso em: 20/02/2025.
George, A. S. and George, A. H. (2023). A review of chatgpt ai’s impact on several business sectors. Partners universal international innovation journal, 1(1):9–23.
Giannakos, M. N., Azevedo, R., Brusilovsky, P., Cukurova, M., Dimitriadis, Y. A., Hernández-Leo, D., Järvelä, S., Mavrikis, M., e Rienties, B. (2024). The promise and challenges of generative AI in education. Behaviour & Information Technology.
Glikson, E. and Woolley, A. W. (2020). Human trust in artificial intelligence: Review of empirical research. Academy of Management Annals, 14(2):627–660.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
Graciano Neto, V. V. and Kassab, M. (2023). What Every Engineer Should Know About Smart Cities. CRC Press - Taylor & Francis. 1st Edition. 254 p.
Graciano Neto, V. V. and Kassab, M. (2023). What Every Engineer Should Know About Smart Cities. CRC Press - Taylor & Francis. 1st Edition. 254 p.
Graciano Neto, V. V., Manzano, W., Kassab, M., and Nakagawa, E. Y. (2018). Modelbased engineering & simulation of software-intensive systems-of-systems: experience report and lessons learned. In Pérez, J., Mirandola, R., and Chen, H., editors, WDES@ECSA, pages 27:1–27:7, Madrid, Spain. ACM.
Graciano Neto, V. V., Santos, R. P., Viana, D. and Araujo, R. N. (2018) “Towards a Conceptual Model to Understand Software Ecosystems Emerging from Systems-of-Information Systems”, Workshop of Human-Computer Interaction Aspects to the Social Web. Cham: Springer International Publishing. p. 1-20..
Grieves, M. (2014). Digital twin: manufacturing excellence through virtual factory replication. White paper, 1(2014):1–7.
Grieves, M. e Vickers, J. (2017). Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems, páginas 85–113. Springer International Publishing, Cham.
GUERRERO MILLAN, C.; NISSEN, B.; PSCHETZ, L. Cosmovision of Data: An Indigenous Approach to Technologies for Self-Determination. In: CHI Conference on Human Factors in Computing Systems, 2024.
Gupta, R. and Rathore, B. (2024). Exploring the generative ai adoption in service industry: A mixed-method analysis. Journal of Retailing and Consumer Services, 81:103997.
Ha, T. e Kim, S. (2023). Improving trust in AI with mitigating confirmation bias: Effects of explanation type and debiasing strategy for decision-making with explainable AI. International Journal of Human-Computer Interaction, páginas 1–12.
Habbal, A., Ali, M. K., and Abuzaraida, M. A. (2024). Artificial intelligence trust, risk and security management (ai trism): Frameworks, applications, challenges and future research directions. Expert Systems with Applications, 240:122442.
Hajjaji, Y. et al. (2021) “Big data and IoT-based applications in smart environments: A systematic review”. Computer Science Review, v. 39, p. 100318.
HAN, Byung-Chul. A Sociedade do Cansaço. Petrópolis: Vozes, 2018.
HAN, Byung-Chul. Infocracia: Digitalização e a Crise da Democracia. Petrópolis: Vozes, 2021.
Haraway, D. (1988) “Situated knowledges: the science question in feminism and the privilege of partial perspective”. Feminist Studies, v. 14, n. 3, p. 575-599.
HARAWAY, Donna. A Cyborg Manifesto. Socialist Review, v. 80, p. 65–108, 1985.
HARDING, Sandra. Whose Science? Whose Knowledge? Thinking from Women’s Lives. Ithaca: Cornell University Press, 1991.
Hauer, T. (2022). Importance and limitations of AI ethics in contemporary society. Humanities and Social Sciences Communications, 9(272).
Heyn, H.-M., Knauss, E., and Pelliccione, P. (2023). A compositional approach to creating architecture frameworks with an application to distributed ai systems. Journal of Systems and Software, 198:111604.
Hohpe, G. and Woolf, B. (2004). Enterprise integration patterns: Designing, building, and deploying messaging solutions. Addison-Wesley Professional. 1st Edition. 736 p.
Holmes, W. (2019). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. The Center For Curriculum Redesign.
Husáková, M. and Bureš, V. (2020). Formal ontologies in information systems development: A systematic review. Information, 11(2).
Hyrynsalmi, S. M., Baltes, S., Brown, C., Prikladnicki, R., Rodriguez-Perez, G., Serebrenik, A., Simmonds, J., Trinkenreich, B., Wang, Y., and Liebel, G. (2024).
INEP (2025). Censo da educação superior – séries históricas. [link].
Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., and Janowski, T. (2020). Data governance: Organizing data for trustworthy artificial intelligence. Government information quarterly, 37(3):101493.
Jobin, A., Ienca, M., and Vayena, E. (2019). The global landscape of ai ethics guidelines. Nature Machine Intelligence, 1:389–399.
Johannessen, L. K. (2017). The young designer’s guide to speculative and critical design. Norwegian University of Science and Technology, 12.
