Minicursos da ERCEMAPI 2022

Autores

Ariel S. Teles (ed)
IFMA
Danilo B. da Silva (ed)
UESPI
Guilherme A. R. M. Esmeraldo (ed)
IFCE

Palavras-chave:

ERCEMAPI 2022

Sinopse

O Livro de Minicursos da ERCEMAPI 2022 aborda conteúdos relacionados à ciência de dados, inteligência artificial, visão computacional e informática em saúde. No primeiro capítulo, intitulado “Análise Exploratória de Dados Espaciais com Python” os autores abordam a análise exploratória de dados espaciais, associando a teoria à prática com a linguagem Python. No segundo capítulo, “Acionamento de Dispositivos Eletroeletrônicos Utilizando Visão Computacional”, os autores apresentam um método para a utilização de técnicas de visão computacional no controle de dispositivos eletrônicos. O terceiro capítulo “Explainability e auditability: interpretando e validando modelos de machine learning” está situado em uma área de bastante crescimento nos últimos anos, a inteligência artificial explicável. O quarto capítulo “Introdução às Redes Neurais Profundas com Python” introduz não somente os conceitos, mas também exemplos práticos sobre o aprendizado profundo com redes neurais. No quinto capítulo, “Desenvolvimento Ágil e Informatização da Saúde Pública no Brasil”, os autores apresentam práticas ágeis utilizadas para o desenvolvimento de sistemas de grande porte para o Ministério da Saúde do Brasil. O sexto e último capítulo, com o título “Desenvolvimento de uma aplicação web para o diagnóstico da COVID-19 usando conceitos, técnicas e ferramentas de Inteligência Artificial”, discorre sobre o desenvolvimento de uma aplicação web para o diagnóstico da COVID-19, por meio de imagens de radiografia do tórax, usando conceitos, técnicas e ferramentas de inteligência artificial. Os seis capítulos deste livro possuem metodologias e ferramentas para a área de tecnologia da informação, sendo uma obra útil para pessoas que querem iniciar nas respectivas áreas abordadas e também ganhar conhecimento em tópicos de pesquisa bastante atuais.

Capítulos

Downloads

Não há dados estatísticos.

Referências

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from https://tensorflow.org.

ABNT (2004). ABNT NBR 5410: instalações elétricas de baixa tensão.

Academy, D. S. (2019). Deep learning book. http://deeplearningbook.com.br. Disponível; acessado em 05-Junho-2022.

Al-Bawi, A., Al-Kaabi, K., Jeryo, M., and Al-Fatlawi, A. (2020). Ccblock: an effective use of deep learning for automatic diagnosis of covid-19 using x-ray images. Research on Biomedical Engineering, pages 1–10.

Alber Maximilian, Lapuschkin Sebastian, Seegerer Philipp, Hägele Miriam, Schütt Kristof T, Montavon Grégoire, Samek Wojciech, Müller Klaus-Robert, Dähne Sven, Kindermans Pieter-Jan. iNNvestigate neural networks! // J. Mach. Learn. Res. 2019. 20, 93. 1–8.

Almeida, E. (2012). Econometria espacial. Campinas–SP. Alínea.

Andrade, A. L., Monteiro, A. M. V., Barcellos, C., Lisboa, E., Acosta, L. M. W., Almeida, M. C. d. M., Brito, M. R. V., Carvalho, M. S., Santos, M. A. d., Cruz, O., et al. (2007). Introdução à estatística espacial para a saúde pública.

Angelov Plamen, Soares Eduardo. Towards explainable deep neural networks (xDNN) // Neural Networks. 2020. 130. 185–194.

Anselin, L. (1988). Spatial econometrics: methods and models, volume 4. Springer Science & Business Media.

Anselin, L. (1995). Local indicators of spatial association—lisa. Geographical analysis, 27(2):93–115.

Anselin, L. (2005). Exploring spatial data with geodatm: a workbook. Center for spatially integrated social science, pages 165–223.

Anselin, L., Florax, R., and Rey, S. J. (2013). Advances in spatial econometrics: methodology, tools and applications. Springer Science & Business Media.

Araújo Inaldo da Paixão Santos. Introdução à auditoria operacional. 2001.

Araújo, F., Carneiro, A., Silva, R., Medeiros, F., and Ushizima, D. (2017). Redes neurais convolucionais com tensorflow:teoria e prática. 1:382–406.

Banzi, M. and Shiloh, M. (2022). Getting started with Arduino. Maker Media, Inc.

Berghoff Christian, Biggio Battista, Brummel Elisa, Danos Vasilios, Doms Thomas, Ehrich Heiko, Gantevoort Thorsten, Hammer Barbara, Iden Joachim, Jacob Sven, Khlaaf Heidy, Komrowski Lars, Kröwing Robert, Metzen Jan, Neu Matthias, Petsch Fabian, Poretschkin Maximilian, Samek Wojciech, Schäbe Hendrik, Twickel Arndt, Vechev Martin, Wiegand Thomas. Towards Auditable AI Systems: Current status and future directions [White paper]. May 2021.

Bhatt Umang, Xiang Alice, Sharma Shubham, Weller Adrian, Taly Ankur, Jia Yunhan, Ghosh Joydeep, Puri Ruchir, Moura José M. F., Eckersley Peter. Explainable Machine Learning in Deployment. 2019.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg.

Bradski, G. (2000). The opencv library. Dr. Dobb’s Journal: Software Tools for the Professional Programmer, 25(11):120–123.

Burkart Nadia, Huber Marco F. A survey on the explainability of supervised machine learning // Journal of Artificial Intelligence Research. 2021. 70. 245–317.

Câmara, G., Monteiro, A. M., Fucks, S. D., and Carvalho, M. S. (2004). Análise espacial e geoprocessamento. Análise espacial de dados geográficos. Brasília: EMBRAPA, pages 21–54.

Celuppi, I. C. et al. (2021) Uma análise sobre o desenvolvimento de tecnologias digitais em saúde para o enfrentamento da COVID-19 no Brasil e no mundo. Cadernos de Saúde Pública, v. 37.

Chaudhary, P. K. and Pachori, R. B. (2021). Fbsed based automatic diagnosis of covid-19 using x-ray and ct images. Computers in Biology and Medicine, 134:104454.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:321–357.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794.

Chollet, F. (2021). Deep learning with Python. Simon and Schuster.

Coelho, L. P. (2012). Mahotas: Open source software for scriptable computer vision. arXiv preprint arXiv:1211.4907.

Coppin, B. and Valério, J. (2015). Inteligência Artificial. Grupo Gen – LTC.

Costa Lucas Tubino Bonifácio Costa. Análise de modelos explicáveis de sistemas de classificação para registros hidroacústicos em ambientes marítimos. 2019.

da Silva, G. L. F., Valente, T. L. A., Silva, A. C., de Paiva, A. C., and Gattass, M. (2018). Convolutional neural network-based pso for lung nodule false positive reduction on ct images. Computer methods and programs in biomedicine, 162:109–118.

da Silva, G. L., Diniz, P. S., Ferreira, J. L., Franca, J. V., Silva, A. C., de Paiva, A. C., and de Cavalcanti, E. A. (2020). Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3d mri scans. Medical & Biological Engineering & Computing, 58(9):1947–1964.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), volume 1, pages 886–893. Ieee.

Dawson, T., Sandoval, J. O., Sagan, V., and Crawford, T. (2018). A spatial analysis of the relationship between vegetation and poverty. ISPRS International Journal of Geo-Information, 7(3):83.

Dhurandhar Amit, Chen Pin-Yu, Luss Ronny, Tu Chun-Chen, Ting Paishun, Shanmugam Karthikeyan, Das Payel. Explanations based on the missing: Towards contrastive explanations with pertinent negatives // Advances in neural information processing systems. 2018a. 31.

Dhurandhar Amit, Shanmugam Karthikeyan, Luss Ronny, Olsen Peder A. Improving simple models with confidence profiles // Advances in Neural Information Processing Systems. 2018b. 31.

Dias, D. A. J., da Cruz, L. B., Diniz, J. O. B., da Silva, G. L. F., Junior, G. B., Silva, A. C., de Paiva, A. C., Nunes, R. A., and Gattass, M. (2021). Automatic method for classifying covid-19 patients based on chest x-ray images, using deep features and pso-optimized xgboost. Expert Systems with Applications, 183:115452.

DIGITAL.AI. (2021) 15th annual state of agile report.