Johnson, J., Douze, M., and Jégou, H. (2019). Billion-scale similarity search with gpus. IEEE Transactions on Big Data, 7(3):535–547.
Jungherr, A. (2023). Artificial intelligence and democracy: A conceptual framework. Social media+ society, 9(3):20563051231186353.
Kabicher-Fuchs, S., Kriglstein, S., e Figl, K. (2012). Timeline visualization for documenting process model change. In 5th International Workshop on Enterprise Modeling and Information Systems Architecture, pages 1–14, Germany. DBIS Research.
Kappaun, A. and Oliveira, J. (2024). Análise Sobre Viés de Gênero no Youtube: um Estudo sobre as Eleições Brasileiras de 2018 e 2022. In Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação, pag. 102–116, Porto Alegre, RS, Brasil. SBC.
Khan, B., Fatima, H., Qureshi, A., Kumar, S., Hanan, A., Hussain, J., and Abdullah, S. (2023). Drawbacks of artificial intelligence and their potential solutions in the healthcare sector. Biomedical Materials & Devices, 1(2):731–738.
KRENAK, Ailton. Ideias para adiar o fim do mundo. São Paulo: Companhia das Letras, 2019.
Kreuzer, T., Papapetrou, P., and Zdravkovic, J. (2024). Artificial intelligence in digital twins—a systematic literature review. Data Knowledge Engineering, 151:102304.
KROEZE, Jan H. Building Blocks for Ubuntu Information Systems Ethics. UnisaRxiv, 2024.
Kruger, J. (2020). Nature, culture, AI and the common good–considering AI’s place in Bruno Latour’s politics of nature. In Southern African Conference for Artificial Intelligence Research, pages 21–33. Springer.
KUKUTAI, Tahu; TAYLOR, John. Indigenous Data Sovereignty: Toward an Agenda. Canberra: ANU Press, 2016.
KWET, Michael. Digital colonialism: US empire and the new imperialism in the Global South. Race & Class, v. 60, n. 4, p. 3–26, 2019.
Lakshmi, V. and Corbett, J. (2022) “An organizational learning approach to perceiving and addressing algorithmic bias in agricultural settings”, In: Proceedings of Americas Conference on Information Systems (AMCIS 2022).
Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Harvard University Press.
Latour, B. (2005). Reassembling the social: An introduction to actor-network-theory. Oxford University Press.
Latour, B. (2018). Down to earth: Politics in the new climatic regime. John Wiley & Sons.
LATOUR, Bruno. Jamais Fomos Modernos. São Paulo: Editora 34, 2013.
LATOUR, Bruno. Reassembling the Social: An Introduction to Actor-Network Theory. Oxford: Oxford University Press, 2005.
Laudon, K. C. e Laudon, J. P. (2022). Sistemas de informação gerenciais: administrando a empresa digital. Bookman Editora, Porto Alegre.
Leavitt, H. J. (1972). Managerial Psychology. University of Chicago Press, Chicago, IL, EUA, 3ª edição.
Lebtag, B. G. A., Teixeira, P. G., dos Santos, R. P., Viana, D., and Graciano Neto, V. V. (2022). Strategies to evolve exm notations extracted from a survey with software engineering professionals perspective. J. Softw. Eng. Res. Dev., 10:2:1–2:24.
Lee, H.-P. H., Sarkar, A., Tankelevitch, L., Drosos, I., Rintel, S., Banks, R., e Wilson, N. (2025). The impact of generative AI on critical thinking: Self-reported reductions in cognitive effort and confidence effects from a survey of knowledge workers.
Leminen, S., Westerlund, M., and Nyström, A.-G. (2017). Living labs as openinnovation networks. Technology Innovation Management Review, 7(12):17–25.
Lemos, R. (2023). ChatGPT e a arte de fazer perguntas. Accessed on 03 14, 2025.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., et al. (2020). Retrieval-augmented generation for knowledge-intensive nlp tasks. In Advances in Neural Information Processing Systems, volume 33.
Li, J. and Chan, F. T. (2013). An agent-based model of supply chains with dynamic structures. Applied Mathematical Modelling, 37(7):5403–5413.
Li, Y., Wu, B., Huang, Y., e Luan, S. (2024). Developing trustworthy artificial intelligence: Insights from research on interpersonal, human-automation, and humanAI trust. Frontiers in Psychology, 15.
Li, Z. (2024). Ethical frontiers in artificial intelligence: navigating the complexities of bias, privacy, and accountability. International Journal of Engineering and Management Research, 14(3):109–116.
Liang, T.-P. and Weber, R. A. (2024). A beginner’s guide to agential realism. Communications of the Association for Information Systems, 55(1):38.
Lima, M., Neto, V. G., James, D., Dias, E., de Bastos Chagas, A., and de Brito Tomé, J. (2024). Como a comunidade que publica na sbc tem utilizado simulação? uma revisão rápida e de escopo na biblioteca sbc-openlib. In ERI-GO, pages 129–138, Ceres, GO, Brasil. SBC.
Lin, L. and Long, D. (2023). Generative AI futures: A speculative design exploration. In Proceedings of the 15th Conference on Creativity and Cognition, pages 380–383.
LITTLETTREE, Sandra; ANDREWS, Naomi; LOYER, Joy. Information as a Relation: Defining Indigenous Information Literacy. Journal of Information Literacy, v. 17, n. 1, 2023.
Liu, H., Wang, Y., Fan, W., Liu, X., Li, Y., Jain, S., Liu, Y., Jain, A., and Tang, J. (2022). Trustworthy ai: A computational perspective. ACM Transactions on Intelligent Systems and Technology, 14(1):1–59.
Lockey, S., Gillespie, N., Holm, D., and Someh, I. A. (2021). A review of trust in artificial intelligence: Challenges, vulnerabilities and future directions.
Lopes, T. N., Araujo, R. M. d., Classe, T. M. d., e Sant’Anna, F. d. S. (2024). Pyp4training: designing digital games for business process training. Business Process Management Journal, 30(5):1446–1471.
Loutfi, M. S. and Siqueira, S. W. M. (2024). Speculative design in a graduate program in informatics: Students perception and practical application: A novel approach for supporting information systems education. In Proceedings of the 20th Brazilian Symposium on Information Systems, pages 1–10.
Loutfi, M. S., Albuquerque, B. V. L., Xavier, C. S. and Siqueira, S. W. M. (2024) “Design Especulativo: Construindo Pontes entre Tecnologia, Ética e Inclusão Social”, Minicursos do IHC 2024, Brasília/DF. Porto Alegre: Sociedade Brasileira de Computação, p. 18-38. DOI: 10.5753/sbc.16123.0.2
Loutfi, M. S., Tibau, M., Gimenez, P. A. and Siqueira, S. W. M. (2025) “Students’ Perceptions of Speculative Design with Generative AI in Creating Futuristic Narratives: An Interdisciplinary Study with Undergraduate Students from Diverse Fields”, XXI Simpósio Brasileiro de Sistemas de Informação (SBSI 2025).
Lu, Y. (2019). Artificial intelligence: a survey on evolution, models, applications and future trends. Journal of Management Analytics, 6(1):1–29.
LUGONES, María. Toward a Decolonial Feminism. Hypatia, v. 25, n. 4, p. 742–759, 2010.
LYOTARD, Jean-François. A Condição Pós-Moderna. Rio de Janeiro: Editora José Olympio, 2021.
Macal, C. M. and North, M. J. (2009). Agent-based modeling and simulation. In WSC’09, pages 86–98, Austin, Texas, USA.
Maciel, C., Bim, S.A. and Medeiros, K.F. Digital girls program: disseminating computer science to girls in Brazil. Em: Proceedings of the 1st International Workshop on Gender Equality in Software Engineering. Association for Computing Machinery, 2018, pp. 29–32. DOI: 10.1145/3195570.3195574.
Maciel, R. et al. (2017) “Full interoperability: Challenges and opportunities for future information systems”. Grand Research Challenges in Information Systems in Brazil 2016-2026, p. 107–116.
Maciel, R. et al. (2024) “Systems Interoperability Types: A Tertiary Study”. ACM Computing Survey 56, 10, Article 254, 37 pages. DOI: 10.1145/3659098
Maciel, R. S. P., David, J. M. N., Claro, D. B., and Braga, R. (2017). Grand Research Challenges in IS in Brazil, chapter “Full interoperability: Challenges and opportunities for future information systems”, pages 107–118. Brazilian Computer Society.
Maciel, R. S. P., Valle, P. H., Santos, K. S. and Nakagawa, E. Y. (2024) “Systems Interoperability Types: A Tertiary Study”. ACM Computing Surveys, v. 1, p. 1.
Mäkipää, J., Norrgård, J. and Vartiainen, T. (2022) “Factors affecting the accessibility of IT artifacts: a systematic review”, Communications of the Association for Information Systems, v. 51.
Malheiros, P. S., Lima, R. R., and Oran, A. C. (2024). Impact of generative ai technologies on software development professionals’ perceptions of job security. In Proceedings of the XXIII Brazilian Symposium on Software Quality, pages 169–178.
Malik, M. and Malik, M. M. (2021). Critical technical awakenings. Journal of Social Computing, 2(4):365–384.
Malik, S. e Bajwa, I. S. (2013). Back to origin: Transformation of business process models to business rules. In Business Process Management Workshops: BPM 2012 International Workshops, Tallinn, Estonia, September 3, 2012. Revised Papers 10, pages 611–622, Cham. Springer.
Marabelli, M. and Chan, Y. E. (2024). The strategic value of dei in the information systems discipline. The Journal of Strategic Information Systems, 33(1):101823.
Marcolino, J., Valaski, J., Becker, J. L., et al. (2021). A pesquisa em sistemas de informação no Brasil: temas, métodos e contribuições. Revista Ibero-Americana de Sistemas de Informação, 18(1):1–23.