Diniz, J. O., Quintanilha, D. B., Santos Neto, A. C., da Silva, G. L., Ferreira, J. L., Netto, S., Araújo, J. D., Da Cruz, L. B., Silva, T. F., da S Martins, C. M., et al. (2021). Segmentation and quantification of covid-19 infections in ct using pulmonary vessels extraction and deep learning. Multimedia Tools and Applications, 80(19):29367–29399.

Domingues, A., Silva, F., Santos, L., Souza, R., Coimbra, G., and Loureiro, A. A. F. (2020). Dados geoespaciais: Conceitos e técnicas para coleta, armazenamento, tratamento e visualização. Sociedade Brasileira de Computação.

Doshi-Velez Finale, Kim Been. Towards a rigorous science of interpretable machine learning // arXiv preprint arXiv:1702.08608. 2017.

Europa.eu . Official journal of the european union:Regulations. 2017.

Ferreira, M. M., Esteve, G. P., Junior, G. B., de Almeida, J. D. S., de Paiva, A. C., and Veras, R. (2020). Multilevel cnn for angle closure glaucoma detection using as-oct images. In 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pages 105–110. IEEE.

Fotheringham, A. S., Brunsdon, C., and Charlton, M. (2000). Quantitative geography: perspectives on spatial data analysis. Sage.

Freedman, D. and Diaconis, P. (1981). On the histogram as a density estimator: L 2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 57(4):453–476.

Freitas Alex A. Comprehensible classification models: a position paper // ACM SIGKDD explorations newsletter. 2014. 15, 1. 1–10.

Galkin Fedor, Aliper Aleksandr, Putin Evgeny, Kuznetsov Igor, Gladyshev Vadim N, Zhavoronkov Alex. Human microbiome aging clocks based on deep learning and tandem of permutation feature importance and accumulated local effects // BioRxiv. 2018. 507780.

Geary, R. C. (1954). The contiguity ratio and statistical mapping. The incorporated statistician, 5(3):115–146.

Géron, A. (2017). Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media.

Getis, A. and Ord, J. K. (2010). The analysis of spatial association by use of distance statistics. In Perspectives on spatial data analysis, pages 127–145. Springer.

Ghaderzadeh, M. and Asadi, F. (2021). Deep learning in the detection and diagnosis of covid-19 using radiology modalities: a systematic review. Journal of healthcare engineering, 2021.

Ghassemi, N., Shoeibi, A., Khodatars, M., Heras, J., Rahimi, A., Zare, A., Pachori, R. B., and Gorriz, J. M. (2021). Automatic diagnosis of covid-19 from ct images using cyclegan and transfer learning. arXiv preprint arXiv:2104.11949.

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 1440–1448.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2015). Region-based convolutional networks for accurate object detection and segmentation. IEEE transactions on pattern analysis and machine intelligence, 38(1):142–158.

Goldstein Alex, Kapelner Adam, Bleich Justin, Pitkin Emil. Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation // journal of Computational and Graphical Statistics. 2015. 24, 1. 44–65.

Gomes, I. C. et al. (2019) e-SUS AB Atividade Coletiva: aplicativo móvel para registro de atividades coletivas em serviços de Atenção Básica. In: Anais Estendidos do XIX Simpósio Brasileiro de Computação Aplicada à Saúde. SBC, 2019. p. 7-12.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.deeplearningbook.org.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.deeplearningbook.org.

Goodman Bryce, Flaxman Seth. Eu regulations on algorithmic decision-making and a ”right to explanation” // arXiv preprint arxiv:1606.08813. 2016.

Goodman Bryce, Flaxman Seth. European Union regulations on algorithmic decisionmaking and a “right to explanation” // AI magazine. 2017. 38, 3. 50–57.

Gothelf, J., Seiden, J. (2021) Lean UX. "O'Reilly Media, Inc.".

Grove, A. S. (2015) High Output Management. New York: Vintage.

Gunning David. Explainable artificial intelligence (XAI), Defense Advanced Research Projects Agency (DARPA), 2017. 2017.

Haining, R., Wise, S., and Ma, J. (1998). Exploratory spatial data analysis. Journal of the Royal Statistical Society: Series D (The Statistician), 47(3):457–469.