Marinelli, C. E., Coelho, C. G. C., Ralha, C. G., Zaghetto, A., and Macchiavello, B. (2010). Modelo de simulação com uso de abordagem de SMA para o zoneamento de unidades de conservação da amazônia. In Cidral, A. and Kahwage, C., editors, VI SBSI, pages 73–84, Marabá, PA, Brasil. SBC.
Mashingaidze, K. and Mayayise, T. (2025). Redefining relevance in information systems curriculum: insights for IS educators from a systematic literature review. Cogent Education, 12.
MASIERO, Silvia. Decolonising Critical Information Systems Research: A Subaltern Approach. Information Systems Journal, v. 33, n. 2, p. 299–323, 2023.
MCTI (2021). Estratégia Brasileira de Inteligência Artificial (EBIA). [link]. Acessado em 13 abr. 2025.
MCTI. “Plano Brasileiro de Inteligência Artificial 2024-2028”. (2024). Disponível em: [link] Acesso em: 20/02/2025.
MEC (2025). Cadastro nacional de cursos (e-MEC). [link].
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2021). A survey on bias and fairness in machine learning. 54(6).
Melo, C. d. S., de Classe, T. M., Ferreira, M. R., e de Castro, R. M. (2023). Narrativas interativas como modelo de processos de negócio alternativo. In ISLA 2023 Proceedings, pages 1–10, Atlanta. AIS.
Memarian, B. and Doleck, T. (2023). Fairness, accountability, transparency, and ethics (fate) in artificial intelligence (ai), and higher education: A systematic review. Computers and Education: Artificial Intelligence, page 100152.
Mesquita, H., Garrote, M. G., and Zanatta, R. A. (2024). Regulating artificial intelligence in brazil: the contributions of critical social theory to rethink principles. Technology and Regulation, 2024:73–83.
Metz, C. and Grant, N. (2024). Old friends become rivals in big tech’s race for ai. The New York Times, pages B1–B1.
MGISP. “Estratégia Nacional de Governo Digital” (2024). Disponível em: [link] Acesso em: 20/02/2025.
MIGNOLO, Walter. The Darker Side of Western Modernity: Global Futures, Decolonial Options. Durham: Duke University Press, 2011.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems, volume 26.
Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I. D., and Gebru, T. (2019). Model Cards for Model Reporting. In Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* ’19, pages 220–229, New York, NY, USA. Association for Computing Machinery.
MONTAG, Christian; DIEFENBACH, Sarah. Towards Homo Digitalis: Important Research Issues for Psychology and the Neurosciences at the Dawn of the Internet of Things and the Digital Society. Sustainability, v. 10, n. 2, 2018. DOI: 10.3390/su10020415.
Moro, M. M., Araujo, A., Cappelli, C., Nakamura, F., Frigo, L. B., Salgado, L., Braga, R., and Viegas, R. (2023). 7 Motivos (7Ps) para Inclusão e Promoção da Diversidade de Gênero em TIC. In Barbosa, B., Tresca, L., and Lauschner, T., editors, 3a Coletânea de Artigos – TIC, Governança da Internet, Gênero, Raça e Diversidade: Tendências e Desafios, pag. 369–404. CGI.BR.
MOROZOV, Evgeny. To Save Everything, Click Here: The Folly of Technological Solutionism. New York: PublicAffairs, 2013.
Motta, R. et al. (2018) “On challenges in engineering IoT software systems”. In: XXXII Brazilian Symposium on Software Engineering (SBES). p. 42-51.
Nações Unidas Brasil. “Objetivos de Desenvolvimento Sustentável”. Disponível em: [link] Acesso em: 12/02/2025.
Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Akhtar, N., Barnes, N., and Mian, A. (2024). A comprehensive overview of large language models.
Neto, V. G. e Coutinho, E. (2024). Modelagem e simulação: Um grande desafio para aspectos humanos, sociais e econômicos de software. In Anais do IX Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software, pages 163–168, Porto Alegre, RS, Brasil. SBC.
NIC.br (2020). Acessibilidade e tecnologias: um panorama sobre acesso e uso de tecnologias de informação e comunicação por pessoas com deficiência no Brasil e na América Latina.
Nicolas, M. A. and Sampaio, R. C. (2024). Balancing efficiency and public interest: The impact of ai automation on social benefit provision in Brazil. Internet Policy Review, 13(3).
Niederman, F., Brancheau, J. C., e Wetherbe, J. C. (1991). Information systems management issues for the 1990s. MIS quarterly, páginas 475–500.
NOBLE, Safiya Umoja. Algorithms of Oppression: How Search Engines Reinforce Racism. New York: NYU Press, 2018.
Nugent, S. E. and Scott-Parker, S. (2022). Recruitment ai has a disability problem: anticipating and mitigating unfair automated hiring decisions. In Towards trustworthy artificial intelligent systems, pages 85–96. Springer.
Nunes, J. L., Barbosa, G. D. J., De Souza, C. S., and Barbosa, S. D. J. (2024). Using Model Cards for ethical reflection on machine learning models: an interview-based study. Journal on Interactive Systems, 15(1):1–19.
Nunes, J. L., Barbosa, G. D. J., de Souza, C. S., Lopes, H., and Barbosa, S. D. J. (2022). Using model cards for ethical reflection: a qualitative exploration. In Proceedings of the 21st Brazilian Symposium on Human Factors in Computing Systems, IHC ’22, pages 1–11, New York, NY, USA. Association for Computing Machinery.
Nunes, M. G. V.; Soares, T. A.; Ferro, M. (2024) “Questões éticas em IA e PLN”. In Book Processamento de Linguagem Natural: Conceitos, Técnicas e Aplicações em Português. Chapter 35. Edition 3. Editors: Caseli, H. M. and Nunes, M. G. V.
O’Neil, C. (2016). Weapons of Math Destruction. Penguin Books.
O'NEIL, Cathy. Algoritmos de Destruição em Massa: Como o Big Data aumenta a desigualdade e ameaça a democracia. Santo André: Editora Rua do Sabão, 2021.
O'NEIL, Cathy. Algoritmos de Destruição em Massa: Como o Big Data aumenta a desigualdade e ameaça a democracia. Santo André: Editora Rua do Sabão, 2021.
OECD (2022). The Strategic and Responsible Use of Artificial Intelligence in the Public Sector of Latin America and the Caribbean. OECD Publishing. Acessado em 13 abr. 2025.
OECD. “Organização para Cooperação dos Estados em Desenvolvimento”. Disponível em: [link] Acesso em: 20/02/2025.
Öngören, H. (2024). Critique of transhumanism, artificial intelligence, and digital society in terms of social values. Journal of Interdisciplinary Education: Theory and Practice, 6(1):51–65.
ONU (2015). Transformando nosso mundo: A agenda 2030 para o desenvolvimento sustentável. [link]. Acessado em 13 abr. 2025.
Oprea, S.-V., Nica, I., Bâra, A., and Georgescu, I.-A. (2024). Are skepticism and moderation dominating attitudes toward ai-based technologies? American Journal of Economics and Sociology, 83(3):567–607.
Ören, T. I., Zeigler, B. P., and Tolk, A., editors (2023). Body of Knowledge for Modeling and Simulation: A Handbook by the Society for Modeling and Simulation International. Simulation Foundations, Methods and Applications. Springer.
Organização das Nações Unidades (ONU) (2015). Transformando Nosso Mundo: a Agenda 2030 para o Desenvolvimento Sustentável. [link]
Outão, J. and Santos, R. (2022). How does diversity manifest itself in software ecosystems? In Anais do XVIII Simpósio Brasileiro de Sistemas de Informação, Porto Alegre, RS, Brasil. SBC.
Ozmen Garibay, O., Winslow, B., Andolina, S., Antona, M., Bodenschatz, A., Coursaris, C., Falco, G., Fiore, S. M., Garibay, I., Grieman, K., et al. (2023). Six human-centered artificial intelligence grand challenges. International Journal of Human–Computer Interaction, 39(3):391–437.
Paiva, D., Maia, L., Fortes, R., Turine, M., and Freire, A. (2009). Implantação de acessibilidade em organizações de software. In Anais do V Simpósio Brasileiro de Sistemas de Informação, pag. 325–330, Porto Alegre, RS, Brasil. SBC.
Palomares, I., Martínez-Cámara, E., Montes, R., García-Moral, P., Chiachio, M., Chiachio, J., Alonso, S., Melero, F. J., Molina, D., Fernández, B., et al. (2021). A panoramic view and swot analysis of artificial intelligence for achieving the sustainable development goals by 2030: progress and prospects. Applied Intelligence, 51:6497–6527.
Papademetriou, R. e Karras, D. A. (2016). An in depth comparative analysis of software tools for modelling and simulating business processes. In 6th International Symposium on Business Modelling and Software Design: BMSD 2016, pages 124–133, Setúbal. SciTePress.
Pareek, S., Berkel, N. v., Velloso, E., e Gonçalves, J. (2024). Effect of explanation conceptualisations on trust in AI-assisted credibility assessment. Proceedings of the ACM on Human-Computer Interaction, 8:1–31.
PARISER, Eli. The Filter Bubble: What the Internet Is Hiding from You. New York: Penguin Press, 2012.
Parthasarathy, P. D. and Joshi, S. (2024). Exploring the need of accessibility education in the software industry: Insights from a survey of software professionals in India. In Proceedings of the 46th International Conference on Software Engineering: Software Engineering Education and Training. ACM.
Patricio, Thiago Seti; Magnoni, Maria da Graça Mello. “Análisis de la Inteligencia Artificial basado en la Visión del Tecnocentrismo”. Revista Internacional de la Imagen, v. 9, n. 2, p. 81-95, 2024. DOI: 10.18848/2474-5197/CGP/v09i02/81-95. Acesso em: 10 de jan. 2025
Perales, M. C. (2024). A brief note on japan’s ai race, the copyright dilemma, and generative ai impact on authorship. Interface-Journal of European Languages and Literatures, 24.