Hammes, J. et al. (2021) Como executar um Planejamento Estratégico de forma 100% remota. Disponível em: [link]. Acesso em: 27 jul. 2022.

Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5):786–804.

Hassan, M. (2020). Computer vision zone: Cv zone. https://www.computervision.zone. Disponível; acessado em 05-Junho-2022.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer series in statistics. Springer.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice Hall.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE transactions on pattern analysis and machine intelligence, 37(9):1904–1916.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Holzinger Andreas, Langs Georg, Denk Helmut, Zatloukal Kurt, Müller Heimo. Causability and explainability of artificial intelligence in medicine // Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019. 9, 4. e1312.

Hossin, M. and Sulaiman, M. N. (2015). A review on evaluation metrics for data classification evaluations. International journal of data mining & knowledge management process, 5(2):1.

Huang, S., Yang, J., Fong, S., and Zhao, Q. (2021). Artificial intelligence in the diagnosis of covid-19: Challenges and perspectives. International Journal of Biological Sciences, 17(6):1581.

Hulstaert Lars. Understanding model predictions with LIME. VII 2018.

Hummer Waldemar, Muthusamy Vinod, Rausch Thomas, Dube Parijat, El Maghraoui Kaoutar, Murthi Anupama, Oum Punleuk. Modelops: Cloud-based lifecycle management for reliable and trusted ai // 2019 IEEE International Conference on Cloud Engineering (IC2E). 2019. 113–120.

ISO/IEC (2010) ISO/IEC 25010 - Systems and software engineering. In: Systems and software Quality Requirements and Evaluation (SQuaRE) - System and software quality models, Geneva, 2010.

Janiesch, C., Zschech, P., and Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3):685–695.

Jenks, G. F. and Caspall, F. C. (1971). Error on choroplethic maps: definition, measurement, reduction. Annals of the Association of American Geographers, 61(2):217–244.

Kaehler, A. and Bradski, G. (2016). Learning OpenCV 3: computer vision in C++ with the OpenCV library. ”O’Reilly Media, Inc.”.

Kaliyar, R. K., Goswami, A., and Narang, P. (2021). Fakebert: Fake news detection in social media with a bert-based deep learning approach. Multimedia Tools and Applications, 80(8):11765–11788.

Kholmatova, A. (2017) Design Systems: A practical guide to creating design languages for digital products. Smashing Magazine.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J. B., Grout, J., Corlay, S., et al. (2016). Jupyter Notebooks-a publishing format for reproducible computational workflows., volume 2016.

Kondaveeti, H. K., Kumaravelu, N. K., Vanambathina, S. D., Mathe, S. E., and Vappangi, S. (2021). A systematic literature review on prototyping with arduino: Applications, challenges, advantages, and limitations. Computer Science Review, 40:100364.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc.

Laboratório Bridge (2019a) Aprenda a construir um design system em 7 passos. Disponível em: [link]. Acesso em: 26 jul. 2022.

Laboratório Bridge (2019b) Porque decidimos construir um Design System. Disponível em: [link]. Acesso em: 26 jul. 2022.

Laboratório Bridge (2019c) Por que ter um design system acessível? Disponível em: [link]. Acesso em: 26 jul. 2022.

Lacerda, L. C. (2022) Práticas para aumentar o engajamento no sistema de gestão por OKR em um laboratório de TI. Disponível em: [link]. Acesso em: 27 jul. 2022.

Lacerda, L. C. (2022) Quatro motivos que nos levaram a ser remote first. Disponível em: https://portal.bridge.ufsc.br/2022/04/05/remote-first. Acesso em: 28 jul. 2022.

Lacerda, L. C., Soares, M. (2022) Como mensurar a satisfação dos colaboradores? Disponível em: [link]. Acesso em: 29 jul. 2022.

Lacerda, T. C., von Wangenheim, C. G., Hauck, J. C. R. (2019) UPCASE-A Method for Self-Assessing the Capability of the Usability Process in Small Organizations. arXiv preprint arXiv:1902.07244.

Lacerda, T.C. et al. (2020) e-SUS APS strategy: Case of success on Primary Care informatization in Brazil. Journal of Health Informatics, v. 12, n. 4.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278– 2324.

Lipton Zachary C. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. // Queue. 2018. 16, 3. 31–57.