Pereira, R., Baranauskas, M. C. C. (2017) “Systemic and Socially Aware Perspective for Information Systems”. Em: I GranDSI-BR – Grand Research Challenges in Information Systems in Brazil 2016-2026. Boscarioli, C.; Araujo, R. M.; Maciel, R.S. P. (eds.). Special Committee on Information Systems (CE-SI). Brazilian Computer Society (SBC). ISBN: [978-85-7669-384-0]. pp. 148-160.
Perez, L. and Dragicevic, S. (2009). An agent-based approach for modeling dynamics of contagious disease spread. International Journal of Health Geographics, 8(1):50.
Perrin, A. J. and Dorrell, R. G. (2024). Protists and protistology in the anthropocene: challenges for a climate and ecological crisis. BMC Biology, 22(1):279.
Pesovski, I., Santos, R., Henriques, R., and Trajkovik, V. (2024). Generative ai for customizable learning experiences. Sustainability, 16(7):3034.
Pio, N. R. C. (2016). A tipificação do descumprimento do dever de acessibilidade como ato de improbidade administrativa. Tribunal de Justiça do Estado do Pará.
Popova, V. (2023). Co-creating futures for integrating generative AI into the designers’ workflow.
Proencia, E. C. S., Mascarenhas, A. P. F. M., Mane, B., Claro, D. B. and Maciel, R. S. P. (2025) “Organizational Interoperability: A Systematic Mapping Study”, XXI Simpósio Brasileiro de Sistemas de Informação, Recife. Sociedade Brasileira de Computação.
Quispe, F. E. M. and Eler, M. M. (2018). Recomendações de acessibilidade para aplicativos móveis: uma contribuição para os padrões do governo digital brasileiro. In Anais do XIV Simpósio Brasileiro de Sistemas de Informação, pag. 528–535, Porto Alegre, RS, Brasil. SBC.
Qureshi, S., Oladokun, B. E. and Nadendla, K. (2024) “Human freedom from algorithmic bias: is there accountability with digital inclusion and mobile health?”, In: Proceedings of Americas Conference on Information Systems (AMCIS 2024).
Rafael, S., Silva, B., Anjos, H., Meintjes, L., and Tavares, P. (2023). Data surveillance in capitalism society: The globule app, a speculative design to control the algorithm. In Proceedings of the 2023 ACM International Conference on Interactive Media Experiences Workshops, pages 27–31.
Rahardja, U., Sunarya, P. A., Aini, Q., Millah, S., and Maulana, S. (2024). Technopreneurship in healthcare: Evaluating user satisfaction and trust in ai-driven safe entry stations. Aptisi Transactions on Technopreneurship (ATT), 6(3):404–417.
Rahwan, I. (2018). Society-in-the-loop: Programming the algorithmic social contract. Ethics and Information Technology, 20(1):5–14.
Ralha, C. G., Abreu, C. G., Coelho, C. G. C., Zaghetto, A., Macchiavello, B., and Machado, R. B. (2013). A multi-agent model system for land-use change simulation. Environ. Model. Softw., 42:30–46.
Ramos, F. F. and Siqueira, S. W. M. (2025) “Pluriversal Strategies for Human-AI Design: Onto-Technological Reframings inspired by Brazilian Indigenous Knowings and Practices”, In INTERACT Workshops - Addressing Global HCI Challenges at the Time of Geopolitical Tensions through Planetary Thinking and Indigenous.
Rani, S. and Mittal, A. (2023). Securing digital payments a comprehensive analysis of ai driven fraud detection with real time transaction monitoring and anomaly detection. In 2023 6th International Conference on Contemporary Computing and Informatics (IC3I), volume 6, pages 2345–2349. IEEE.
Ras, Z. and Tsay, L.-S. (2010). Advances in Intelligent Information Systems.
Riss, U. V., Maus, H., Javaid, S., e Jilek, C. (2020). Digital twins of an organization for enterprise modeling. In Grabis, J. e Bork, D., editores, The Practice of Enterprise Modeling, páginas 25–40, Cham. Springer International Publishing.
Robinson, H., Stubberud, S., and Rani, D. (2020). Soft skills and the employability of IT graduates: A review of the literature. ACM Transactions on Computing Education, 20(4):1–17.
Robles, P. and Mallinson, D. J. (2023). Artificial intelligence technology, public trust, and effective governance. Review of Policy Research.
Rodrigues, F. B. and Neto, V. V. G. (2025). Assessing simulation knowledge and proficiency among undergraduate computing students in brazil: Insights and results from a survey research. arXiv preprint.
Ros-Arlanzón, P. and Perez-Sempere, A. (2024). Evaluating ai competence in specialized medicine: Comparative analysis of chatgpt and neurologists in a neurology specialist examination in spain. JMIR Medical Education, 10:e56762.
Rosa, P. S., Ralha, C. G., and Gartner, I. R. (2017). The agent rationality in the doom loop of sovereign debt: An agent-based model simulation of systemic risk emergence process. In Dimuro, G. P. and Antunes, L., editors, XVIII MABS, volume 10798 of LNCS, pages 197–210, São Paulo, SP, Brasil. Springer.
Ruback, L., Carvalho, D. and Avila, S. (2022) “Mitigando vieses no aprendizado de máquina: uma análise sociotécnica”, iSys – Brazilian Journal of Information Systems, v. 15, n. 1, p. 23-1.
Rufino Júnior, R., Classe, T. M., Santos, R. P., e Siqueira, S. W. M. (2023). Current risk situation training in industry, and games as a strategy for playful, engaging and motivating training. Journal on Interactive Systems, 14(1):138–156.
Santos, B. S. (2019) O fim do império cognitivo: a afirmação das epistemologias do Sul. Belo Horizonte: Autêntica.
Santos, B. S., Meneses, M. P. (orgs.) (2010). Epistemologias do Sul. São Paulo: Cortez.
SANTOS, Boaventura de Sousa. A Crítica da Razão Indolente: Contra o Desperdício da Experiência. 8ª edição. São Paulo: Cortez, 2017.
Santos, S. B. C., Stroele, V., Braga, R., and Ralha, C. G. (2025). An ontological characterization for SBSI research topics. In Anais do XXI Simpósio Brasileiro de Sistemas de Informação (SBSI), pages 1–10, Porto Alegre, RS, Brasil. SBC. to appear.
SAS (2024). Desafios e os Potenciais da IA Generativa no Brasil: Como Ter Vantagem Competitiva}, Relatório - SAS Institute Inc. e Coleman Parkes, Brasil. [link], acessado em 13 de outubro de 2025.
SAS Institute Inc. and Parkes, C. (2024). Desafios e os potenciais da ia generativa no brasil: Como ter vantagem competitiva.
SBC (2024). IV Seminário Grandes Desafios da Computação no Brasil – 2025-2035. [link], Acesso em: 23 Fevereiro 2025.
Schuch, R., Frantz, R. Z., Bocanegra, J., Roos-Frantz, F., Sawicki, S., and Molina-Jiménez, C. (2024). Digital services integration in smart cities: a trusted execution environment based solution. In 27th Iberoamerican Conference on Software Engineering (CIbSE), pages 437–438.
Sharma, A., Gupta, G., Ahmad, T., Krishan, K., and Kaur, B. (2019). Next generation agents (synthetic agents): Emerging threats and challenges in detection, protection, and decontamination. Handbook on Biological Warfare Preparedness, pages 217–256. PMCID: PMC7153315.
Silberg, J. and Manyika, J. (2019). Como lidar com vieses na inteligência artificial (e nos seres humanos). McKinsey & Company.
Silva, T. S., Thom, L. H., Weber, A., de Oliveira, J. P. M., e Fantinato, M. (2018). Empirical analysis of sentence templates and ambiguity issues for business process descriptions. In OTM Confederated International Conferences On the Move to Meaningful Internet Systems, pages 279–297, Cham. Springer.
Sociedade Brasileira de Computação - SBC. (2025) “Panorama Demográfico 2024 da Sociedade Brasileira de Computação: resultados do questionário com as pessoas associadas”, Relatório Técnico da CIDE. Porto Alegre: SBC, jul. 2025. 68 p. DOI: 10.5753/sbc.rt.2025.47.6.
Socio-Technical Centre (2025). Socio-technical systems theory. Leeds University Business School. Disponível em [link] (2025/02/03).
Solano, J. L., de Souza, S., Martin, A., and Taylor, L. (2022). Governing data and artificial intelligence for all: models for sustainable and just data governance.
Souza, J., Avelino, R., and da Silveira, S. A. (2023). Artificial intelligence: dependency, coloniality and technological subordination in Brazil. In Elgar Companion to Regulating AI and Big Data in Emerging Economies, pages 228–244. Edward Elgar Publishing.
Szimanski, F., Ralha, C. G., Wagner, G., and Ferreira, D. R. (2013). Improving business process models with agent-based simulation and process mining. In Nurcan, S., Proper, H. A., Soffer, P., Krogstie, J., Schmidt, R., Halpin, T. A., and Bider, I., editors, 14th BPMDS, 18th EMMSAD, Held at CAiSE 2013, LNBIP, pages 124–138, Valencia, Spain. Springer.
Telles, M., Barbosa, J. L., and Righi, R. (2016). Um Modelo Computacional para Acessibilidade em Cidades Inteligentes. In Anais do XII Simpósio Brasileiro de Sistemas de Informação, pag. 116–123, Porto Alegre, RS, Brasil. SBC.
Todd, A., Beling, P., Scherer, W., and Yang, S. Y. (2016). Agent-based financial markets: A review of the methodology and domain. In IEEE SSCI, pages 1–5, Athens, Greece.