Lopes, G. R., Almeida, A. W. S., Delbem, A., and Toledo, C. F. M. (2019). Introdução à análise exploratória de dados com python. Minicursos ERCAS ENUCMPI, 2019:160–176.

Lopes, G. R., Delbem, A. C., and de Sousa, J. B. (2021). Introdução à análise de dados geoespaciais com python. Sociedade Brasileira de Computação.

López Fernando. SHAP: Shapley Additive Explanations. 2021. Online; acessado em Jul 2022.

Lundberg Scott M., Lee Su-In. A Unified Approach to Interpreting Model Predictions // Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017. 4768–4777. (NIPS’17).

Martens David, Baesens BB, Van Gestel Tony. Decompositional rule extraction from support vector machines by active learning // IEEE Transactions on Knowledge and Data Engineering. 2008. 21, 2. 178–191.

McRoberts, M. (2018). Arduino básico. Novatec Editora.

Millman, K. J. and Aivazis, M. (2011). Python for scientists and engineers. Computing in Science & Engineering, 13(2):9–12.

Mishra, S. (2017). Handling imbalanced data: Smote vs. random undersampling. Int. Res. J. Eng. Technol, 4(8):317–320.

Mitchell Rory, Frank Eibe, Holmes Geoffrey. GPUTreeShap: Massively Parallel Exact Calculation of SHAP Scores for Tree Ensembles. 2020.

Mitchell, T. M. and Mitchell, T. M. (1997). Machine learning, volume 1. McGraw-hill New York.

Molnar C, Gruber S, Kopper P. Limitations of interpretable machine learning methods. 2020.

Molnar Christoph. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2020.

Montavon Grégoire, Binder Alexander, Lapuschkin Sebastian, Samek Wojciech, Müller Klaus-Robert. Layer-wise relevance propagation: an overview // Explainable AI: interpreting, explaining and visualizing deep learning. 2019. 193–209.

Monteiro, A. M. V., Câmara, G., Carvalho, M., and Druck, S. (2004). Análise espacial de dados geográficos. Brasília: Embrapa.

Moran, P. A. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society. Series B (Methodological), 10(2):243–251.

Nelli, F. (2018). The pandas library—an introduction. In Python Data Analytics, pages 87–139. Springer.

Norde, G., Eing, L., Cellupi, I. C., Lacerda, T. C. (2021) B_thinking: o modelo de processo de UX do Bridge, agora para todos! Disponível em: [link]. Acesso em: 14 maio. 2022.

Pedrini, H. and Schwartz,W. R. (2008). Análise de imagens digitais: princípios, algoritmos e aplicações. Cengage Learning.

Pimentel, J. F., Oliveira, G. P., Silva, M. O., Seufitelli, D. B., and Moro, M. M. (2021). Ciência de dados com reprodutibilidade usando jupyter. Sociedade Brasileira de Computação.

Prince, S. (2012). Computer Vision: Models, Learning, and Inference. Computer Vision: Models, Learning, and Inference. Cambridge University Press.

Raman, R., Srinivasan, S., Virmani, S., Sivaprasad, S., Rao, C., and Rajalakshmi, R. (2019). Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy. Eye, 33(1):97–109.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28.

Rey, S. J. and Anselin, L. (2007). PySAL: A Python Library of Spatial Analytical Methods. The Review of Regional Studies, 37(1):5–27.

Ribeiro Marco Tulio, Singh Sameer, Guestrin Carlos. ”Why should i trust you?”Explaining the predictions of any classifier // Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016a. 1135–1144.

Ribeiro Marco Tulio, Singh Sameer, Guestrin Carlos. Anchors: High-precision modelagnostic explanations // Proceedings of the AAAI conference on artificial intelligence. 32, 1. 2018.

Ribeiro Marco Tulio, Singh Sameer, Guestrin Carlos. Local Interpretable Model-Agnostic Explanations (LIME): An Introduction. VIII 2016b.

Ribeiro Marco Tulio, Singh Sameer, Guestrin Carlos. Model-agnostic interpretability of machine learning // arXiv preprint arXiv:1606.05386. 2016c.

Ribeiro Marco Tulio. LIME. VII 2021.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). Model-agnostic interpretability of machine learning. arXiv preprint arXiv:1606.05386.

Saha, S. (2018). A comprehensive guide to convolutional neural networks. https://towardsdatascience.com/. Disponível; acessado em 20-Junho-2022.