Tolk, A., Page, E. H., Graciano Neto, V. V., Weirich, P., Formanek, N., Durán, J. M., Santucci, J. F., and Mittal, S. (2023). Philosophy and modeling and simulation. In Ören, T. I., Zeigler, B. P., and Tolk, A., editors, Body of Knowledge for Modeling and Simulation, Simulation Foundations, Methods and Applications, pages 383–412. Springer.
Trist, E. (1981). The evolution of socio-technical systems: a conceptual framework and an action research program. Toronto, Ontário: Ontario Ministry of Labour, Ontario Quality of Working Life Centre.
Trist, E. L. e Bamforth, K. W. (1951). Some social and psychological consequences of the longwall method of coal-getting: An examination of the psychological situation and defenses of a work group in relation to the social structure and technological content of the work system. Human Relations, 4(1):3–38.
UNESCO. “Organização das Nações Unidas para a Educação, a Ciência e a Cultura. Disponível em: [link] Acesso em: 20/02/2025.
van der Hoek, W. and Wooldridge, M. (2008). Chapter 24 multi-agent systems. In van Harmelen, F., Lifschitz, V., and Porter, B., editors, Handbook of Knowledge Representation, volume 3 of Foundations of Artificial Intelligence, pages 887–928. Elsevier.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems, volume 30.
Verbeek, P.-P. (2005). What things do: Philosophical reflections on technology, agency, and design. Penn State Press.
Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S. D., Tegmark, M., and Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the sustainable development goals. Nature communications, 11(1):1–10.
VIVEIROS DE CASTRO, Eduardo. A Inconstância da Alma Selvagem. São Paulo: Ubu Editora, 2017.
Vizuete, R., Monnoyer de Galland, C., Frasca, P., Panteley, E., and Hendrickx, J. M. (2024). Trends and Questions in Open Multi-agent Systems, pages 219–252. Springer.
Wang, W., Chen, T., Indulska, M., Sadiq, S., e Weber, B. (2022). Business process and rule integration approaches—an empirical analysis of model understanding. Information Systems, 104:101901.
WEAVER, Kaja. Bridging Indigenous and Western knowledge-systems in knowledge co-production with Amazonian Indigenous communities: a systematic realist review. Development Studies Research, v. 10, n. 1, p. 41–53, 2023.
Weber, P., Gabriel, R., Lux, T., e Menke, K. (2022). Business process management. In Basics in business informatics, pages 175–206. Springer, Cham.
West, S. M., Whittaker, M., and Crawford, K. (2019). Discriminating systems: Gender, race and power in ai. Relatório técnico, AI Now Institute.
WFO. “World Economic Forum”. Disponível em: [link] Acesso em: 20/02/2025.
Whittaker, M., Alston, R. R., Angwin, J., Crawford, K., Dobbe, R., Green, B., Jenkins, S. M. W., Kaziunas, E., Kluttz, D., Larson, J., Metcalf, J., Pasquale, F., Raji, I. D., Shapiro, A., Sloane, M., Stark, L., Viljoen, S., and Wong, J. (2021). AI Now Report 2021. [link]. AI Now Institute. Acessado em 13 abr. 2025.
Wieringa, M. (2020). What to account for when accounting for algorithms: A systematic literature review on algorithmic accountability. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pages 1–18.
WILLIAMS, D. H.; SHIPLEY, G. P. Enhancing Artificial Intelligence with Indigenous Wisdom. Open Journal of Philosophy, v. 11, n. 1, 2021.
WINNER, Langdon. Do Artifacts Have Politics? Daedalus, v. 109, n. 1, p. 121-136, 1980.
Xu, W. (2022). User centered design (vi): Human factors approaches for intelligent human-computer interaction.
Yigitcanlar, T., Agdas, D., and Degirmenci, K. (2023). Artificial intelligence in local governments: perceptions of city managers on prospects, constraints and choices. Ai & Society, 38(3):1135–1150.
Yousef, A. M. F., Chatti, M. A., and Schroeder, U. (2015). The state of MOOCs from 2012 to 2014: A critical analysis and future vision. International Review of Research in Open and Distributed Learning, 16(5):133–159.
Yuan, J., Yang, C., Cai, D., Wang, S., Yuan, X., Zhang, Z., Li, X., Zhang, D., Mei, H., Jia, X., et al. (2023). Rethinking mobile ai ecosystem in the llm era. arXiv preprint arXiv:2308.14363.
Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., and Choi, Y. (2019). Defending against neural fake news. In Advances in Neural Information Processing Systems, pages 671–681.
Zhang, R. W., Liang, X., and Wu, S.-H. (2024). When chatbots fail: exploring user coping following a chatbots-induced service failure. Information technology & people, 37(8):175–195.
Zuboff, S. (2023). The age of surveillance capitalism. In Social theory re-wired, pages 203–213. Routledge.
ZUBOFF, Shoshana. A era do capitalismo de vigilância. Rio de Janeiro: Intrínseca, 2021.