Segundo, A. K. R. and Rodrigues, C. L. C. (2015). Eletrônica de potência e acionamentos elétricos. Ouro Preto: Ifmg-Instituto Federal de Ciencia, Educação e Tecnologia de Minas Gerais.

Selvaraju Ramprasaath R, Cogswell Michael, Das Abhishek, Vedantam Ramakrishna, Parikh Devi, Batra Dhruv. Grad-cam: Visual explanations from deep networks via gradient-based localization // Proceedings of the IEEE international conference on computer vision. 2017. 618–626.

Senft Sandra, Gallegos Frederick. Information technology control and audit. 2008.

Shang, Q., Zhao, Y., Chen, Z., Hao, H., Li, F., Zhang, X., and Liu, J. (2019). Automated iris segmentation from anterior segment oct images with occludable angles via local phase tensor. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 4745–4749, Berlin, Germany. IEEE.

Shrikumar Avanti, Greenside Peyton, Kundaje Anshul. Learning important features through propagating activation differences // International conference on machine learning. 2017. 3145–3153.

Shukla, S., Maheshwari, A., and Johri, P. (2021). Comparative analysis of ml algorithms & stream lit web application. In 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), pages 175–180. IEEE.

Silveira, T. (2021) Cinco tarefas da gestão de pessoas que você provavelmente não conhecia. Disponível em: [link]. Acesso em: 28 jul. 2022.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Singh Jatinder, Cobbe Jennifer, Norval Chris. Decision provenance: Harnessing data flow for accountable systems // IEEE Access. 2018. 7. 6562–6574.

Soares, A. P. G. (2022) Roda ágil: um assessment para medir a agilidade do seu time ágil. [S. l.], 2017. Disponível em: [link]. Acesso em: 18 jul. 2022.

Soares, M., Lacerda, T. C. (2021) b_thinking: Por que decidimos construir um modelo de processo de UX próprio? Disponível em: [link]. Acesso em: 14 maio. 2022.

Souza, J. C., Diniz, J. O. B., Ferreira, J. L., da Silva, G. L. F., Silva, A. C., and de Paiva, A. C. (2019). An automatic method for lung segmentation and reconstruction in chest x-ray using deep neural networks. Computer methods and programs in biomedicine, 177:285–296.

Testa, B. (2020). Sistema de reconhecimento de língua brasileira de sinais aplicado a robôs de serviço.

Tobler, W. R. (1970). A computer movie simulating urban growth in the detroit region. Economic geography, 46(sup1):234–240.

Toreini Ehsan, Aitken Mhairi, Coopamootoo Kovila, Elliott Karen, Zelaya Carlos Gonzalez, Van Moorsel Aad. The relationship between trust in AI and trustworthy machine learning technologies // Proceedings of the 2020 conference on fairness, accountability, and transparency. 2020. 272–283.

Torres-Preciado, V. H., Polanco-Gaytan, M., and Tinoco-Zermeño, M. Á. (2014). Technological innovation and regional economic growth in mexico: a spatial perspective. The Annals of Regional Science, 52(1):183–200.

Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley, 1st edition.

Wang, Z. J., Turko, R., Shaikh, O., et al. (2020). Cnn explainer: Learning convolutional neural networks with interactive visualization. https://poloclub.github.io/cnn-explainer/.

Wazlawick, R. S. (2019) Engenharia de software: conceitos e práticas. Elsevier Editora Ltda. 2a ed.

Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2021). Dive into deep learning. arXiv preprint arXiv:2106.11342.

Zhang, J., Xie, Y., Li, Y., Shen, C., and Xia, Y. (2020). Covid-19 screening on chest x-ray images using deep learning based anomaly detection. arXiv preprint arXiv:2003.12338, 27.

Zhang, L.,Wang, S., and Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4):e1253.

Zhang, X., Rao, H., Wu, Y., Huang, Y., and Dai, H. (2020). Comparison of spatiotemporal characteristics of the covid-19 and sars outbreaks in mainland china. BMC infectious diseases, 20(1):1–7.

Data de publicação

28/09/2022

Licença

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.

Detalhes sobre o formato disponível para publicação: Volume Completo

Volume Completo

ISBN-13 (15)

978-85-7669-514-1